Chapter 8 - Hierarchical DSTMs: Implementation and Inference

Odd Kolbjørnsen \& Geir Storvik

April 242017

Last time

Hierarchical Dynamical Spatio-Temporal Models

- Data in Process models
- Observation types
- Linear observations
- Kalman filter
- Kalman smoother
- nonlinear/non Gaussian

Bayesian approach: Also include model for parameters

Today

Methodology for inference in Hierarchical Dynamical Spatio-Temporal Models

- General Problem
- Sequential vs non sequential
- Kalman filter
- EM-algorithm
- MCMC
- Sequential Monte Carlo, particle filter
- INLA

Hierarchical model

- Model for $p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right]$
- Model for $p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right]$
- Bayesian approach: Model for $p\left[\boldsymbol{\theta}_{D}, \boldsymbol{\theta}_{P}\right]$

Inference: Extract information about $\boldsymbol{\theta}$ and \mathbf{Y} from \mathbf{Z}

Hierarchical model

- Model for $p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right]$
- Model for $p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right]$
- Bayesian approach: Model for $p\left[\boldsymbol{\theta}_{D}, \boldsymbol{\theta}_{P}\right]$

Inference: Extract information about $\boldsymbol{\theta}$ and \mathbf{Y} from \mathbf{Z} Likelihood:

$$
p[\mathbf{Z} \mid \boldsymbol{\theta}]=\int_{\mathbf{Y}} p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right] p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right] d \mathbf{Y}
$$

Bayesian posterior

$$
\begin{aligned}
p[\boldsymbol{\theta}, \mathbf{Y} \mid \mathbf{Z}] & =\frac{p[\boldsymbol{\theta}, \mathbf{Y}] p[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}]}{p[\mathbf{Z}]} \\
p[\mathbf{Z}] & =\int_{\boldsymbol{\theta}} p[\mathbf{Z} \mid \boldsymbol{\theta}] p[\boldsymbol{\theta}] d \boldsymbol{\theta}
\end{aligned}
$$

Hierarchical model

- Model for $p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right]$
- Model for $p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right]$
- Bayesian approach: Model for $p\left[\boldsymbol{\theta}_{D}, \boldsymbol{\theta}_{P}\right]$

Inference: Extract information about $\boldsymbol{\theta}$ and \mathbf{Y} from \mathbf{Z} Likelihood:

$$
p[\mathbf{Z} \mid \boldsymbol{\theta}]=\int_{\mathbf{Y}} p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right] p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right] d \mathbf{Y}
$$

Bayesian posterior

$$
\begin{aligned}
p[\boldsymbol{\theta}, \mathbf{Y} \mid \mathbf{Z}] & =\frac{p[\boldsymbol{\theta}, \mathbf{Y}] p[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}]}{p[\mathbf{Z}]} \\
p[\mathbf{Z}] & =\int_{\boldsymbol{\theta}} p[\mathbf{Z} \mid \boldsymbol{\theta}] p[\boldsymbol{\theta}] d \boldsymbol{\theta}
\end{aligned}
$$

How to obtain these quantities:

- Huge computational problem
- Very active research field
- Some general methods
- Software for specific (classes of) models

Sequential/non-sequential inference

- Data $\mathbf{Z}=\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{T}\right)$
- $p(\mathbf{Z})=\prod_{t} p\left(\mathbf{Z}_{t} \mid \mathbf{Z}_{1}, \ldots, \mathbf{Z}_{t-1}\right)$
- Sequential updating:

$$
p\left(\boldsymbol{\theta}, \mathbf{Y}_{1: t} \mid \mathbf{Z}_{1: t}\right), \quad t=1,2,3, \ldots
$$

- Non-sequential updating

$$
p\left(\boldsymbol{\theta}, \mathbf{Y}_{1: T} \mid \mathbf{Z}_{1: T}\right)
$$

Methods

- Kalman filter - sequential
- Markov chain Monte Carlo - nonsequential
- Sequential Monte Carlo - sequential
- INLA - nonsequential
- Ensemble Kalman Filter - sequential
- Ensemble (Kalman) Smoother - nonsequentia (not in book)।

Kalman filter

Model

$$
\begin{array}{ll}
\mathbf{Y}_{t}=\mathbf{M}_{t} \mathbf{Y}_{t-1}+\boldsymbol{\eta}_{t}, & \boldsymbol{\eta}_{t} \stackrel{\text { ind }}{\sim} N\left(0, \mathbf{Q}_{t}\right) \\
\mathbf{Z}_{t}=\mathbf{H}_{t} \mathbf{Y}_{t}+\boldsymbol{\varepsilon}_{t}, & \boldsymbol{\varepsilon}_{t} \stackrel{i n d}{\sim} N\left(0, \mathbf{R}_{t}\right)
\end{array}
$$

Aim: Calculate $p\left(\mathbf{Y}_{t} \mid \mathbf{Z}_{1: t}\right)$. Enough with

$$
\begin{aligned}
& \widehat{\mathbf{Y}}_{t \mid t}=E\left[\mathbf{Y}_{t} \mid \mathbf{Z}_{1: t}\right] \\
& \mathbf{P}_{t \mid t}=\operatorname{Var}\left[\mathbf{Y}_{t} \mid \mathbf{Z}_{1: t}\right]
\end{aligned}
$$

Kalman filter

$$
\begin{aligned}
\mathbf{P}_{t \mid t-1} & =\mathbf{M}_{t} \mathbf{P}_{t-1 \mid t-1} \mathbf{M}_{t}^{T}+\mathbf{Q}_{t} & & \widehat{\mathbf{Y}}_{t \mid t-1}=\mathbf{M}_{t} \widehat{\mathbf{Y}}_{t-1 \mid t-1} \\
\mathbf{S}_{t} & =\mathbf{H}_{t}^{T} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}+\mathbf{R}_{t} & & \\
\mathbf{K}_{t} & =\mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{T} \mathbf{S}_{t}^{-1} & & \\
\mathbf{P}_{t \mid t} & =\left[\mathbf{I}-\mathbf{K}_{t} \mathbf{H}_{t}\right] \mathbf{P}_{t \mid t-1} & & \widehat{\mathbf{Y}}_{t \mid t}=\widehat{\mathbf{Y}}_{t \mid t-1}+\mathbf{K}_{t}\left[\mathbf{Z}_{t}-\mathbf{H}_{t} \widehat{\mathbf{Y}}_{t \mid t-1}\right]
\end{aligned}
$$

Likelihood:

$$
L(\boldsymbol{\theta})=p(\mathbf{Z} ; \boldsymbol{\theta})=\prod_{t=1}^{T} p\left(\mathbf{Z}_{t} \mid \mathbf{Z}_{1: t-1} ; \boldsymbol{\theta}\right)
$$

Kalman filter (cont)

Parameter estimation:
Kalman filter give $p\left(\mathbf{Y}_{t} \mid \mathbf{Z}_{1: t}\right)$ given parameters.

- $L(\boldsymbol{\theta})=p(\mathbf{Z} \mid \boldsymbol{\theta})=\prod_{t=1}^{T} p\left(\mathbf{Z}_{t} \mid \mathbf{Z}_{1: t-1} ; \boldsymbol{\theta}\right)$
- This can be obtaind directly from the Kalman filter (exercise)
- Can optimize wrt $\boldsymbol{\theta}$ to obtain ML estimates
- Can also do Bayesian versions.

Properties

- Computationally very efficient, sequential (online) inference
- Can use alternative filters calculating $\mathbf{P}_{t \mid t}^{-1}$ and utilizing that this often is sparse
- Can be extended to nonlinear models through linear approximations

EM-algorithm

Maximum likelihood estimates in case of missing data (or latent variables), and unknown parameters.

General formulation:
Iterate Expectation and Maximization until convergence...

- E-step: Calculate expectation of log likelihood $\left.E(\ln L(\theta \mid Z)) \mid Z_{o b s}, \hat{\theta}^{(i-1)}\right)=q\left(\theta \mid \hat{\theta}^{(i-1)}\right)$
- M-step: Find θ that maximizes $q\left(\theta \mid \hat{\theta}^{(i-1)}\right)$, and call this $\hat{\theta}^{(i)}$

Expectation (E-step) is to "get rid of" the latent variables (or missing data) to get back to the standard maximum likelihood estimator (M-Step).

EM-algorithm, Kalman filter

$$
\begin{array}{ll}
\mathbf{Y}_{t}=\mathbf{M} \mathbf{Y}_{t-1}+\boldsymbol{\eta}_{t}, & \boldsymbol{\eta}_{t} \stackrel{\text { ind }}{\sim} N(0, \mathbf{Q}) \\
\mathbf{Z}_{t}=\mathbf{H}_{t} \mathbf{Y}_{t}+\boldsymbol{\varepsilon}_{t}, & \boldsymbol{\varepsilon}_{t} \stackrel{\text { ind }}{\sim} N(0, \mathbf{R})
\end{array}
$$

Unknown parameters: $\mathbf{M}, \mathbf{R}, \mathbf{Q}$, and $\boldsymbol{\mu}_{\boldsymbol{Y}}$. Known parameter: \mathbf{H}_{t}

EM-algorithm, Kalman filter

$$
\begin{array}{ll}
\mathbf{Y}_{t}=\mathbf{M} \mathbf{Y}_{t-1}+\boldsymbol{\eta}_{t}, & \boldsymbol{\eta}_{t} \stackrel{\text { ind }}{\sim} N(0, \mathbf{Q}) \\
\mathbf{Z}_{t}=\mathbf{H}_{t} \mathbf{Y}_{t}+\boldsymbol{\varepsilon}_{t}, & \boldsymbol{\varepsilon}_{t} \stackrel{\text { ind }}{\sim} N(0, \mathbf{R})
\end{array}
$$

Unknown parameters: $\mathbf{M}, \mathbf{R}, \mathbf{Q}$, and $\boldsymbol{\mu}_{\boldsymbol{Y}}$. Known parameter: \mathbf{H}_{t}

Start with an initial guess on the parameters: $\mathbf{M}^{(0)}, \mathbf{R}^{(0)}, \mathbf{Q}^{(0)}, \boldsymbol{\mu}_{\curlyvee}^{(0)}$ Then iterate:

- E-step: Run a Kalman smoother (Filter-smoother/ Forward-backward) with current parameter estimates $\mathbf{M}^{(i)}, \mathbf{R}^{(i)}, \mathbf{Q}^{(i)}, \boldsymbol{\mu}_{\curlyvee}^{(i)}$ to obtain updated state estimates (estimate of latent process), i.e the estimates of $\mathbf{Y}_{1: T}$

EM-algorithm, Kalman filter

$$
\begin{array}{ll}
\mathbf{Y}_{t}=\mathbf{M} \mathbf{Y}_{t-1}+\boldsymbol{\eta}_{t}, & \boldsymbol{\eta}_{t} \stackrel{i n d}{\sim} N(0, \mathbf{Q}) \\
\mathbf{Z}_{t}=\mathbf{H}_{t} \mathbf{Y}_{t}+\boldsymbol{\varepsilon}_{t}, & \boldsymbol{\varepsilon}_{t} \stackrel{i n d}{\sim} N(0, \mathbf{R})
\end{array}
$$

Unknown parameters: $\mathbf{M}, \mathbf{R}, \mathbf{Q}$, and $\boldsymbol{\mu}_{\boldsymbol{Y}}$. Known parameter: \mathbf{H}_{t}

Start with an initial guess on the parameters: $\mathbf{M}^{(0)}, \mathbf{R}^{(0)}, \mathbf{Q}^{(0)}, \boldsymbol{\mu}_{Y}^{(0)}$ Then iterate:

- E-step: Run a Kalman smoother (Filter-smoother/ Forward-backward) with current parameter estimates $\mathbf{M}^{(i)}, \mathbf{R}^{(i)}, \mathbf{Q}^{(i)}, \boldsymbol{\mu}_{Y}^{(i)}$ to obtain updated state estimates (estimate of latent process), i.e the estimates of $\mathbf{Y}_{1: T}$
- M-step: Assume the state space (latent process) is observed, and use them in the maximum likelihood estimation together with $\mathbf{Z}_{1: T}$ to get updated parameter estimates of $\mathbf{M}^{(i+1)}, \mathbf{R}^{(i+1)}, \mathbf{Q}^{(i+1)}, \boldsymbol{\mu}_{Y}^{(i+1)}$.

Markov chain Monte Carlo (MCMC)

Interest in $\hat{g}=E[g(\mathbf{Y}, \boldsymbol{\theta}) \mid \mathbf{Z}]$
Monte Carlo

- Sample $\left\{\left(\mathbf{Y}^{(s)}, \boldsymbol{\theta}^{(s)}\right\}\right.$ from $p[\mathbf{Y}, \boldsymbol{\theta} \mid \mathbf{Z}]$
- Approximate \hat{g} by

$$
\frac{1}{S} \sum_{s=1}^{S} g\left(\mathbf{Y}^{(s)}, \boldsymbol{\theta}^{(s)}\right)
$$

Markov chain Monte Carlo (MCMC)

Interest in $\hat{g}=E[g(\mathbf{Y}, \boldsymbol{\theta}) \mid \mathbf{Z}]$
Monte Carlo

- Sample $\left\{\left(\mathbf{Y}^{(s)}, \boldsymbol{\theta}^{(s)}\right\}\right.$ from $p[\mathbf{Y}, \boldsymbol{\theta} \mid \mathbf{Z}]$
- Approximate \hat{g} by

$$
\frac{1}{S} \sum_{s=1}^{S} g\left(\mathbf{Y}^{(s)}, \boldsymbol{\theta}^{(s)}\right)
$$

- Difficult to sample from $p[\mathbf{Y}, \boldsymbol{\theta} \mid \mathbf{Z}]$
- MCMC: Tool for complex simulation
- Very general (we have looked at Gibbs sampler)
- Non-sequential (offline) inference
- Some general software (Winbugs), SLOWWWW
- Usually need to implement from scratch to make it efficient
- Time-consuming both in implementation time and running time
- Separate courses for this

Sequential Monte Carlo (SMC)

- Kalman filter: Calculate $p\left[\mathbf{Y}_{t} \mid \mathbf{Z}_{1: t}, \boldsymbol{\theta}_{D}\right]$ analytically
- SMC: Approximate $p\left[\mathbf{Y}_{t} \mid \mathbf{Z}_{1: t}, \boldsymbol{\theta}_{D}\right]$ by Monte Carlo samples
- Utilize samples from time $t-1$ when sampling at time t
- Differ from MCMC in performing simulations sequentially
- Very efficient in low dimensions of \mathbf{Y}_{t}, slow for high dimensions
- Active field, much progress made continuously!

Particle filter (An SMC)

"Sampling based Kalman filter".

Initial forecast:
Sample $\mathbf{Y}_{0}^{(I)} \sim p\left(\mathbf{y}_{0}\right)$, for $I=1, \ldots, L$

Iterate for all time steps:

- Forecast step is sampling:

Sample $\tilde{\mathbf{Y}}_{t}^{\prime} \sim p\left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}^{(I)}\right)$, for $I=1, \ldots, L$
Set $\tilde{\mathbf{Y}}_{0: t}^{(I)}=\left[\tilde{\mathbf{Y}}_{0:(t-1)}^{(I)} \tilde{\mathbf{Y}}_{t}^{(I)}\right]$

- Filter step is importance re-sampling:
* Evaluate the importance weight (i.e. likelihood) $w_{t}^{(I)}=p\left(\mathbf{Z}_{t} \mid \tilde{\mathbf{Y}}_{t}^{(/)}\right)$
* Resample with replacement L particles $\left[\mathbf{Y}_{0: t}^{(I)}, I=1, \ldots, L\right]$ from $\tilde{\mathbf{Y}}_{0: t}^{(I)}$ using the importance weigth for resampling i.e. the probability of sampling particle k (at time t) is $w_{t}^{(k)} / \Sigma_{l} w_{t}^{(I)}$

Integrated nested Laplace approximation (INLA)

Interest in calculation of

$$
L(\boldsymbol{\theta})=\int_{\mathbf{Y}} p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right] p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right] d \mathbf{Y}=\int_{\mathbf{Y}} e^{f(\mathbf{Y})} d \mathbf{Y}
$$

Integrated nested Laplace approximation (INLA)

Interest in calculation of

$$
L(\boldsymbol{\theta})=\int_{\mathbf{Y}} p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right] p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right] d \mathbf{Y}=\int_{\mathbf{Y}} e^{f(\mathbf{Y})} d \mathbf{Y}
$$

Approximate (using $\widehat{\mathbf{Y}}=\operatorname{argmax}_{\mathbf{Y}} f(\mathbf{Y}), \mathbf{f}^{\prime}(\widehat{\mathbf{Y}})=\mathbf{0}$)

$$
\begin{aligned}
f(\mathbf{Y}) & \approx \hat{f}(\mathbf{Y}) \\
& =f(\widehat{\mathbf{Y}})+\mathbf{f}^{\prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}})+\frac{1}{2}(\mathbf{Y}-\widehat{\mathbf{Y}})^{T} \mathbf{f}^{\prime \prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}}) \\
& =f(\widehat{\mathbf{Y}})+\frac{1}{2}(\mathbf{Y}-\widehat{\mathbf{Y}})^{T} \mathbf{f}^{\prime \prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}})
\end{aligned}
$$

Integrated nested Laplace approximation (INLA)

Interest in calculation of

$$
L(\boldsymbol{\theta})=\int_{\mathbf{Y}} p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right] p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right] d \mathbf{Y}=\int_{\mathbf{Y}} e^{f(\mathbf{Y})} d \mathbf{Y}
$$

Approximate (using $\widehat{\mathbf{Y}}=\operatorname{argmax}_{\mathbf{Y}} f(\mathbf{Y}), \mathbf{f}^{\prime}(\widehat{\mathbf{Y}})=\mathbf{0}$)

$$
\begin{aligned}
f(\mathbf{Y}) & \approx \hat{f}(\mathbf{Y}) \\
& =f(\widehat{\mathbf{Y}})+\mathbf{f}^{\prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}})+\frac{1}{2}(\mathbf{Y}-\widehat{\mathbf{Y}})^{T} \mathbf{f}^{\prime \prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}}) \\
& =f(\widehat{\mathbf{Y}})+\frac{1}{2}(\mathbf{Y}-\widehat{\mathbf{Y}})^{T} \mathbf{f}^{\prime \prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}})
\end{aligned}
$$

which gives (with $d=\operatorname{dim}(\mathbf{Y})$)

$$
L(\boldsymbol{\theta}) \approx e^{f(\hat{\mathbf{Y}})} \frac{(2 \pi)^{d / 2}}{\left|-\mathbf{f}^{\prime \prime}(\hat{\mathbf{Y}})\right|^{1 / 2}}
$$

Integrated nested Laplace approximation (INLA)

Interest in calculation of

$$
L(\boldsymbol{\theta})=\int_{\mathbf{Y}} p\left[\mathbf{Z} \mid \mathbf{Y}, \boldsymbol{\theta}_{D}\right] p\left[\mathbf{Y} \mid \boldsymbol{\theta}_{P}\right] d \mathbf{Y}=\int_{\mathbf{Y}} e^{f(\mathbf{Y})} d \mathbf{Y}
$$

Approximate (using $\widehat{\mathbf{Y}}=\operatorname{argmax}_{\mathbf{Y}} f(\mathbf{Y}), \mathbf{f}^{\prime}(\widehat{\mathbf{Y}})=\mathbf{0}$)

$$
\begin{aligned}
f(\mathbf{Y}) & \approx \hat{f}(\mathbf{Y}) \\
& =f(\widehat{\mathbf{Y}})+\mathbf{f}^{\prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}})+\frac{1}{2}(\mathbf{Y}-\widehat{\mathbf{Y}})^{T} \mathbf{f}^{\prime \prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}}) \\
& =f(\widehat{\mathbf{Y}})+\frac{1}{2}(\mathbf{Y}-\widehat{\mathbf{Y}})^{T} \mathbf{f}^{\prime \prime}(\widehat{\mathbf{Y}})(\mathbf{Y}-\widehat{\mathbf{Y}})
\end{aligned}
$$

which gives (with $d=\operatorname{dim}(\mathbf{Y})$)

$$
L(\boldsymbol{\theta}) \approx e^{f(\widehat{\mathbf{Y}})} \frac{(2 \pi)^{d / 2}}{\left|-\mathbf{f}^{\prime \prime}(\widehat{\mathbf{Y}})\right|^{1 / 2}}
$$

INLA

- Nested Laplace approximations
- Utilize sparsity in precision matrices
- Require latent field to be Gaussian
- Great flexibility with respect to observation processes
- Extremely fast compared to MCMC
- The number of models it can cover is increasing frequently
- R overhead makes it relatively easy to use
- Only give marginal distributions, not simultaneous ones.

