
Chapter 8 - Hierarchical DSTMs: Implementation and Inference

Odd Kolbjørnsen & Geir Storvik

April 24 2017

STK4150 - Intro 1



Last time

Hierarchical Dynamical Spatio-Temporal Models

Data in Process models

Observation types

Linear observations

Kalman filter

Kalman smoother

nonlinear/non Gaussian

Bayesian approach: Also include model for parameters
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Today

Methodology for inference in Hierarchical Dynamical Spatio-Temporal Models

General Problem

Sequential vs non sequential

Kalman filter

EM-algorithm

MCMC

Sequential Monte Carlo, particle filter

INLA
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Hierarchical model

Model for p[Z|Y,θD ]

Model for p[Y|θP ]

Bayesian approach: Model for p[θD ,θP ]

Inference: Extract information about θ and Y from Z

Likelihood:

p[Z|θ] =

∫
Y

p[Z|Y,θD ]p[Y|θP ]dY

Bayesian posterior

p[θ,Y|Z] =
p[θ,Y]p[Z|Y,θ]

p[Z]

p[Z] =

∫
θ
p[Z|θ]p[θ]dθ

How to obtain these quantities:

Huge computational problem

Very active research field

Some general methods

Software for specific (classes of) models
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Sequential/non-sequential inference

Data Z = (Z1, ...,ZT )

p(Z) =
∏

t p(Zt |Z1, ...,Zt−1)

Sequential updating:

p(θ,Y1:t |Z1:t), t = 1, 2, 3, ...

Non-sequential updating

p(θ,Y1:T |Z1:T )
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Methods

Kalman filter - sequential

Markov chain Monte Carlo - nonsequential

Sequential Monte Carlo - sequential

INLA - nonsequential

Ensemble Kalman Filter - sequential

Ensemble (Kalman) Smoother - nonsequentia (not in book)l
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Kalman filter

Model

Yt =MtYt−1 + ηt , ηt
ind∼ N(0,Qt)

Zt =HtYt + εt , εt
ind∼ N(0,Rt)

Aim: Calculate p(Yt |Z1:t). Enough with

Ŷt|t =E [Yt |Z1:t ]

Pt|t =Var[Yt |Z1:t ]

Kalman filter

Pt|t−1 =MtPt−1|t−1M
T
t + Qt Ŷt|t−1 = MtŶt−1|t−1

St =HT
t Pt|t−1Ht + Rt

Kt =Pt|t−1H
T
t S
−1
t

Pt|t =[I−KtHt ]Pt|t−1 Ŷt|t = Ŷt|t−1 + Kt [Zt −HtŶt|t−1]

Likelihood:

L(θ) =p(Z;θ) =
T∏
t=1

p(Zt |Z1:t−1;θ)
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Kalman filter (cont)

Parameter estimation:
Kalman filter give p(Yt |Z1:t) given parameters.

L(θ) = p(Z|θ) =
∏T

t=1 p(Zt |Z1:t−1;θ)

This can be obtaind directly from the Kalman filter (exercise)

Can optimize wrt θ to obtain ML estimates

Can also do Bayesian versions.

Properties

Computationally very efficient, sequential (online) inference

Can use alternative filters calculating P−1
t|t and utilizing that this often is

sparse

Can be extended to nonlinear models through linear approximations
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EM-algorithm

Maximum likelihood estimates in case of missing data (or latent variables) ,
and unknown parameters.

General formulation:
Iterate Expectation and Maximization until convergence...

E-step: Calculate expectation of log likelihood
E(ln L(θ|Z))|Zobs , θ̂

(i−1)) = q(θ|θ̂(i−1))

M-step: Find θ that maximizes q(θ|θ̂(i−1)), and call this θ̂(i)

Expectation (E-step) is to ”get rid of” the latent variables (or missing data) to
get back to the standard maximum likelihood estimator (M-Step).
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EM-algorithm, Kalman filter

Yt =MYt−1 + ηt , ηt
ind∼ N(0,Q)

Zt =HtYt + εt , εt
ind∼ N(0,R)

Unknown parameters: M,R,Q, and µY . Known parameter: Ht

Start with an initial guess on the parameters: M(0),R(0),Q(0),µ
(0)
Y

Then iterate:

E-step: Run a Kalman smoother (Filter-smoother/ Forward-backward)

with current parameter estimates M(i),R(i),Q(i),µ
(i)
Y to obtain updated

state estimates (estimate of latent process ), i.e the estimates of Y1:T

M-step: Assume the state space (latent process) is observed, and use
them in the maximum likelihood estimation together with Z1:T to get
updated parameter estimates of M(i+1),R(i+1),Q(i+1),µ

(i+1)
Y .
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Markov chain Monte Carlo (MCMC)

Interest in ĝ = E [g(Y,θ)|Z]
Monte Carlo

Sample {(Y(s),θ(s)} from p[Y,θ|Z]

Approximate ĝ by

1

S

S∑
s=1

g(Y(s),θ(s))

Difficult to sample from p[Y,θ|Z]

MCMC: Tool for complex simulation

Very general (we have looked at Gibbs sampler)

Non-sequential (offline) inference

Some general software (Winbugs), SLOWWWW

Usually need to implement from scratch to make it efficient

Time-consuming both in implementation time and running time

Separate courses for this
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Interest in ĝ = E [g(Y,θ)|Z]
Monte Carlo

Sample {(Y(s),θ(s)} from p[Y,θ|Z]

Approximate ĝ by
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Sequential Monte Carlo (SMC)

Kalman filter: Calculate p[Yt |Z1:t ,θD ] analytically

SMC: Approximate p[Yt |Z1:t ,θD ] by Monte Carlo samples

Utilize samples from time t − 1 when sampling at time t

Differ from MCMC in performing simulations sequentially

Very efficient in low dimensions of Yt , slow for high dimensions

Active field, much progress made continuously!
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Particle filter (An SMC )

”Sampling based Kalman filter”.

Initial forecast:
Sample Y(l)

0 ∼ p(y0) , for l = 1, ..., L

Iterate for all time steps:

Forecast step is sampling:
Sample Ỹl

t ∼ p(yt |Y(l)
t−1), for l = 1, ..., L

Set Ỹ(l)
0:t = [Ỹ(l)

0:(t−1)Ỹ
(l)
t ]

Filter step is importance re-sampling:
* Evaluate the importance weight (i.e. likelihood) w

(l)
t = p(Zt |Ỹ(l)

t )

* Resample with replacement L particles [Y(l)
0:t ,l=1,...,L] from Ỹ(l)

0:t using
the importance weigth for resampling i.e. the probability of sampling
particle k (at time t) is w

(k)
t /Σlw

(l)
t
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Integrated nested Laplace approximation (INLA)

Interest in calculation of

L(θ) =

∫
Y

p[Z|Y,θD ]p[Y|θP ]dY =

∫
Y

e f (Y)dY

Approximate (using Ŷ = argmaxYf (Y), f ′(Ŷ) = 0)

f (Y) ≈f̂ (Y)

=f (Ŷ) + f ′(Ŷ)(Y − Ŷ) +
1

2
(Y − Ŷ)T f ′′(Ŷ)(Y − Ŷ)

=f (Ŷ) +
1

2
(Y − Ŷ)T f ′′(Ŷ)(Y − Ŷ)

which gives (with d = dim(Y))

L(θ) ≈ e f (Ŷ) (2π)d/2

| − f ′′(Ŷ)|1/2

INLA

Nested Laplace approximations

Utilize sparsity in precision matrices
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f (Y) ≈f̂ (Y)
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| − f ′′(Ŷ)|1/2
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INLA

Require latent field to be Gaussian

Great flexibility with respect to observation processes

Extremely fast compared to MCMC

The number of models it can cover is increasing frequently

R overhead makes it relatively easy to use

Only give marginal distributions, not simultaneous ones.
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