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Multivariate Gaussian distribution

Central in modelling dependence

Definition: A random vector Y = (Y1, · · ·Ym)T is said to have the
multivariate normal distribution if it satisfies the following condition:
Every linear combination of its components

V = a1Y1 + · · ·+ amYm

is normally distributed. That is, for any constant vector a ∈ Rn, the
random variable V = aTY has a univariate normal distribution.

Density

[Y] = (2π)−m/2|Σ|−1/2 exp[−(1/2)(Y − µ)TΣ−1(Y − µ)]

Applications:
Z actual observations
Y latent variables which is multivariate Gaussian, data

[Z|Y] =
∏
i

[Zi |Yi ]

[Z] =

∫
Y

[Z|Y][Y]dY

Allow for MANY complicated multivariate distributions
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Conditional probabilities and hierarchical modelling

Variable Densities Notation in book
Data model: Z p(Z|Y,θ) [Z|Y,θ]
Process model: Y p(Y|θ) [Y|θ]
Parameter model: θ p(θ) [θ]

[θ,Y,Z] = [θ]× [Y|θ]× [Z|Y,θ]

Model built up by several conditional probabilities/densitities

Easier than specifying a multivariate distribution on (θ,Y,Z)
directly.

Model for Y often build up by physical/biological knowledge!
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Example: Repeated counts

Seizure counts in a randomised trial of anti-convulsant therapy in epilepsy.
Table below: successive seizure counts for 59 patients.

Covariates:

treatment (0,1)

8-week baseline
seizure counts

age in years

Possible model

logµjk =Yjk = xjβ + bjk + εjk , Cov[bjk , bjl ] = σ2a|k−l|

Zjk |µjk ∼Poisson(µjk)

Multivariate Poisson distribution!
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Bayesian approach

Assume θ is stochastic

Prior distribution [θ] specifies our prior knowledge about θ

Knowledge updated when data Z is obtained (Bayes theorem)

[θ|Z] =
[θ,Z]

[Z]

(
=

∫
Y[θ,Y,Z]dY∫

θ,Y[θ,Y,Z]dYdθ

)

Can handle uncertainty in parameters coherently

E [Z∗|Z] =Eθ[EZ∗
[Z∗|θ,Z]]

Var[Z∗|Z] =Eθ[VarZ∗
[Z∗|θ,Z]] + Varθ[EZ∗

[Z∗|θ,Z]]

Frequentist approach

E [Z∗|Z] ≈E [Z∗|θ̂,Z]

Var[Z∗|Z] ≈Var[Z∗|θ̂,Z]
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Multiple data sources

Assume several data sets Z1,Z2,Z3, all giving information about Y, the
process of interest.
Z1,Z2,Z3 may have a complex dependence structure due to their
common relation to Y.
Hierarchical modelling:

[Z1,Z2,Z3|Y,θD ] = [Z1|Y,θD,1]× [Z2|Y,θD,2]× [Z3|Y,θD,3]

i.e. conditional independence
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Process model as a hierarchical model

One time series: Y1, ...,YT

[Y1, ...,YT ] = [Y1][Y2|Y1][Y3|Y2,Y1] · · · [YT |YT−1, ...,Y1]

Common assumption:

[Yt |Yt−1, ...,Y1] = [Yt |Yt−1]

First order Markov assumption
Why question: Do Yt−1 influence Yt?

Two processes X,Y. Assumption:

[X] =
T∏
t=1

[Xt |Xt−1]

[Y|X] =
T∏
t=1

[Yt |Yt−1,Xt ,Xt−1]

Why question: Do Xt and/or Xt−1 influence Yt?
Easier to answer than: Do X influence Y?
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Model building - challenges

Critic: Prior [θ] is subjective
Subjectivity in all kind of model specification
If no prior knowledge: Non-informative/non-sensitive priors can be
used

Computational demanding

Hierarchical modelling makes it possible to construct VERY complex
models
How to evaluate these models?

Model selection criteria: AIC, BIC, DIC ...

Predictability, parsimony

Scientific interpretation
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Optimal prediction

Typical aim: Predict Y from Z (assumed now scalar)
Available: [Y |θ], [Z |θ,Y ] and observations Z .
Decision theory

Assume a(Z ) is a prediction of Y

Loss in prediction: L(a(Z ),Y )

Example: L(a(Z),Y ) = (a(Z)− Y )2

Aim: Find a∗(Z ) such that

E [L(a∗(Z ),Y )|Z ] ≤ E [L(a(Z ),Y )|Z ] for all possible a(·)

Example: a∗(Z) = E [Y |Z ]
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Optimal prediction and binary Y

For Y ∈ {0, 1}, E [Y |Z ] ∈ [0, 1]
Alternative:

a(Y ) ∈ {0, 1}
L(a(Y ),Y ) = I (a(Y ) = Y )

a∗(Y ) = maxY∈{0,1}[Y |Z ]
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Computation

Inference for space time-processes difficult due to

Complex models

Latent processes (likelihood not directly specified)

Huge amounts of data

Possibilities

Use available software

Typically for specific models

Monte Carlo metods

Preferred method in the book, described in sec 2.3

Using integrated nested Laplace approximation (INLA)

Flexible software for latent Gaussian processes
Will be used throughout the course

Computation within R
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