STK4150 - Environmental and spatial statistics Statistical preliminaries

Odd Kolbjørnsen, Geir Storvik

16 January 2017

<□> <同> <同> < 目> < 目> < 目> = - つへで

STK4150 - Intro

- Multivariate Gaussian distribution
- Conditional probabilities and hierarchical modelling
- Bayesian hierarchical modelling
- Inference
- Prediction
- Computation
- Graphical representation of statistical models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Multivariate Gaussian distribution

- Central in modelling dependence
- Definition: A random vector Y = (Y₁, ··· Y_m)^T is said to have the multivariate normal distribution if it satisfies the following condition: Every linear combination of its components

$$V = a_1 Y_1 + \cdots + a_m Y_m$$

is normally distributed. That is, for any constant vector $\mathbf{a} \in \mathcal{R}^n$, the random variable $V = \mathbf{a}^T \mathbf{Y}$ has a univariate normal distribution.

Density

$$[\mathbf{Y}] = (2\pi)^{-m/2} |\mathbf{\Sigma}|^{-1/2} \exp[-(1/2)(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu})]$$

- Applications:
 - Z actual observations
 - Y latent variables which is multivariate Gaussian, data

$$\left[\mathbf{Z} \right] \mathbf{Y} = \prod_{i} \left[Z_{i} \right] \mathbf{Y}_{i}$$
 $\left[\mathbf{Z} \right] = \int_{\mathbf{Y}} \left[\mathbf{Z} \right] \mathbf{Y} \left[\mathbf{Y} \right] d\mathbf{Y}_{i}$

Allow for MANY complicated multivariate distributions

∃ nar

	Variable	Densities	Notation in book			
Data model:	Z	$p(\mathbf{Z} \mathbf{Y}, \boldsymbol{ heta})$	$[Z Y, \theta]$			
Process model:	Υ	$p(\mathbf{Y} \boldsymbol{ heta})$	$[\mathbf{Y} \mathbf{ heta}]$			
Parameter model:	θ	$p(\theta)$	$[\theta]$			

$$[\boldsymbol{ heta}, \mathbf{Y}, \mathbf{Z}] = [\boldsymbol{ heta}] \times [\mathbf{Y}|\boldsymbol{ heta}] \times [\mathbf{Z}|\mathbf{Y}, \boldsymbol{ heta}]$$

- Model built up by several conditional probabilities/densitities
- Easier than specifying a multivariate distribution on $(\theta, \mathbf{Y}, \mathbf{Z})$ directly.
- Model for **Y** often build up by physical/biological knowledge!

Seizure counts in a randomised trial of anti-convulsant therapy in epilepsy. Table below: successive seizure counts for 59 patients.

	Patient	У1	¥2	Уз	У4	Trt	Base	Age
	1	5 3 2 4	3 5	3 3 0 1	3 3 5 4	0	11	31
	2 3 4	3	5	3	з	0	11	30
(0.1)	3	2	4	0	5	0	6	25
 treatment (0,1) 	4	4	4	1	4	0 0 0	11 6 8	30 25 36
8-week baseline	8 9	40	20	21	12	0	52	42
• 0-week baseline	9	5	6	21 6	12 5	0	12	42 37
seizure counts	59	1	4	з	2	1	12	37
 age in years 								
Possible model								

$$\log \mu_{jk} = Y_{jk} = \mathbf{x}_{j}\beta + b_{jk} + \varepsilon_{jk}, \quad \operatorname{Cov}[b_{jk}, b_{jl}] = \sigma^2 a^{|k-l|}$$
$$Z_{jk}|\mu_{jk} \sim \operatorname{Poisson}(\mu_{jk})$$

Multivariate Poisson distribution!

Bayesian approach

- Assume θ is stochastic
- Prior distribution [heta] specifies our prior knowledge about heta
- Knowledge *updated* when data **Z** is obtained (Bayes theorem)

$$[\boldsymbol{\theta}|\mathbf{Z}] = \frac{[\boldsymbol{\theta}, \mathbf{Z}]}{[\mathbf{Z}]} \quad \left(= \frac{\int_{\mathbf{Y}} [\boldsymbol{\theta}, \mathbf{Y}, \mathbf{Z}] d\mathbf{Y}}{\int_{\boldsymbol{\theta}, \mathbf{Y}} [\boldsymbol{\theta}, \mathbf{Y}, \mathbf{Z}] d\mathbf{Y} d\boldsymbol{\theta}}\right)$$

• Can handle uncertainty in parameters coherently

$$E[\mathbf{Z}^*|\mathbf{Z}] = E^{\boldsymbol{\theta}}[E^{\mathbf{Z}^*}[\mathbf{Z}^*|\boldsymbol{\theta}, \mathbf{Z}]]$$
$$\mathsf{Var}[\mathbf{Z}^*|\mathbf{Z}] = E^{\boldsymbol{\theta}}[\mathsf{Var}^{\mathbf{Z}^*}[\mathbf{Z}^*|\boldsymbol{\theta}, \mathbf{Z}]] + \mathsf{Var}^{\boldsymbol{\theta}}[E^{\mathbf{Z}^*}[\mathbf{Z}^*|\boldsymbol{\theta}, \mathbf{Z}]]$$

Frequentist approach

$$E[\mathbf{Z}^*|\mathbf{Z}] \approx E[\mathbf{Z}^*|\hat{\boldsymbol{ heta}}, \mathbf{Z}]$$

Var $[\mathbf{Z}^*|\mathbf{Z}] \approx$ Var $[\mathbf{Z}^*|\hat{\boldsymbol{ heta}}, \mathbf{Z}]$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Assume several data sets Z_1, Z_2, Z_3 , all giving information about Y, the process of interest.

 Z_1, Z_2, Z_3 may have a complex dependence structure due to their common relation to Y.

Hierarchical modelling:

 $[\mathsf{Z}_1, \mathsf{Z}_2, \mathsf{Z}_3 | \mathsf{Y}, \theta_D] = [\mathsf{Z}_1 | \mathsf{Y}, \theta_{D,1}] \times [\mathsf{Z}_2 | \mathsf{Y}, \theta_{D,2}] \times [\mathsf{Z}_3 | \mathsf{Y}, \theta_{D,3}]$

i.e. conditional independence

Process model as a hierarchical model

• One time series: $Y_1, ..., Y_T$

 $[Y_1, ..., Y_T] = [Y_1][Y_2|Y_1][Y_3|Y_2, Y_1] \cdots [Y_T|Y_{T-1}, ..., Y_1]$

Common assumption:

 $[Y_t|Y_{t-1}, ..., Y_1] = [Y_t|Y_{t-1}]$

First order Markov assumption Why question: Do Y_{t-1} influence Y_t ?

Process model as a hierarchical model

• One time series: $Y_1, ..., Y_T$

 $[Y_1, ..., Y_T] = [Y_1][Y_2|Y_1][Y_3|Y_2, Y_1] \cdots [Y_T|Y_{T-1}, ..., Y_1]$

Common assumption:

 $[Y_t|Y_{t-1},...,Y_1] = [Y_t|Y_{t-1}]$ First order Markov assumption

Why question: Do Y_{t-1} influence Y_t ?

• Two processes **X**, **Y**. Assumption:

$$[\mathbf{X}] = \prod_{t=1}^{T} [X_t | X_{t-1}]$$
$$[\mathbf{Y} | \mathbf{X}] = \prod_{t=1}^{T} [Y_t | Y_{t-1}, X_t, X_{t-1}]$$

Why question: Do X_t and/or X_{t-1} influence Y_t ? Easier to answer than: Do **X** influence **Y**?

Model building - challenges

 Critic: Prior [θ] is subjective Subjectivity in all kind of model specification If no prior knowledge: Non-informative/non-sensitive priors can be used

Model building - challenges

- Critic: Prior [θ] is subjective
 Subjectivity in all kind of model specification
 If no prior knowledge: Non-informative/non-sensitive priors can be used
- Computational demanding

Model building - challenges

- Critic: Prior [θ] is subjective Subjectivity in all kind of model specification If no prior knowledge: Non-informative/non-sensitive priors can be used
- Computational demanding
- Hierarchical modelling makes it possible to construct VERY complex models

How to evaluate these models?

- Model selection criteria: AIC, BIC, DIC ...
 - Predictability, parsimony
- Scientific interpretation

Typical aim: Predict Y from Z (assumed now scalar) Available: $[Y|\theta], [Z|\theta, Y]$ and observations Z. Decision theory

- Assume a(Z) is a prediction of Y
- Loss in prediction: L(a(Z), Y)
 - Example: $L(a(Z), Y) = (a(Z) Y)^2$
- Aim: Find $a^*(Z)$ such that

 $E[L(a^*(Z), Y)|Z] \le E[L(a(Z), Y)|Z]$ for all possible $a(\cdot)$

• Example: $a^*(Z) = E[Y|Z]$

For $Y \in \{0,1\}$, $E[Y|Z] \in [0,1]$ Alternative:

• $a(Y) \in \{0, 1\}$

•
$$L(a(Y), Y) = I(a(Y) = Y)$$

•
$$a^*(Y) = max_{Y \in \{0,1\}}[Y|Z]$$

イロト イヨト イヨト イヨト 二日

14

Inference for space time-processes difficult due to

- Complex models
- Latent processes (likelihood not directly specified)
- Huge amounts of data

Inference for space time-processes difficult due to

- Complex models
- Latent processes (likelihood not directly specified)
- Huge amounts of data

Possibilities

- Use available software
 - Typically for specific models
- Monte Carlo metods
 - Preferred method in the book, described in sec 2.3
- Using integrated nested Laplace approximation (INLA)
 - Flexible software for latent Gaussian processes
 - Will be used throughout the course
- $\bullet\,$ Computation within ${\bf R}\,$