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Statistical preliminaries
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Conditional probabilities and hierarchical modelling
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Prediction
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Graphical representation of statistical models
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Multivariate Gaussian distribution

@ Central in modelling dependence
o Definition: A random vector Y = (Y1,--- Y,,)7 is said to have the
multivariate normal distribution if it satisfies the following condition:
Every linear combination of its components
V=aYi+ --+anYnm
is normally distributed. That is, for any constant vector a € R", the
random variable V = a’Y has a univariate normal distribution.
@ Density
[Y] = (2m)~™2E[ 72 exp[-(1/2)(Y — ) TETH(Y — )]
@ Applications:

e Z actual observations
o Y latent variables which is multivariate Gaussian, data

ZIv1 =[](z1vi
m:Lmnmw

Allow for MANY complicated multivariate distributions
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Conditional probabilities and hierarchical modelling

Variable Densities  Notation in book

Data model: z p(ZY,0) [Z]Y,0]
Process model: Y p(Y|0) [Y|0]
Parameter model: 6 p(0) [0]

[6,Y,Z] = [6] x [Y]6] x [Z]Y, 6]

e Model built up by several conditional probabilities/densitities

o Easier than specifying a multivariate distribution on (6,Y,Z)
directly.

e Model for Y often build up by physical/biological knowledge!
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Example: Repeated counts

Seizure counts in a randomised trial of anti-convulsant therapy in epilepsy.
Table below: successive seizure counts for 59 patients.

Patient y, ¥a ¥3 yg Tt Base Age

Do —~
Brwm
—~oww
ocooo

B 25

@ treatment (0,1) 8 ®
@ 8-week baseline T SRR ER BE
seizure counts B 01 4 3 2 1 12

@ age in years
Possible model

log ik ZYJ'/( = Xj,@ + bjk + €jk, COV[bjk, bj/] = O'2a|k_l|
Zitc|pjrc ~Poisson (pji )

Multivariate Poisson distribution!
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Bayesian approach

Assume 0 is stochastic

Prior distribution [6] specifies our prior knowledge about 0

Knowledge updated when data Z is obtained (Bayes theorem)

[6.21 [ f6,Y,Z]dY
b2l ="z < fg)J[H,Y,Z]deB)

@ Can handle uncertainty in parameters coherently

E[z*|z) =E9[E7'[z*]0. Z]]
Var[z*|2] =E9var? [2*16, Z]] + VarP [EZ |29, Z]]
Frequentist approach

E[Z*|Z) ~E[Z%]0, Z]
Var[Z*|Z] ~Var[Z*]0, Z]
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Multiple data sources

Assume several data sets Z;,Z,, Z3, all giving information about Y, the
process of interest.

Z,,7Z,,7Z5; may have a complex dependence structure due to their
common relation to Y.

Hierarchical modelling:

[Z21,Z5,Z3|Y,0p] = [Z1]Y,6p,1] X [Z2]Y,0p 2] x [Z3|Y,6p 3]

i.e. conditional independence
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Process model as a hierarchical model

@ One time series: Y, ..., YT
[Y1,..., Y7] = ][ Ye| Yal[ Y3l Yo, Yal - [Y7I Y721, -y Y4
Common assumption:
[Yel Yeo1, oo Ya] = [ Y| Yeod]

First order Markov assumption
Why question: Do Y;_1 influence Y;?
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Process model as a hierarchical model

@ One time series: Y, ..., YT
[Y1,..., Y7] = ][ Ye| Yal[ Y3l Yo, Yal - [Y7I Y721, -y Y4
Common assumption:
[Yel Yeo1, oo Ya] = [ Y| Yeod]

First order Markov assumption
Why question: Do Y;_1 influence Y;?

@ Two processes X, Y. Assumption:

T
(X] = [ [1XelXea]
t=1
T
[Y‘X] = H[Yt| Yt—1> Xt, Xt—l]
t=1

Why question: Do X; and/or X;_; influence Y;?
Easier to answer than: Do X influence Y7
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Model building - challenges

e Critic: Prior [6] is subjective
Subjectivity in all kind of model specification
If no prior knowledge: Non-informative/non-sensitive priors can be
used
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Model building - challenges

e Critic: Prior [6] is subjective
Subjectivity in all kind of model specification
If no prior knowledge: Non-informative/non-sensitive priors can be
used

o Computational demanding

@ Hierarchical modelling makes it possible to construct VERY complex
models
How to evaluate these models?
o Model selection criteria: AlIC, BIC, DIC ...
o Predictability, parsimony

o Scientific interpretation

STKA4150 - Intro 12



Optimal prediction

Typical aim: Predict Y from Z (assumed now scalar)
Available: [Y0],[Z|6, Y] and observations Z.
Decision theory

@ Assume a(Z) is a prediction of Y
@ Loss in prediction: L(a(Z),Y)
o Example: L(a(Z),Y) = (a(Z) — Y)?
e Aim: Find a*(Z) such that
E[L(a"(Z), Y)|Z] < E[L(a(Z), Y)|Z] for all possible a(-)

o Example: a*(Z) = E[Y|Z]
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Optimal prediction and binary Y

For Y € {0,1}, E[Y]|Z] € [0,1]
Alternative:

e a(Y) e {0,1}
o L(a(Y),Y)=1I(a(Y)=Y)
o a*(Y) = maxyco13[Y|Z]
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Computation

Inference for space time-processes difficult due to
o Complex models
o Latent processes (likelihood not directly specified)

@ Huge amounts of data
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Computation

Inference for space time-processes difficult due to
o Complex models
o Latent processes (likelihood not directly specified)
@ Huge amounts of data
Possibilities
@ Use available software
o Typically for specific models
@ Monte Carlo metods
o Preferred method in the book, described in sec 2.3
e Using integrated nested Laplace approximation (INLA)

o Flexible software for latent Gaussian processes
o Will be used throughout the course

o Computation within R
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