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Long-lead forecasting of tropical pacific seas surface temperature

Already considered the SST data several times

On interannual time scales, the dominant features in the process are the
so-called El Nino and La Nina phenomena

Cressie and Wikle (2011):

due to its complexity and uncertainties related to the
fundamental physical mechanisms that drive these phenomena,
SST is one of the few processes in oceanography in which
“statistica” long-lead forecast models perform as well as or
better than deterministic models

o Now: Modelling through reduced-dimension
@ Both linear and “nonlinear” dynamics

@ Aim: 6 month ahead forecast
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Reduced-dimension linear DSTM

Model
Z: =Y. + v, v % N0, o21)
Y: =Po: + ., Ve i N(O, U,ZYI)
o =Mai;—1 + 1, v ind N(0, X))

Of interest: Y, = ®oeqr.
Note: E[@®TZ, . |a] = dd P r = Govryr = Y7, |
Inference through MCMC
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Bayesian priors

Z.=Y:+ v, v % N0, 021)
Yt :d)af +‘Yt7 Y Iﬂ(j N(Ovo—?yl)
o =Maoai;i—1 + 14, Vi (S N(0, X))

vec(M) ~N(vec(0.91),100I)
I ~Wishart(ﬁ(1om)*1, p—1)

o2 ~Inverse Gamma(0.1,100)

o’ ~Inverse Gamma(0.1, 100)

o Fixar=®"Z,,t=1,...,6
With T = 349 it should not be very sensitive to this initial assumption

@ Inference through MCMC using p. = 10.
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Linear model - True and predicted processe
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Linear model - Posterior forecast of montly Nifio region
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Nonlinear model

Want different dynamics for the El Nifio and La Nifia phenomena
Assume now M; changes with time:

o =, + Mioi—1 + U un "Tj N(O’ ZW)
Assume g, and M, depend on which climate regime we are in:

pe = p(l), Me=M(l)
Also extend model to

ind

Z. =Y+ vy, v:~ NO,X,)
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Climate regimes

For current/previous time points:

0 if SOl < lower threshold
Iy =41 if SOl in between
2 if SOI; > upper threshold

where SO, is the Southern Oscilation index.
For future time points, we model I; as a stochastic process:

0 if W: < lower threshold
Ik =<1 if W;in between
2 if Wy > upper threshold

where we assume
Wi|B,,, 0% ~Gau(X{ B, o)
X: =(1, Us, Ur sin(27be/12), Us cos(2mb; /12), UF) T

where U, is an east-west component of wind at 10 meters above surface and b;
is an index of month.
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Further details

1 € (1,1) (1,2)
_ (e _ () _ (MYU() M
& = (a(z)) My = ( 0 ) ;o Me= ( M@D M2
e Fitting performed by MCMC

@ We can get posterior probabilities for climate regimes. This can be used
for prediction:
2

Elat+1|Z1e] = Z Pr(ler1 = jlZ1:) E[e(j) + M(J)xe|Z14]

Jj=0
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Nonlinear model - Posterior forecast of montly Nifo region

486 HIERARCHICAL DSTMs: EXAMPLES
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Nonlinear model - Post

rior forecast of montly Nifio region
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LONG-LEAD FORECASTING OF TROPICAL PACIFIC SFA SURFACE TEMPERATURES 487
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Regime-dependent predictions

REMOTELY SENSED AEROSOL OPTICAL DEFT!
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Modelling and forecasting the Eurasian Collared Dove invasion (ECD)

STKA4150 - Intro

Ecologist interested in growth and
dispersal of biotic organisms.

Dynamics particularly important

ECD: Counts 1986 - 2002 at peak of
the avian breeding season

Survey routes of approximately 39.4 km

50 stops, observer counts and identifies
by sight and sound for a 3-minutes
period
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Modelling observations

Assume Y¢(s;) is the true (unknown) number of ECD counts.
Assume

Z:(s))|Ye(s:), 0 % Binomial(Y:(s/), 0)
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Modelling observations

Assume Y¢(s;) is the true (unknown) number of ECD counts.
Assume

Z:(s))|Ye(s:), 0 % Binomial(Y:(s/), 0)

@ Both Y;(si) and 0 are not identifiable without additional information

@ Information on 6 possible through replicable samples. Not available
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Modelling observations

Assume Y¢(s;) is the true (unknown) number of ECD counts.
Assume

Z:(s))|Ye(s:), 0 % Binomial(Y:(s/), 0)

@ Both Y;(si) and 0 are not identifiable without additional information
@ Information on 6 possible through replicable samples. Not available

@ Replicate counts were taken on a different, but related species. Can be
used to construct an informative prior for 0: 6 ~ Beta(ag, by)
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Modelling observations

Assume Y¢(s;) is the true (unknown) number of ECD counts.
Assume

Z:(s))|Ye(s:), 0 % Binomial(Y:(s/), 0)
@ Both Y;(si) and 0 are not identifiable without additional information

@ Information on 6 possible through replicable samples. Not available

@ Replicate counts were taken on a different, but related species. Can be
used to construct an informative prior for 0: 6 ~ Beta(ag, by)

o Gives (assuming different 6's for each observation)
1
[ZA$)IY:(s)] = [ 12:(5)IY.(5). 61610 = Beta-Bin(Yi(s),an, bo)
0

alpha=beta=10

Ll g,

0 3 6 912 16 20 24 28 32 36 40 44 48 0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.00 0.08
[N
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Process model

Numbers at observation locations
Y. =(Ye(s1), -, Ye(sm)) "

Intensity at observation and prediction locations

Ar =(Ae(51), oy Ae(Sm)s Ae(Smi1), oy Ae(sn)) T

Assume

Ye(si)|A: CPoisson(Ae(si)),i =1,...,n
Y| e ir"\ﬁiPoisson(H)\t)

H is an incidence matrix

STKA4150 - Intro
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Model for intensity

>\t :MAtfl
=B(7)G(Ai—1;0%) i1
G(A¢—1; 96) :Diagonal matrix for growth over time

Gi =exp {01G <1 — L;(Gs"))}
2

B(7) :Dispersal

2
—d?
i)

Bjj < exp {— 8

}, > Bj=1
J

o G: Ricker growth model
@ Only random parts: A; and priors on parameters (6, T)

@ Corresponds to a discretized diffusion equation with a population that can
pass through “open boundaries”



Model for intensity

>\t :MAtfl
=B(7)G(Ai—1;0%) i1
G(A¢—1; 96) :Diagonal matrix for growth over time

Gii =exp {015; <1 — %)}
2

B(7) :Dispersal

—d?
Bj ocexp{—T(:ff)}, ZBU =1
J
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Model for intensity

>\t :MAtfl
=B(7)G(Ai—1;0%) i1
G(A¢—1; 96) :Diagonal matrix for growth over time

Gi =exp {01G <1 — L;(Gs"))}
2

B(7) :Dispersal

Bj ocexp{—

2
dj
7(s)

}, > Bj=1
J

o G: Ricker growth model
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Model for intensity

>\t :MAtfl
=B(7)G(Ai—1;0%) i1
G(A¢—1; 96) :Diagonal matrix for growth over time

Gi =exp {01G <1 — L;(Gs"))}
2

B(7) :Dispersal

—d?
Bj ocexp{—T(:ff)}, ZBU =1
j

o G: Ricker growth model
@ Only random parts: A; and priors on parameters (6, T)

@ Corresponds to a discretized diffusion equation with a population that can
pass through “open boundaries”
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Spatial modelling

STKA4150 - Intro

A1 is a Gaussian spatial process with exponential covariance function at
log scale

Similar for T
Allow for predictions at points Sm1, ..., Sn.

Dynamical model allows or forcasting

26



Dove: Spatial predictions and forecast
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MODELING AND FORECASTING THE EURASIAN COLLARED DOVE INVASION
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Figure 9.11 Posterior means of ECD abundance in the United States for the period 1981
(corresponding to the ing period i in this analysis). Areas of the map
“white” were not included in the prediction grid.

2015 2016 2017 2018 2019 2020

Figure 9.12 Posterior mean of the ECD-abundance forecast in the United States for
2003 to 2020 (where the years 20042020 correspond to out-of-sample forecasts). Areas o
shown as “white” were not included in the prediction grid.
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Dove: Specific locations

506 HIERARCHICAL DSTMs: EXAMPLES
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Figure 9.13  Comparisons
2020, Top panel: Credible
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Dove: Dispersal T

Figure 9,14 Posterior mean of the spatially varying dispersal coefficients (t) in the ECD process
nodel (9.19).
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RENMEIS
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Implementation through MCMC
Can also obtain uncertainties

o Look similar to posterior mean (variance equal to expectation in Poisson
distribution)

Posterior distributions of growth and dispersal parameters where more
narrow than their priors, indicating learning from data

Spatially varying 7's was supported by data
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