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Last time

Hierarchical Dynamical Spatio-Temporal Models
o Data in Process models
@ Observation types
@ Linear observations
o Kalman filter
@ Kalman smoother
@ nonlinear/non Gaussian

Bayesian approach: Also include model for parameters
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Methodology for inference in Hierarchical Dynamical Spatio-Temporal Models
@ General Problem
@ Sequential vs non sequential
o Kalman filter
o EM-algorithm
e MCMC
o Sequential Monte Carlo, particle filter
o INLA
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Hierarchical model

e Model for p[Z]Y, 68p]
e Model for p[Y|60p]
@ Bayesian approach: Model for p[@p, 6p]

Inference: Extract information about @ and Y from Z
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Hierarchical model

e Model for p[Z]Y, 68p]
e Model for p[Y|60p]
@ Bayesian approach: Model for p[@p, 6p]

Inference: Extract information about @ and Y from Z
Likelihood:

plz(6] = [ pIZIY. 0o]plY 05IdY
Y
Bayesian posterior
pl6, YIplZIY, 6]
0,.YZ] =—"-""—
pl6, Y|2] s

plz] = /9 plZ/6]p[6]d0
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Hierarchical model

e Model for p[Z]Y, 68p]
e Model for p[Y|60p]
@ Bayesian approach: Model for p[@p, 6p]

Inference: Extract information about @ and Y from Z
Likelihood:

pl216] = | plzIY. Oolpl¥|0rlaY

Bayesian posterior

_pl0,Y]p[Z]Y, 6]
pl6,Y|Z] = P[Z]

plz] = /9 plZ/6]p[6]d0

How to obtain these quantities:
Huge computational problem

°
@ Very active research field
@ Some general methods

°

Software for specific (classes of) models
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Sequential /non-sequential inference

Data Z = (24, ...,Z7)

p(Z) = Ht p(Zf‘Zlv R fol)

Sequential updating:
p(60,Y1.4|Z1s), t=1,2,3, ...

o Non-sequential updating

p(0,Y17|Zy.7)
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Methods

Kalman filter - sequential

@ Markov chain Monte Carlo - nonsequential
Sequential Monte Carlo - sequential

INLA - nonsequential

Ensemble Kalman Filter - sequential

Ensemble (Kalman) Smoother - nonsequentia (not in book)!
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Kalman filter

Model
Ye=MYei 47, n. % N(0,Q:)
Z; =H.Y: + &, €t " N(0,R:)

Aim: Calculate p(Y:|Z1.:). Enough with
Yo =E[Y¢|Z1]
P =Var[Y:|Z;.]
Kalman filter
Piec1 =MPP_1e M+ Qe Yoo = MY,y
S: =H/P.,_H: +R;
Ke =Py 1H/S;
Poe =[1 — KeHe]Pyje_s Yie = Yero1 + Ke[Ze — HeY o]
Likelihood:

L(8) =p(Z;0) = H p(Z¢|Z1:t-1;0)
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Kalman filter (cont)

Parameter estimation:
Kalman filter give p(Y:|Z1.+) given parameters.

L(6) = p(216) = T17, P(Z:[Z1c-1:6)
@ This can be obtaind directly from the Kalman filter (exercise)

@ Can optimize wrt 6 to obtain ML estimates
@ Can also do Bayesian versions.
Properties

o Computationally very efficient, sequential (online) inference

o Can use alternative filters calculating Patl

sparse

and utilizing that this often is

@ Can be extended to nonlinear models through linear approximations
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EM-algorithm

Maximum likelihood estimates in case of missing data (or latent variables) ,
and unknown parameters.

General formulation:
Iterate Expectation and Maximization until convergence...

o E-step: Calculate expectation of log likelihood
E(In L(812))] Zobs, 691) = q(0]60=D)
o M-step: Find 6 that maximizes g(A|6U~?), and call this §)

Expectation (E-step) is to "get rid of” the latent variables (or missing data) to
get back to the standard maximum likelihood estimator (M-Step).
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EM-algorithm, Kalman filter

ind

Y: =MY:1 + 7, n. ~ N(0,Q)
Z: =H.Y: + ., e: % N(0,R)

Unknown parameters: M, R, Q,and pt,,. Known parameter: H.
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EM-algorithm, Kalman filter

Y. =MY. s+, . % N(0,Q)
Z: =H.Y: + ., e: % N(0,R)

Unknown parameters: M, R, Q,and pt,,. Known parameter: H.

Start with an initial guess on the parameters: M(® R, Q(O),p,(yo)

Then iterate:

o E-step: Run a Kalman smoother (Filter-smoother/ Forward-backward)
with current parameter estimates M(")7 R(")7 Q("),y,(,',) to obtain updated
state estimates (estimate of latent process ), i.e the estimates of Y1.7
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EM-algorithm, Kalman filter

Y =MY, 1 +7,, n. % N(0,Q)
Z: =H.Y: + ., e: % N(0,R)

Unknown parameters: M, R, Q,and pt,,. Known parameter: H.

Start with an initial guess on the parameters: M(® R, Q(O),p,(yo)

Then iterate:

o E-step: Run a Kalman smoother (Filter-smoother/ Forward backward)
with current parameter estimates M(i Q( ) ) to obtain updated
state estimates (estimate of latent process ) i.e the estimates of Yy.7

@ M-step: Assume the state space (latent process) is observed, and use
them in the maximum likelihood estimation together with Z;.7 to get

updated parameter estimates of MU+ RU+D QU+1) ,u,(,i“).
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Markov chain Monte Carlo (MCMCQ)

Interest in g = E[g(Y, 8)|Z]
Monte Carlo

o Sample {(Y®), 09} from p[Y, 0|Z]
° Approximate g by

Z g(Y® )
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Markov chain Monte Carlo (MCMCQ)

Interest in g = E[g(Y, 8)|Z]
Monte Carlo
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Sample {(Y®),0®)} from p[Y, 6|Z]
Approximate g by

S
1 9 e
5> _a(Y.6%)
s=1

Difficult to sample from p[Y, 6|Z]

MCMC: Tool for complex simulation

Very general (we have looked at Gibbs sampler)

Non-sequential (offline) inference

Some general software (Winbugs), SLOWWWW

Usually need to implement from scratch to make it efficient
Time-consuming both in implementation time and running time

Separate courses for this



Sequential Monte Carlo (SMC)
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Kalman filter: Calculate p[Y:|Z1.:, Op] analytically

SMC: Approximate p[Y:|Z1., 8p] by Monte Carlo samples
Utilize samples from time t — 1 when sampling at time ¢t

Differ from MCMC in performing simulations sequentially

Very efficient in low dimensions of Y4, slow for high dimensions

Active field, much progress made continuously!



Particle filter (An SMC )

"Sampling based Kalman filter”.

Initial forecast:
Sample YL()/) ~p(yo) ,forI=1,..,L

Iterate for all time steps:

o Forecast step is sampling:
Sample Y! ~ p(ye|Y")), for I=1,...,L
Set Y5, = [V, 1) V']

o Filter step is importance re-sampling:
* Evaluate the importance weight (i.e. likelihood) w!" = p(Z:|¥{")
* Resample with replacement L particles [Y(()’)t J=1,...,L] from ?é’)t using
the importance weigth for resampling i.e. the probability of sampling
particle k (at time t) is Wt(k)/):/WtU)
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Integrated nested Laplace approximation (INLA)

Interest in calculation of

L(e):/Yp[Z|Y,eD]p[Y|9P]dY:/Ye“Y)dY
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Integrated nested Laplace approximation (INLA)

Interest in calculation of
L(e):/p[Z|Y,eD]p[Y|9P]dY:/e“‘”dv
Y Y

Approximate (using Y= argmaxyf(Y),f’(?) =0)

f(Y) =f(Y)

~

=F(Y) + F (V)Y —¥) + 5 (¥ = V) @)Y -V)
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Integrated nested Laplace approximation (INLA)

Interest in calculation of
L(e):/p[Z|Y,eD]p[Y|9P]dY:/e“‘”dv
Y Y

Approximate (using Y= argmaxyf(Y),f’(?) =0)

F(Y) ~F(Y)

=F(Y) + F (V)Y —¥) + 5 (¥ = V) @)Y -V)

=f(

\-S)
+
ol
<
|
=
2
-
=
=
|
\'_</>

which gives (with d = dim(Y))

(27r)‘7’/2

L(O) ~ e T
[~ V)2
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Integrated nested Laplace approximation (INLA)

Interest in calculation of
L(e):/p[Z|Y,eD]p[Y|9P]dY:/e“‘”dv
Y Y

Approximate (using Y= argmaxyf(Y),f’(?) =0)

f(Y) =f(Y)

=FY)+F V)Y =Y)+ (Y =) (Y)Y -Y)

1
2

=F(Y) + %(Y -V (Y)Y -Y)
which gives (with d = dim(Y))

L(o)~ e/ T
| _ f”(Y)‘1/2
INLA
@ Nested Laplace approximations

@ Utilize sparsity in precision matrices
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Require latent field to be Gaussian

Great flexibility with respect to observation processes
Extremely fast compared to MCMC

The number of models it can cover is increasing frequently
R overhead makes it relatively easy to use

Only give marginal distributions, not simultaneous ones.

bl



