
Case studies

Odd Kolbjørnsen & Geir Storvik

May 08 2017

STK4150 - Intro 1



Long-lead forecasting of tropical pacific seas surface temperature

Already considered the SST data several times

On interannual time scales, the dominant features in the process are the
so-called El Niño and La Niña phenomena

Cressie and Wikle (2011):

due to its complexity and uncertainties related to the
fundamental physical mechanisms that drive these phenomena,
SST is one of the few processes in oceanography in which
“statistica” long-lead forecast models perform as well as or
better than deterministic models

Now: Modelling through reduced-dimension

Both linear and “nonlinear” dynamics

Aim: 6 month ahead forecast
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SST
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Reduced-dimension linear DSTM

Model

Zt =Yt + νt , νt
ind∼ N(0, σ2

ν I)

Yt =Φαt + γt , γt
ind∼ N(0, σ2

γI)

αt =Mαt−1 + ηt , νt
ind∼ N(0,Ση)

Of interest: Yp
t+τ = Φαt+τ .

Note: E [ΦΦTZt+τ |α] = ΦΦTΦαt+τ = Φαt+τ = Yp
t+τ

Inference through MCMC
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SST - EOF
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Bayesian priors

Zt =Yt + νt , νt
ind∼ N(0, σ2

ν I)

Yt =Φαt + γt , γt
ind∼ N(0, σ2

γI)

αt =Mαt−1 + ηt , νt
ind∼ N(0,Ση)

vec(M) ∼N(vec(0.9I), 100I)

Σ−1
η ∼Wishart(

1

p − 1
(100I)−1, p − 1)

σ2
ν ∼Inverse Gamma(0.1, 100)

σ2
γ ∼Inverse Gamma(0.1, 100)

Fix αt = ΦTZt , t = 1, ..., 6
With T = 349 it should not be very sensitive to this initial assumption

Inference through MCMC using pα = 10.

STK4150 - Intro 6



Linear model - True and predicted processes
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Linear model - Posterior forecast of montly Niño region
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Nonlinear model

Want different dynamics for the El Niño and La Niña phenomena
Assume now Mt changes with time:

αt =µt + Mtαt−1 + ηt , ηt
ind∼ N(0,Ση)

Assume µt and Mt depend on which climate regime we are in:

µt = µ(It), Mt = M(It)

Also extend model to

Zt =Yt + νt , νt
ind∼ N(0,Σν)
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Climate regimes

For current/previous time points:

It =


0 if SOIt < lower threshold

1 if SOIt in between

2 if SOIt > upper threshold

where SOIt is the Southern Oscilation index.
For future time points, we model It as a stochastic process:

It =


0 if Wt < lower threshold

1 if Wt in between

2 if Wt > upper threshold

where we assume

Wt |βw , σ
2
w ∼Gau(XT

t β, σw )

Xt ≡(1,Ut ,Ut sin(2πbt/12),Ut cos(2πbt/12),U2
t )T

where Ut is an east-west component of wind at 10 meters above surface and bt
is an index of month.
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Further details

αt =

(
α(1)

α(2)

)
, µt =

(
µ(1)(It)

0

)
, Mt =

(
M(1,1)(It) M(1,2)

M(2,1) M(2,2)

)

Fitting performed by MCMC

We can get posterior probabilities for climate regimes. This can be used
for prediction:

E [αt+1|Z1:t ] =
2∑

j=0

Pr(It+1 = j |Z1:t)E [µ(j) + M(j)αt |Z1:t ]
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Nonlinear model - Posterior forecast of montly Niño region
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Nonlinear model - Posterior forecast of montly Niño region

STK4150 - Intro 13



Regime-dependent predictions
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Modelling and forecasting the Eurasian Collared Dove invasion (ECD)

Ecologist interested in growth and
dispersal of biotic organisms.

Dynamics particularly important

ECD: Counts 1986 - 2002 at peak of
the avian breeding season

Survey routes of approximately 39.4 km

50 stops, observer counts and identifies
by sight and sound for a 3-minutes
period
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Modelling observations

Assume Yt(si ) is the true (unknown) number of ECD counts.
Assume

Zt(si )|Yt(si ), θ
ind∼ Binomial(Yt(si ), θ)

Both Yt(si ) and θ are not identifiable without additional information

Information on θ possible through replicable samples. Not available

Replicate counts were taken on a different, but related species. Can be
used to construct an informative prior for θ: θ ∼ Beta(aθ, bθ)

Gives (assuming different θ’s for each observation)

[Zt(si )|Yt(si )] =

∫ 1

0

[Zt(si )|Yt(si ), θ][θ]dθ = Beta-Bin(Yt(s), aθ, bθ)
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Process model

Numbers at observation locations

Yt =(Yt(s1), ...,Yt(sm))T

Intensity at observation and prediction locations

λt =(λt(s1), ..., λt(sm), λt(sm+1), ..., λt(sn))T

Assume

Yt(si )|λt
ind∼Poisson(λt(si )), i = 1, ..., n

Yt |λt
ind∼Poisson(Hλt)

H is an incidence matrix
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Model for intensity

λt =Mλt−1

=B(τ )G(λt−1;θG )λt−1

G(λt−1;θG ) :Diagonal matrix for growth over time

Gii = exp
{
θG1

(
1− λt (si )

θG2

)}
B(τ ) :Dispersal

Bij ∝ exp

{
− −d2ij
τ(si )

}
,
∑
j

Bij = 1

G: Ricker growth model

Only random parts: λ1 and priors on parameters (θG ,τ )

Corresponds to a discretized diffusion equation with a population that can
pass through “open boundaries”
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Spatial modelling

λ1 is a Gaussian spatial process with exponential covariance function at
log scale

Similar for τ

Allow for predictions at points sm+1, ..., sn.

Dynamical model allows or forcasting
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Dove: Spatial predictions and forecast
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Dove: Specific locations
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Dove: Dispersal τ
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Remarks

Implementation through MCMC

Can also obtain uncertainties
Look similar to posterior mean (variance equal to expectation in Poisson
distribution)

Posterior distributions of growth and dispersal parameters where more
narrow than their priors, indicating learning from data

Spatially varying τ ’s was supported by data
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