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ABSTRACT

In applications of climate information, coarse-resolution climate projections commonly need to be

downscaled to a finer grid. One challenge of this requirement is the modeling of subgrid variability and the

spatial and temporal dependence at the finer scale. Here, a postprocessing procedure for temperature pro-

jections is proposed that addresses this challenge. The procedure employs statistical bias correction and

stochastic downscaling in two steps. In the first step, errors that are related to spatial and temporal features of

the first two moments of the temperature distribution at model scale are identified and corrected. Second,

residual space–time dependence at the finer scale is analyzed using a statistical model, fromwhich realizations

are generated and then combined with an appropriate climate change signal to form the downscaled pro-

jection fields. Using a high-resolution observational gridded data product, the proposed approach is applied

in a case study in which projections of two regional climate models from the Coordinated Downscaling

Experiment–European Domain (EURO-CORDEX) ensemble are bias corrected and downscaled to a

1 km 3 1 km grid in the Trøndelag area of Norway. A cross-validation study shows that the proposed pro-

cedure generates results that better reflect themarginal distributional properties of the data product and have

better consistency in space and time when compared with empirical quantile mapping.

1. Introduction

Climate change impacts often are realized at local to

regional scales, resulting in impact models such as

hydrological models, forest growth models, and crop

models requiring tailored information on future climate

at fine spatial and temporal scales (IPCC 2014; Hanssen-

Bauer et al. 2017). In particular, many of these impact

models are conducted on a very fine spatial grid and

at daily time scale (e.g., Beldring et al. 2003). Future

climate information commonly derives from coupled

atmosphere–ocean general circulation models (GCMs)

that currently provide neither unbiased nor local- to

regional-scale information. Regional climate models

(RCMs), with a spatial resolution of 10–15km, provide a

partial bridge for the spatial scale gap. Although ensem-

bles ofRCMs are able to capture basic features of regional

climate variability in space and time (Kotlarski et al.

2014), their output may still contain substantial errors,

partly inherited from the driving GCM (Rummukainen

2010; Hall 2014).

Impact studies are generally performed by comparing

results for a reference climate to those obtained under a

projected future climate.Where high-resolution gridded

climate input data are required, the reference results are

commonly based on gridded data products derived from

lower-dimensional observations such as a network of

surface observation stations (e.g., Lussana et al. 2018a,b).

These data products come with their own inherent biases

that are difficult to correct due to a lack of data. For an

accurate assessment of climate impact, one goal is thus
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to generate high-resolution realizations of future cli-

mate the properties of which differ from those de-

scribing the reference climate only in terms of the

expected climate change between the two time periods.

In particular, statistical aspects such as the space–time

variability and dependence at the finer scale should be

realistically represented (Wood et al. 2004; Beldring

et al. 2008).

To generate tailored climate information for various

impact studies, postprocessing methods are almost

routinely performed on climate model outputs. In a re-

cent monograph on the subject, Maraun and Widmann

(2018) identify three classes of statistical postprocessing

methods. Model output statistics (MOS) approaches

apply a statistical transfer function between simulated

and observed data and are employed for both bias cor-

rection and downscaling. Depending on the specific

needs of the climate information user, a wide variety of

such methods are in use, ranging from simple mean

adjustment to flexible, potentially multivariate quantile

mapping methods (Maraun et al. 2010; Piani and

Haerter 2012; Vrac et al. 2012; Vrac and Friederichs

2015; Cannon 2016; Vrac 2018). For downscaling, perfect

prognosis (PP) methods establish a statistical link be-

tween large-scale predictors and local-scale predictands

typically in a regression framework, while weather gen-

erators (WGs) are stochastic models that explicitly

model marginal and higher-order structures. WGs are

widely used for generating weather time series at sta-

tions (Semenov and Barrow 1997), with some extensions

to multisite (Wilks 1999, 2009) and multivariate (Kilsby

et al. 2007) settings.

One common issue with MOS methods applied to

downscaling is that they are not able to capture spatial

and temporal variability at the finer scale (e.g., Maraun

et al. 2017; Maraun and Widmann 2018). The transfer

functions derived from the historical period are trans-

formations of the stochasticity at the model scale that

are often not realistic at the required finescale. Hence,

including stochastic components into the bias-correction

procedure is imperative to account for local-scale vari-

ability (Maraun et al. 2017). Recently proposed sto-

chastic downscaling methods have proven skillful in

modeling the small-scale variability of precipitation

occurrence and intensity across sets of point locations

(Wong et al. 2014; Volosciuk et al. 2017). The impact

models considered in our application commonly require

high-resolution gridded input and thus approaches that

scale to high-dimensional and spatially coherent settings.

Further, it has been argued that methods based on PP

assumptions where it is assumed that daily based coarse-

scale information can be used to predict the probability

distribution at the local-scale are not appropriate for

free-running model simulations such as the RCMs from

the Coordinated Downscaling Experiment (CORDEX;

Jacob et al. 2014). For full-field downscaling without PP

assumptions, techniques of shuffling the time series

produced by univariate bias correction have been pro-

posed (e.g., ‘‘Schaake shuffle’’; Clark et al. 2004), both

for temporal (Vrac and Friederichs 2015) and for multisite

and multivariate reordering (Vrac 2018). The shuffling

techniques impose historical rank correlation structure on

the bias-corrected data. Theyhave, in some instances, been

shown to underrepresent the dependence structure (Vrac

2018). Moreover, the size of the shuffled dataset is re-

stricted to the size of the observational dataset.

Alternatively, multisiteWGs that explicitly model the

finescale stochasticity are able to generate spatially and

temporally coherent fields and thus have shown poten-

tial for full-field downscaling (Wilks 2010, 2012). This

approach, however, has been typically applied where

parameters are calibrated first at single locations and

then interpolated onto a grid consisting of a small set of

grid points (Wilks 2009), which is not straightforward to

work with when gridded data products are available and

have been used to train the impact models. Besides, they

are primarily constructed for generating daily pre-

cipitation, whereas daily mean temperature has its own

properties (Huybers et al. 2014) and is an equally im-

portant input to, for example, hydrological models

(Xu 1999). Our objective is thus to propose a full-field

downscaling approach for daily mean temperature

that explicitly accounts for the finescale variability

and dependence in both space and time.

In this paper, we introduce a two-stage statistical

postprocessing procedure that bias corrects and down-

scales RCM simulations to a high-resolution grid where

we combine MOS and WG to utilize the advantages of

both approaches. In the first stage, a MOS approach is

applied to bias correct RCM output at the model scale

by comparing it against upscaled gridded data product.

Daily mean temperatures are generally considered well

represented by a Gaussian distribution (e.g., Piani et al.

2010). Here, we apply a transfer function where the

parameters of the Gaussian distribution vary across

space and time to account for seasonal and geographic

changes in temperatures. Second, we construct a WG to

simulate pseudo-observations that replicate the properties

of a finescale gridded data product under a stationary cli-

mate. Using a separable space–time correlation structure,

themethod is able to efficiently generate high-dimensional

realizations. We then impose these realizations with

appropriate climate change signal derived from the

RCM simulations. The approach can thus be thought of

as a delta change method that preserves space–time

consistency. For comparison, we also perform the
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analysis with the commonly used empirical quantile

mapping (EQM) method (e.g., Piani et al. 2010;

Gudmundsson et al. 2012), which is a MOS approach.

The remainder of the paper is organized as follows. In

section 2 we first describe the data and the study area. A

description of the proposed postprocessing procedure

follows, as well as a brief discussion of evaluation

methods. Results are presented in section 3, and section 4

provides discussion and conclusions.

2. Data and methods

We propose a two-step postprocessing approach for

statistical bias correction and stochastic downscaling as

demonstrated in Fig. 1. First, biases at the coarser RCM

scale are identified and corrected, where the climate

change signal simulated by RCM is preserved. Then, we

estimate the space–time residual variability at the finer

data product scale using a statistical model, and, by

simulating from this model, we are able to generate a set

of realizations of a stationary future climate possessing

the same space–time structures as the historical data

product. Based on these, we compare three different

approaches for adding layers of the climate change sig-

nal to obtain the final output. A description of the data

and study area is given below, followed by a detailed

description of each step in the postprocessing procedure.

a. Data and study area

We apply our methodology to daily mean tempera-

ture simulations from two RCMs from the CORDEX–

European Domain (EURO-CORDEX-11) ensemble.

One combines the COSMO Climate Limited Area

Model (CCLM) from the Potsdam Institute for Climate

Research (Rockel et al. 2008) with boundary conditions

from the CNRM-CM5 Earth system model (referred to

as RCM1 in the following text) developed by the French

National Centre forMeteorological Research (Voldoire

et al. 2013), whereas the other (referred to as RCM2)

combines the CCLM model with boundary conditions

from the MPI Earth system model developed by the Max

Planck Institute for Meteorology (Giorgetta et al. 2013).

The RCM simulations are conducted over the European

domain at a spatial resolution of 0.118 or about 12.5-kmgrid

resolution (Jacob et al. 2014). In the historical period up to

2005 the outputs are simulated on the basis of recorded

emissions and are thus comparable to observed climate.

For observational reference data, we use the seNorge

gridded data product, version 2.1, produced by the

Norwegian Meteorological Institute (Lussana et al.

2018b; available at http://thredds.met.no/thredds/catalog/

senorge/seNorge2_1/TEMP1d/catalog.html). The data

result from an optimal spatial interpolation method

applied to measurements at a network of weather and

climate stations with the number varying from 150 to

450 for the period from 1957 to the present and are

available at a spatial resolution of 1km over an area cov-

ering themainlandNorway and an adjacent strip along the

Norwegian border. For bias correcting the RCM output,

we upscale the seNorge data to theRCMgrid by taking a

weighted average over all seNorge grid cells found

within each RCM grid cell, where the weights are area

ratios of the seNorge cells to that RCM cell.

For the study area, we consider the Trøndelag area in
central Norway; see Fig. 2. The area comprises 695RCM

grid cells and 109 514 seNorge grid cells. The bias cor-

rection is performed over the entire study domain while

the statistical downscaling focuses on nine hydrological

catchments within the domain (see Fig. 2 and Table 1).

Two catchments Krinsvatn and Oeyungen have maritime

climate while the rest have continental climate. For each

catchment, the downscaling is performed over all seNorge

grid cells within the RCM grid cells that cover the

catchment. The spatial dimensions of the downscaling

areas thus vary between approximately 940 and 5500 grid

cells at 1-km resolution. Both historical RCM simulations

FIG. 1. Proposed general framework for postprocessing of climate model output.
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and seNorge observations are available over the time

period 1957–2005. We use the time period 1957–86 as

a training period to estimate the parameters of the

postprocessing approaches and perform an out-of-sample

evaluation over the remaining 19 years 1987–2005. As a

result, the training period consists of 10 950 days and the

test period comprises 6935days.

In addition, we use explanatory variables, or cova-

riates, to describe the spatial variations in the statistical

characteristics of the daily mean temperature distribu-

tions. We consider latitude, longitude, and elevation as

potential geographic covariates. Elevation information

for the seNorge data is obtained from a digital elevation

model that is based on a 100-m-resolution terrain model

from the Norwegian Mapping Authority (Mohr 2009).

We upscale these data in the same manner as the daily

mean temperatures to obtain the elevation at the RCM

scale. Note that this is not equal to the orography in-

formation provided by EURO-CORDEX.

b. Bias correction

For bias correcting the RCM output, we perform

weighted upscaling of the seNorge data product as de-

scribed in section 2a. The RCM-simulated gridcell

values represent area averages; the upscaled seNorge

data should thus be comparable to the RCM output in

distribution. We follow, for example, Piani et al. (2010)

and assume that temperature can be modeled by a

Gaussian distribution. However, rather than modeling

each month separately, the parameters of the distribution

are assumed to change smoothly across time and space.

Specifically, denote byYrt the daily mean temperature

in grid cell r 2 {1, . . . , R} at time t 2 {1, . . . , T}, where R

denotes the number of grid cells and T is the number of

days in a given RCM-scale dataset. We then set

Y
rt
;N(m

rt
,s2

rt), (1)

where

FIG. 2. Location of the study area—Trøndelag in central Norway. For the RCM bias correction, the entirety of

Trøndelag and a small part of neighboring Sweden with a total area covering by 695 RCM grid cells (rectangular-

like polygons) and 109 514 seNorge grid cells (within the polygons; not shown) are used. For the stochastic

downscaling, nine hydrological catchments within Trøndelag with catchment areas from 143 to 3086 km2 (shaded in

gray) are used; see also Table 1.

TABLE 1. Characteristics of the nine hydrological catchments

in Trøndelag, Norway considered in the stochastic downscaling

(ID 5 catchment identifier used herein).

Catchment ID Size (km2)

Downscaling

area (km2)

Median elev

(m MSL)

Gaulfoss A 3086 5479 734

Aamot B 283 1112 460

Krinsvatn C 206 1108 349

Oeyungen D 239 952 295

Trangen E 852 2327 558

Veravatn F 175 1101 514

Dillfoss G 483 1863 506

Hoeggaas H 495 1853 505

Kjeldstad I 143 940 578
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m
rt
5 f m1 (cr)1 f m2 (t)1 f m3 (t) (2)

log(s
rt
)5 f s1 (cr)1 f s2 (t) , (3)

with

f z1 (cr)5a
11
1a

12
c
r1
1a

13
c
r2
1a

14
c
r3
, (4)

f z2 (t)5a
21
cos

�
2pd(t)

365

�
1a

22
sin

�
2pd(t)

365

�

1a
23
cos

�
4pd(t)

365

�
1a

24
sin

�
4pd(t)

365

�
, (5)

f m3 (t)5a
3
y(t) , (6)

for z 2 {m, s}. Here, f1 models the spatially varying

baseline of the twomoments with cr5 (cr1, cr2, cr3) being

latitude, longitude, and mean elevation of grid cell r.

Seasonal changes in the moments are captured by f2,

where d(t) returns the calendar day of time point t and f3
describes potential linear trend in the first moment, with

y(t) returning the calendar year normalized so that a3

describes the trend in degrees per decade.

Themodel specified in Eqs. (1)–(6) has 17 coefficients,

that is, 9 coefficients for the first moment and 8 co-

efficients for the second moment. A two-step analysis of

three RCM-scale datasets where the mean and the re-

siduals were analyzed separately found all the coefficients

significant. For the bias correction we estimate all 17 co-

efficients for each dataset simultaneously by numerically

obtaining the maximum likelihood estimator (MLE) using

the function ‘‘lmvar()’’ from the R (R Core Team 2018)

package ‘‘lmvar’’ (Posthuma Partners 2018). Subsequently,

we adjust the estimated model parameters for the RCM

simulations in the out-of-sample test period based on the

estimates from the upscaled seNorge data and the RCM

data in the training period, and the RCM-simulated

changes from the training period to the test period. In

particular, the correction (‘‘Corr’’) is similar to Eq. (12.7)

in Maraun and Widmann (2018), with two exceptions:

First, the mean and standard deviation terms are esti-

mates by Eqs. (2) and (3) varying across space and time

and, second, the standardized RCM anomalies (i.e., di-

viding by its own standard deviation) are rescaled by the

square root of the variance of the upscaled seNorge data

plus the RCM-simulated change in the variances between

the two periods. See the appendix for further details.

For comparison, we consider two simple bias-correction

methods commonly used as benchmarks (e.g., Räisänen
andRäty 2013) where only themean of theRCMoutput is

corrected using one common correction term across the

entire domain (‘‘Simple’’) or independently for each

grid cell (‘‘LocalSimple’’). These methods explicitly

preserve the change in the long-termmean simulated by

RCM; also see the appendix.

c. Stochastic downscaling

1) STATIONARY SPACE–TIME HIGH-RESOLUTION

MODEL

We model the space–time variability at the finer 1-km

scale by a stochastic model that assumes stationarity and

space–time separability in the residuals. To warrant

these rather strict assumptions—assumed for computa-

tional feasibility—we estimate the model independently

for each catchment, allowing for, for example, changes in

the space–time variability across different climatic zones.

Let Xst denote the daily mean temperature at time

t 2 {1, . . . ,T} in the training period and finescale grid cell

s2 {1, . . . , S} for a given catchment.We fit amodel of the

form given in Eqs. (1)–(6) above to this dataset and

generate the corresponding residuals

Z
st
5

X
st
2 m̂

st

ŝ
st

, (7)

where m̂st and ŝst denote the estimatedmean and standard

deviation at time point t and location s, respectively.

We assume that the residual field Zt varies around a

mean value of zero, so that the time series Z�t 5
(1/S)�S

s51Zst represents a reasonable approximation of

the true temporal dependence. Although appearing sta-

tionary, the time series fZ�tg does not seem to have

Gaussian marginals as shown in Fig. 3. In particular, the

marginals have a positive skewness in the warmer months

and a negative skewness in the colder months. We thus

employ a copula approach to estimate the temporal cor-

relation (Nelsen 2007) where we combine split normal

marginals and an autoregressive moving average (ARMA)

structure to account for both themarginal skewness and the

temporal correlation. The split normal distribution (Wallis

2014), sometimes called the two-piece normal distribution,

is a three parameter generalization of the normal distri-

bution that allows for asymmetry in the tails in that a sep-

arate scale parameter is used for each of the two tails. For

comparison,wehave also investigated a simplermodelwith

Gaussian marginals. However, this results in substantially

reduced performance, see section 3b(1).

Next, we assume that the spatial residuals follow a

multivariate normal distribution with a mean vector

zero and a variance matrix specified by a stationary and

isotropic covariance function of the exponential type so

that the spatial correlation between two grid cells s and

s0 2 {1, . . . , S} is determined by their Euclidean distance

jjs 2 s0jj (e.g., Cressie and Wikle 2015). That is, we

define a residual model of the form
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Z
st
5h

t
1 n

st
, (8)

h
t
; SN(m

t
,s

1t
,s

2t
), (9)

U
t
5F21[F

SN
(h

t
)];ARMA(p, q), (10)

n
t
;N(0,S

t
) and (11)

Cov(n
st
, n

s0 t)5 u
0t
1fks2 s0k5 0g

1 u
1t
exp(2ks2 s0k/u

2t
) . (12)

Here, we denote the split normal distribution by SN and

the normal distribution by N, FSN stands for the split

normal distribution function, F21 denotes the quantile

function of the normal distribution, Cov denotes the co-

variance function, and 1{jjs 2 s0jj 5 0} is the indicator

function,which is equal to 1 if jjs2 s0jj5 0 and 0 otherwise.

Daily-varying parameter estimates for the split normal

distribution are obtained by numerically optimizing the

likelihood function ‘‘logs_2pnorm()’’ from the R package

‘‘scoringRules’’ (Jordan et al. 2018). Subsequently, an

ARMA model of order (p, q) is estimated using the

function ‘‘auto.arima()’’ from the R package ‘‘forecast’’

(Hyndman et al. 2018). This approach searches for the best

autoregressive integrated moving average (ARIMA)

model that is reduced to an ARMA model in the case in

which the time series is assumed to be stationary, here

determined by an augmented Dickey–Full test. The

method then determines the values of p and q and esti-

mates the associated parameters.We found that p5 2 and

q5 3 fits best for catchmentA, p5 3 and q5 2 fits best for

catchment F, and p 5 q 5 2 works best for the rest.

To estimate the parameters of the covariance function

given in Eq. (12), we employ semivariogram function

given by

g
ut
(h)5 u

0t
1 u

1t
[12 exp(2h/u

2t
)] (13)

with h 5 jjs 2 s0jj. To account for potential seasonal

changes in the spatial correlation structure, we obtain

separate estimates for each month and, subsequently,

fit a smooth function through each set of estimates to

obtain smoothly changing daily estimates.

DenotebyT the set of all timepoints fromagivenmonth,

with jT j being the number of days in this set, and denote by

S (h) the set of gridcell pairs that have distances within some

small interval approximately centered around h, with jS (h)j
being the number of pairs in the set. We then estimate the

covariance parameters by fitting the semivariogram function

given by Eq. (13) to the empirical semivariogram

ĝðh,T Þ5 1

2jS (h)jjT j �
(s,s0)2S (h)

�
t2T

(n
st
2 n

s0t)
2. (14)

Here, we employ the R package ‘‘spacetime’’ (Pebesma

2012) to organize our spatiotemporal residuals and

‘‘gstat’’ (Pebesma 2004; Gräler et al. 2016) to calculate

empirical semivariograms and perform the fitting using

decreasing weights on the pairs that are further apart.

Given parameter estimates, we can then simulate a set

of residualsZst
* for s 2 {1, . . . , S} and t 2 {1, . . . , T} in four

steps, where we use the asterisk indicator to denote

simulated variables:

1) simulate U t
* ;bARMA(p, q),

2) set ht*5 F̂21
SN[F(U t

*)],

3) simulate yt* ; N(0, Ŝt), and

4) set Zst
*5ht* 1 n st*.

Here, the split normal variables are simulated using

‘‘qsplitnorm()’’ from theR package ‘‘fanplot’’ (Abel 2015)

FIG. 3. Boxplots of the mean residuals Z�t 5 (1/S)�S

s51Zst where the mean is taken over all

grid cells in catchment A, which is the largest in our study area. The boxplot for each calendar

day consists of all values for that calendar day in the training period 1957–86, with outliers

denoted by dots.
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and themultivariate normal simulation is carried out by

‘‘mvrnorm()’’ from the R package ‘‘MASS’’ (Venables

and Ripley 2002).

2) ADDING A CLIMATE CHANGE SIGNAL

We obtain a realization of a stationary climate for the

test period corresponding to the mean climate in the

training period by settingXst
*5Zst

*ŝst 1 m̂
st
*, where Zst

* is

obtained with the simulation algorithm above, ŝst is the

standard deviation estimate based onEq. (3) and also used

in Eq. (7), and m̂st* is the mean estimate based on Eq. (2)

and also used in Eq. (7) without the trend component

centered so that the average over all time points m̂ s�
* fulfills

m̂ s�
*5 m̂s�.We call this realization ‘‘Xstar,’’ and it serves as a

reference for the other methods described below.

In the realization ‘‘XstarTrend’’ that is defined by

XTrend
st 5Zst

*ŝst
1 m̂Trend

st
, adjustments are made to the

baseline and the linear trend components of the mean to

reflect the RCM-simulated changes from the training

period to the test period [see Eqs. (A5) and (A6) in the

appendix]. Here, we assume that the long-term average

changes at RCM scale directly carry over to the seNorge

scale using the information from the RCM grid cell that

has the largest intersection area with the seNorge grid

cell. We further investigated adding RCM-simulated

changes in the seasonality of the mean. However, this

resulted in substantially reduced agreement between

our model and the out-of-sample data.

We also generate the realization ‘‘XstarTrendVar’’

with XTrendVar
st 5Zst

*ŝVar
st 1 m̂Trend

st
in which adjustment is

made to both the mean and the variance [see Eqs. (A5),

(A6), and (A9) in the appendix]. While the mean is

adjusted as before, the variance at the seNorge grid level

is adjusted such that changes relative to the training

period at the upscaled RCM grid level match those in

the corrected RCM output.

d. Reference method

We compare the final results from our method with

EQM (e.g., Piani et al. 2010; Gudmundsson et al.

2012), a widely adopted method for bias correcting and

downscaling RCM outputs to a finer grid. The EQM

method utilizes the empirical cumulative distribution

function (eCDF) for variables at both scales. In a first

step, we regrid the RCM output to the seNorge grid

using a simple nearest-neighbor method. Then, we

derive a transfer function matching the RCM-scale

eCDF with the seNorge-scale eCDF. The eCDFs are

approximated using tables of empirical percentiles with

fixed interval of 0.1 spanning the probability space [0, 1].

Spline interpolation is performed for the values in between

these percentiles and to extrapolate beyond the highest

and lowest observed values. In the training period, we

derive 12 calendar-month-specific transfer functions for

each seNorge grid cell. These transfer functions are as-

sumed to be valid for use in the test period. And we apply

them to adjust the RCM output quantile by quantile so

that they yield a better match with the seNorge data. To

perform the EQM, we employ the R package ‘‘qmap,’’

version 1.0–4 (Gudmundsson 2016).

e. Evaluation methods

We assess the performance of the postprocessing

methods by comparing projections with out-of-sample

data. We compare the marginal distributions in each

grid cell using eCDFs over all time points in the test

period, the temporal autocorrelation and the spatial

correlation in each catchment.

We compare twomarginal distributions F andG using

the integrated quadratic distance (IQD; Thorarinsdottir

et al. 2013),

IQD(F,G,v)5

ð1‘

2‘

[F(x)2G(x)]2v(x) dx , (15)

where v denotes a nonnegative weight function that can

be designed to focus on a particular part of the distri-

butions. For assessing results at the RCM scale, we use

the unweighted version with v1 [ 1. For the finer scale,

we consider four different weighting options, the un-

weighted version as well as three weights that focus on

the tails and the center of the distributions. Specifically,

we set

v
2
(x)51fx$G21(0:95)g, (16)

v
3
(x)5 1fG21(0:45)# x#G21(0:55)g, and (17)

v
4
(x)51fx#G21(0:05)g, (18)

where, for example, 1{x $ u} denotes the indicator

function that is equal to 1 if x $ u and 0 otherwise and

G denotes the data eCDF. A lower IQD value indicates

a better correspondence between F and G. For each

comparison, we report average IQD values across all

grid cells, for example, in a catchment,

1

S
�
S

s51

IQD(F
s
,G

s
,v), (19)

together with uncertainty bounds obtained by

bootstrapping.

For distributionsF andGwith finite first moments, the

IQD is the score divergence of the continuous ranked

probability score (CRPS), which is a proper scoring rule

(Gneiting and Raftery 2007). It thus fulfills a similar

propriety condition and can be used to rank competing
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methods (Thorarinsdottir et al. 2013). In fact, using the

IQD in Eq. (15) will result in the samemodel rankings as

computing the average CRPS over all the observations

in G. However, we find that using the IQD provides

improved interpretability as the lowest possible IQD

value is zero if F 5 G while the lowest possible CRPS

value depends on the unknown true data distribution.

At the seNorge scale, the assessment of temporal and

spatial correlation structures is carried out separately in

each catchment. For the temporal correlation, we aggre-

gate the daily gridded data into a single time series and,

subsequently, calculate the autocorrelation up to a certain

lag using the function ‘‘Acf()’’ from theRpackage forecast

(Hyndman et al. 2018). For the spatial correlation, we

calculate the empirical semivariogram for each month

using the same R functions as described in section 2c(1).

3. Results

a. Bias correction at model scale

The marginal performance of the three bias-correction

methods at RCM model scale is shown in Fig. 4. There is

notable difference in performance between the two raw

RCM outputs with RCM2 more compatible with the up-

scaled seNorge data. A considerable decrease in the IQD

from ‘‘Raw’’ to Simple means that both RCMs fail to

capture the correct long-term average over the whole

study area, as expected from free-running climate models.

Additional improvement can be achieved by local mean

correction (LocalSimple). For RCM1, the proposed bias-

correction method Corr further improves the compatibility

with the data product. For RCM2, however, Corr performs

worse than LocalSimple, indicating that additional correc-

tion of the variance, the linear trend and seasonality of the

mean has a slightly adverse effect for RCM2. The boot-

strapped 90% confidence intervals for the mean IQD

values are nonoverlapping for all comparisons, indicating

that the differences in performance are significant.

To investigate this aspect further, consider the esti-

mated mean baseline and trend for a single grid cell

shown in Fig. 5. The upscaled data product has a slightly

negative trend in the training period 1957–86 and a

positive trend in the test period 1987–2005 with the

overall mean temperature in the test period 0.98C higher

than that in the training period. While RCM1 has a

baseline estimate that is around 28C colder than the data

product, the trend estimates of the two datasets are

similar, resulting in a bias-corrected RCM output that is

overall 0.558C colder than the data product with a

slightly slower warming rate. The raw output from

RCM2, on the other hand, has opposite trends com-

pared to the data product in both time periods, resulting

in a bias-corrected trend that further exaggerates the

model errors. As a result, the empirical distribution

function over all time points in the test period for the

Corr method has a much larger spread than that for the

data product or that obtained under LocalSimple.

b. Bias correction and downscaling

1) MARGINAL PERFORMANCE

The marginal performance at the finescale is assessed

in Fig. 6. From the example in Fig. 5, we see that the

mean climate varies between the two time periods. The

results here similarly show that adding climate change

information from the RCMs substantially improves

the WG realization centered on the mean climate in the

training period (denoted Xstar). For each RCM, the dif-

ference between XstarTrend and XstarTrendVar is small,

the mean-only correction of XstarTrend commonly show-

ing minimally better performance. This may be explained

partly by the fact that there is little difference between the

variances of the two time periods and partly by the fact that

the coarse-resolution variance of the RCMs does not per-

fectly relate to the finescale variance of the data product.

We obtain consistently better results using the climate

change information fromRCM1 thanRCM2. This is in line

with the trend estimation results shown in Fig. 5, despite

the bias-corrected RCM2 showing better overall mar-

ginal performance at the model scale (cf. Fig. 4).

The proposed two-step postprocessing approach

shows consistently better marginal performance than

EQM under an assessment of the full distribution and

when focusing on the lower tail. When focusing on the

FIG. 4. Marginal performance of RCM raw output and three

bias-correction methods aggregated over the RCM grid cells in the

study area, as measured by the IQD, with a lower value indicating

better performance. The marginal distribution over all days in

1987–2005 is compared with the corresponding distribution derived

from the upscaled seNorge data product. Raw output and each

bias-correction method are indicated by color. The middle line of a

crossbar indicates the average IQD value across the grid cells, and

the lower and upper bounds indicate a 90% score uncertainty ob-

tained with 100 000 bootstrap samples.
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upper tail, or the central part of the distribution, the

differences between the methods are smaller and the

method ranking varies substantially across the catch-

ments. Notably, the EQM results are much better for

RCM2 than for RCM1. Furthermore, the EQM per-

formance is less stable across the different catchments

with some indications of worse performance in the in-

land catchments A and E through I.

As mentioned in section 2c(1), we have also

investigated a slightly simpler two-step postprocessing

procedure where the temporal residual series is assumed

to follow anARMA(p, q) model withGaussianmarginals.

This simplification results in significantly reduced per-

formance, adding approximately 0.008 to the average

IQD value of the full distribution per catchment (results

not shown). For RCM2, EQM performs better than this

FIG. 5. Combined baseline [Eq. (4)] and linear trend [Eq. (6)] components of the estimated mean for one RCM

grid cell in the study area, for the upscaled seNorge data product and the two RCMs over (left) the training period

1957–86 and (right) the test period 1987–2005, where also the corrected estimates of the two RCMs are indicated.

The estimates are standardized such that the overall mean of the data product in the training period is equal to 0.

FIG. 6. IQD values for marginal comparison of the daily seNorge data product and postprocessed RCM model

output for 1987–2005 aggregated over the grid cells in each catchment. A lower value indicates a better perfor-

mance. The postprocessing method is indicated by the color, and the RCM is indicated by the line type. (top left)

The full distributions are compared; also shown are comparisons focusing on (top right) the upper part [Eq. (16)],

(bottom left) the middle part [Eq. (17)], and (bottom right) the lower part [Eq. (18)] of the distributions. The

90% score uncertainty bounds as obtained with 100 000 bootstrap samples are indicated with vertical error bars for

each catchment and method.
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simplified two-step approach in seven out of the nine

catchments.

Below, we further assess the spatial and temporal

characteristics of the XstarTrend method applied to

RCM1 and EQM applied to RCM2.

2) SPATIOTEMPORAL DEPENDENCE STRUCTURE

Parameter estimates for the split normal residual

model in Eq. (9) and the spatial covariance function in

Eq. (12) in the largest catchment A, Gaulfoss, are given

in Fig. 7. The parameters of the split normal distribution

follow a seasonal pattern that can be deducted from the

data plot in Fig. 3, with the scale parameter for the lower

tail s1t being higher in winter and lower in summer and

the opposite holding for s2t, which is the scale parameter

for the upper tail. While the location parameter esti-

mates are, by construction, approximately mean zero

over the entire year, these also follow a seasonal pattern

with negative values in summer and positive values in

winter. The spatial covariance function similarly exhibits a

seasonal pattern. The spatial correlation has the highest

range in winter followed by summer, while the range is

smaller in spring and fall when, instead, the nugget pa-

rameter takes positive values.

To assess the temporal dependence, we estimate the

autocorrelation function of the average daily tempera-

ture series in each catchment, see Fig. 8. The results are

very similar across the catchments: as to be expected

for a temperature average over a larger area, the raw

RCM output has a substantially higher autocorrelation

than the finer-scale seNorge data product. Even if this is

somewhat corrected in EQM, the results are not quite

comparable to seNorge. The XstarTrend postprocessing

inherits its temporal dependence structure mostly from

the seNorge data product in training period, resulting in

temporal dependence very similar to that of the data

product in the test period.

For assessing the spatial dependence structure, Fig. 9

shows the empirical semivariograms for the seNorge

data product, the XstarTrend method applied to RCM1

and EQM applied to RCM2 in the winter and summer

months at the largest catchment A, Gaulfoss. While all

three methods are comparable in the summer, the spatial

dependence in winter is better modeled by XstarTrend

than EQM. Due to its continental climate, the spatial

dependence in the temperature at Gaulfoss is quite

different for the two seasons. The y value attained when

the semivariogram starts to level off, called sill in geo-

statistics, measures the total variance of the variable

within the spatial domain. The temperatures are more

variable in winter, leading to a larger sill (cf. Fig. 7). This

feature is properly captured by XstarTrend, and largely

overestimated by EQM. The distance at which the

semivariogram first flattens out, called the range, is

FIG. 7. Parameter estimates in catchment A (Gaulfoss) in the training period 1957–86 for the residual models in Eqs. (9) and (12),

showing (top) the two scale parameters s1t and s2t (8C) and the location parameter mt (8C) of the split normal distribution in Eq. (9) and

(bottom) the parameters of the exponential covariance function in Eq. (12): nugget u0t (8C
2), partial sill u1t (8C

2), and range u2t (km).
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typically around 30–35km in summer and somewhat

longer in winter, potentially because of dominance of

continental arctic air masses in the region. In winter, the

semivariogram values given by XstarTrend level off

similarly as the seNorge data, whereas those by EQM

show substantial differences for distances longer than

30km. In general, the spatial dependence patterns vary

somewhat between the catchments (results not shown).

In particular, EQM and XstarTrend return essentially

identical spatial patterns in the two maritime climate

catchments C and D.

Figure 10 shows examples of cold and warm January

days from the seNorge data product and the two post-

processing methods. EQM relies on the nearest-

neighbor method for interpolation between the two

spatial scales and is applied independently for each

RCM grid cell. It can be seen that the resulting daily

temperature fields have artificial boundaries corre-

sponding to the RCM grid cells, whereas those from

XstarTrenddo not have such boundaries and show a spatial

consistency closer to the seNorge temperature fields.

4. Discussion and conclusions

We propose a two-step statistical postprocessing

procedure that bias corrects and downscales RCM

simulations to a high-resolution grid. Our objective is

to develop a full-field downscaling method for daily

mean temperature that explicitly accounts for the fine-

scale variability and dependence in both space and time.

Employing two RCMs from the EURO-CORDEX en-

semble and the high-resolution gridded observational

FIG. 8. The temporal dependence in the nine catchments, measured by an autocorrelation function of the average time series over the daily

fields from 1987 to 2005, for the raw RCM output and two downscaling methods is compared with that from the seNorge data product.
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data product seNorge, we apply the procedure in the

Trøndelag area of Norway, and find that the generated

results are closer to the gridded reference data in terms

of marginal, temporal and spatial properties than an

empirical quantile mapping approach.

Our specific implementation separates statistical bias

correction and stochastic downscaling. In a first step, to

overcome the representativeness issue of the RCM

simulations (Maraun and Widmann 2018) for local-

scale climate, we follow Volosciuk et al. (2017) and

perform bias correction only at themodel scale. Thenwe

follow, for example, Piani et al. (2010) and assume a

Gaussian distribution for dailymean temperature. Here,

using a model that parameters vary smoothly in space

and time, we are able to account for the spatial and day-

to-day variation of the two moments as well as a po-

tential linear trend. Calibration is performed once for

the full training dataset in each catchment. Other post-

processing methods, however, often calibrate a model at

single locations (e.g., Volosciuk et al. 2017) for individ-

ual months (e.g., the EQM applied in current study) or

seasons (e.g., Vrac et al. 2012; Wong et al. 2014). Such

separation of the data in space and time may overlook

systematic variations with topography or seasons. Fur-

thermore, they are typically unable to estimate a single

long-term linear trend for the whole domain, for ex-

ample, separating it from the seasonal variations, and,

as a consequence, modify the trend when correcting

other properties (Maraun and Widmann 2018).

In a second step, we model the space–time variability

at the finer scale using residuals generated on a high-

resolution grid for limited areas (hydrological catch-

ments in our case). Even for daily mean temperature

that can be assumed Gaussian, simultaneous modeling

of the space–time dependence is not straightforward.

For computational feasibility and flexibility, we assume

stationarity and space–time separability in the model.

For the spatial dependence, we employ a similar approach

as Wilks (2009) and specify a parametric covariance

function of the exponential type with parameters smoothly

changing to describe spatial structure variations through-

out the year. Alternative, more advanced approaches here

include theMatérn covariance model (e.g., Lindgren et al.

2011) or models based on nonparametric approaches such

as principal component analysis (C. Heinrich et al. 2019,

unpublished manuscript, https://arxiv.org/abs/1907.09716).

For the temporal dependence, we found that the daily

mean residuals have negative skewness in winter and pos-

itive skewness in summer (found also in, e.g., Huybers et al.

2014), which if not accounted for would lead to reduced

FIG. 9. Spatial dependence in catchment A (Gaulfoss) in 1987–2005 bymonth, as measured by an empirical semivariogram that is based

on the daily temperature fields. The plots show empirical semivariograms derived from the seNorge data product and two downscaled

results (EQM applied to RCM2 and XstarTrend applied to RCM1).
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performance of the downscaling methods. Our solution is

to combine a split normal distribution for the asymmetry

with an ARMA model for the temporal correlation, a

computationally feasible approach to non-Gaussian mod-

eling of the temporal process.

The gap between the bias correction and the sto-

chastic modeling is bridged by adding climate change

signal derived from the model scale to the finescale WG

realizations. Climate change signals in the mean and the

variance can be selectively added to form the final re-

sults of the proposed procedure. Here, we compared

three options: using just the stationary climate (Xstar),

adjusting only the mean (XstarTrend), and adjusting

both mean and variance (XstarTrendVar). To assess

the agreement between the generated results and the

gridded data in the test period, we employ the IQD for

evaluation of the marginal aspect, the autocorrelation

function for temporal dependence, and the empirical

semivariogram for spatial dependence. We find that in

all the catchments in our study area and under both

RCMs, XstarTrend and XstarTrendVar perform better

than EQM in terms of marginal distribution and tem-

poral dependence, while properly representing spatial

dependence. In addition, we found that the skill of an

RCM at the coarser scale may not necessarily carry over

to the finer scale and agree with Maraun and Widmann

(2018) that it is important to assess the skill of the

climate model output in terms of the information to

be used.

The parameter estimation in our approach is per-

formed using methods such as maximum likelihood es-

timation where parameter uncertainty is not accounted

for. While Bayesian inference methods, that return as-

sessments of the parameter uncertainty, have been used

for similar models (e.g., Hewitt et al. 2018), they tend to

be computationally significantly more complex and may

have issues with scaling to high dimensions. In practice,

available information regarding parameter uncertainty

would allow us to slightly vary the parameters used in

the WG simulations at finescale, in the marginal space–

time distributions and for the trend estimates. This

would somewhat increase the variability between indi-

vidual simulations, in particular regarding the trend as

the space–time variation in the other components al-

ready induces variability. Such an approach would also

be appropriate for combining information frommultiple

sources, a discussion we consider outside of the scope of

the current paper.

The example in Fig. 5 illustrates the importance of

comparing the trend estimate of the RCM and the cal-

ibration data in the training period before applying a

trend correction to the RCM output. The example fur-

thermore shows that the training and the test period

used in our study are not sufficiently long for a robust

FIG. 10. Examples of the (top) coldest and (bottom) warmest temperature fields in catchment A (Gaulfoss) over all January days in the

test period 1987–2005. The examples shown are from (left) the seNorge data product, (center) EQM applied to RCM2, and (right)

XstarTrend applied to RCM1.
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estimation of local trends. The large differences be-

tween the estimated trends in the training and the test

period indicate that what is here considered trend is

likely to be partly due to natural variability, so that large

differences between the various datasets are to be ex-

pected. In practice, when applying our method to future

climate projections, one should thus use the entire

available historic period of 49 years for the calibration.

From the example in Fig. 10, we see that the EQM ref-

erence method appears to have some aliasing effects at the

edges of theRCMgrid cells. These effectsmight possible be

improved by using a spatially smoothing interpolation such

as bilinear interpolation rather than the nearest-neighbor

approach applied here. On the other hand, under bilinear

interpolation, the area averages would not match the raw

RCM outputs in the corresponding RCM grid cell. Opti-

mally, one would furthermore apply a spatially consistent

transfer function. However, the multivariate EQM ap-

proaches proposed thus far (e.g., Cannon 2016) are not able

to deal with such a high-dimensional setting.
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APPENDIX

Details of Bias-Correction Methods

For bias correcting the RCM simulations in the test

period, we correct the errors that are related to spatial

and temporal features of the two parameters of the

Gaussian model specified in Eqs. (1)–(6). In the method

Corr, we set

ẑtert 5 (ytert 2 m̂te
rt )/ŝ

te
rt and (A1)

ŷte,corrrt 5 m̂te,corr
rt 1 ẑtert ŝ

te,corr
rt , (A2)

where ‘‘te’’ denotes the test period. That is, we replace

the MLEs of m̂te
rt and ŝte

rt with their corrected counter-

parts m̂te,corr
rt and ŝte,corr

rt .

To derive m̂te,corr
rt , we first define the long-term average

over a given period for a given RCM cell as

m
r�:5

1

T
�
T

t51

[ f̂ m1 (cr)1 f̂ m2 (t)1 f̂ m3 (t)]

5 f̂ m1 (cr)1 â
3
n , (A3)

where f̂ m1 , f̂
m
2 , and f̂

m
3 are the three components of the first

moment specified in Eqs. (4)–(6) with coefficients equal

to theirMLEs. That is,mr� is the sum of the local baseline

and a regional trend increment. In Eq. (6), we index the

calendar years by an arithmetic sequence y(t) with initial

value 0 and increments of 0.1, so that y(t)2 {0, 0.1, . . . , 2.9}

for the 30-yr training period and y(t) 2 {0, 0.1, . . . , 1.8} for

the 19-yr test period. It follows that n5 1:45 for the

training period and n5 0:9 for the test period. With

these settings, we formulate the corrected mr� in the test

period as the value based on the upscaled seNorge data

mo
r� combined with the RCM-simulated change from the

training period to the test period mte
r� 2mtr

r� ,

mte,corr
r� 5mo

r� 1mte
r� 2mtr

r�

5 f̂ m,o1 (c
r
)1 f̂ m,te1 (c

r
)2 f̂ m,tr1 (c

r
)

1 1:45(âo
3 2 âtr

3 )1 0:9âte
3 , (A4)

where the second equality follows from Eq. (A3).

The RCM simulated trend in the test period is cor-

rected as

f̂ m,te,corr3 (t)5 âte,corr
3 y(t) , (A5)

where âte,corr
3 5 âo

3 1 âte
3 2 âtr

3 . The corrected baseline

function of the first moment is obtained using the result

of Eq. (A3), that is, by subtracting the increment due to the

trend from the corrected long-term average in Eq. (A4),

f̂ m,te,corr1 (c
r
)5mte,corr

r� 2 0:9âte,corr
3

5 f̂ m,o1 (c
r
)1 f̂ m,te1 (c

r
)2 f̂ m,tr1 (c

r
)

1 0:55(âo
3 2 âtr

3 ) . (A6)

The corrected seasonality of the first moment is

f̂ m,te,corr2 (t)5 f̂ m,o2 (t)1 f̂ m,te2 (t)2 f̂ m,tr2 (t) . (A7)

By combining the results above, we have the corrected

first moment for a given RCM grid cell r at time t,

m̂te,corr
rt 5 f̂ m,te,corr1 (c

r
)1 f̂ m,te,corr2 (t)1 f̂ m,te,corr3 (t) . (A8)

For the standard deviation ŝte,corr
rt , we simply set

ŝte,corr
rt 5 [(ŝo

rt)
2 1 (ŝte

rt )
2
2 (ŝtr

rt)
2
]
1/2

. (A9)

For comparison, we perform two simple, nonparametric

methods of correcting the mean biases of the RCM

simulations in the test period. Both methods explicitly

preserve the change in the long-term average simulated

by RCM. In the method Simple, we first calculate three

domainwise long-term averages: ao from the upscaled

seNorge data in the training period, atr from the RCM

raw outputs in the training period, and ate from theRCM
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raw outputs in the test period. We then remove ate from

the raw output ytert and add back the corrected average

ao 1 ate 1 atr for the test period. Formally,

y
te,Simple
rt 5 ytert 2 ate 1 (ao 1 ate 2 atr)

5 ytert 1 ao 2 atr . (A10)

In the second method, the same procedure is applied to

correct the mean biases for individual RCM grid cells,

hence the name LocalSimple,

y
te,LocalSimple
rt 5 ytert 1 aor 2 atrr . (A11)
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