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Exercise 1

Suppose independent observations X1, . . . , Xn and Y1, . . . , Yn stem from two samples, the

first from the N(a, 1) and the second from the N(b, 1) distribution. We shall use this simple

setup to investigate certain questions related to the AIC and BIC. The sample means are

as usual denoted X̄ and Ȳ .

(a) Show that the log-likelihood functions for the x-sample may be expressed as

ℓx(a) = − 1

2
Qx − 1

2
n(X̄ − a)2 − 1

2
n log(2π),

with Qx =
∑n

i=1
(Xi − X̄)2. Set up the full log-likelihood ℓ(a, b) for the observed

data. Identify the maximum likelihood estimator â for a and b̂ for b and give their

distributions (without proof).

(b) We now consider two models. Model M0 takes a = b, so that all the 2n observa-

tions come from the same population, whereas model M1 does not assume anything

regarding a or b, hence left as two free parameters. Find explicit expressions for

ℓ0,max = max{ℓ(a, b):model M0} and ℓ1,max = max{ℓ(a, b):model M1},

and use these to show that

∆n = 2(ℓ1,max − ℓ0,max) =
1

2
n(X̄ − Ȳ )2.

(c) Identify precisely when AIC selects model M1 over M0, and also precisely when BIC

selects model M1 over M0, in terms of X̄ and Ȳ .

(d) Assume for this point that model M0 is actually correct. Find expressions for

pn,0 = Pr{AIC selects M1} and qn,0 = Pr{BIC selects M1}.

Determine also the limits of pn,0 and qn,0 as n increases. I mention here, in case this

might be of use for your analysis, that

Pr{χ2

1 ≤ x} = 0.683, 0.843, 0.917, 0.954, 0.975 for x = 1, 2, 3, 4, 5.
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(e) Let now δ = a − b, where the previous point concerned the case δ = 0. Assume for

this point that a 6= b, and consider

pn(δ) = Prδ{AIC selects M1} and qn(δ) = Prδ{BIC selects M1}.

Find the limits of pn(δ) and qn(δ) as n increases. Comment briefly on these findings.

Exercise 2

Consider again the set-up of Exercise 1, with a sample from N(a, 1) and another sample

from N(b, 1).

(a) For estimating the parameter δ = a− b, determine δ̂0 and δ̂1, the maximum likelihood

estimators under models M0 and M1, respectively.

(b) Determine the mean squared errors of these two estimators. When is the M0 model

based estimator better than the M1 based estimator?

(c) Define risk functions

rn,AIC(δ) = nE(δ̂AIC − δ)2 and rn,BIC(δ) = nE(δ̂BIC − δ)2,

where

δ̂AIC =

{
δ̂0 if AIC chooses M0,
δ̂1 if AIC chooses M1,

δ̂BIC =

{
δ̂0 if BIC chooses M0,
δ̂1 if BIC chooses M1.

It takes a bit of time to find clear mathematical expressions for these two post-selection

risk functions and you are not required to do so during today’s examination hours.

You may attempt to compute the risk functions at zero, however (as this is easier

than for δ 6= 0), and you should also indicate how you believe the two risk functions

will look like, based on similar studies from the curriculum.

Exercise 3

For this exercise you should freely use material, notation and results from the exam set’s

Appendix. The material there uses the usual f(y, θ, γ) notation with θ of dimension p and

γ in general being a parameter of length q, but in the present exercise we are content to

study the one-dimensional case of q = 1. It is then also convenient to write κ2 for the lower

right-hand corner element J11 of the (p + 1) × (p + 1) inverse Fisher information matrix.

As also explained and summarised in the Appendix, there is a focus parameter µ = µ(θ, γ)

at play, with narrow model and wide model estimators µ̂narr and µ̂wide, respectively.
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(a) Consider first the usual loss function for estimation, namely squared error, scaled here

with n to have proper limits:

L(µ, µ̂) = n(µ̂− µ)2.

The risk function is the expected loss, as a function of the parameters. Explain that

the limiting risk functions for the two estimators above become

rnarr(δ) = τ20 + ω2δ2 and rwide(δ) = τ20 + ω2κ2.

(b) For which range of the parameter δ will the narrow model lead to more precise esti-

mators than with the wide model, under this squared error loss function, for large n?

Translate this result to the original parameter scale γ.

(c) We shall now study a different loss function, namely

L∗(µ, µ̂) =

{
1 if |√n(µ̂− µ)| > ε,
0 if |√n(µ̂− µ)| ≤ ε,

for ε a small number. Show that the limiting risk functions for the two estimators

above may be represented as

rnarr(δ)
.
= 1− hnarr(0) 2ε and rwide(δ)

.
= 1− hwide(0) 2ε,

where hnarr(x) and hwide(x) are the densities of respectively Λ0+ωδ and Λ0+ω(δ−D).

(The ‘a(ε)
.
= cε’ notation indicates that a(ε)/ε → c as ε → 0.)

(d) Show that rnarr(δ) < rwide(δ) corresponds to snarr(δ) > swide(δ), where

snarr(δ) = φ
(ωδ
τ0

) 1

τ0
and swide(δ) = φ(0)

1

(τ2
0
+ ω2κ2)1/2

,

with φ(x) = (2π)−1/2 exp(− 1

2
x2) the standard normal density.

(e) Going to the log-scale of things, explain how the above study of the loss function L∗

leads to transformed risk functions

r∗narr(δ) = log τ20 + ω2δ2/τ20 and r∗wide(δ) = log(τ20 + ω2κ2),

with low value of r∗(δ) indicating better performance. Find the tolerance radius c

around the narrow model, with the property that when |δ| ≤ c, then the narrow

model leads to better estimation of µ than the wide model does.

(f) Put up natural estimators of r∗narr(δ) and r∗
wide

(δ), with the property that these become

unbiased in the limit situation. Explain, but briefly, how this leads to a new focused

information criterion, say FIC∗.

(g) Give also a FIC∗ = FIC∗(S) formula for the general case of a q-dimensional γ param-

eter, for the 2q candidate models corresponding to subsets S of {1, . . . , q}.
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Exercise 4

Write up the essence of the AFIC method (the average weighted focused information

criterion), using a maximum of two pages. You are again free to use material, notation

and results summarised in the Appendix below.

Appendix

The following is a mini-summary of some of the core material from Chapters 6–7 in

Claeskens and Hjort (2008), pertaining to a certain local neighbourhood large-sample

framework, set here in the simpler framework of i.i.d. data. Notation and results given

here may be used in Exercises 3 and 4 without proofs or further detailed discussion.

Assume independent observations Y1, . . . , Yn stem from a distribution with density

function f(y, θ, γ), with θ of dimension p and γ of dimension q. With γ0 a suitable null

point in the parameter range for γ, corresponding to f(y, θ, γ0) being a p-dimensional

‘narrow model’, assume that γ = γ0 + δ/
√
n, i.e. that the data follow the density

fn(y) = f(y, θ0, γ0 + δ/
√
n).

As in the core material of the chapters mentioned, we shall work with a focus parameter

µ = µ(θ, γ), with true value µtrue = µ(θ0, γ0+ δ/
√
n). The necessary notation includes the

Fisher information matrix J of dimension (p + q) × (p + q), computed at the null model,

with inverse J−1. These matrices have blocks according to the usual notation

J =

(
J00 J01
J10 J11

)
and J−1 =

(
J00 J01

J10 J11

)
,

with J00 being of size p× p, Q = J11 of size q × q, etc. Also, let

τ20 = (∂µ∂θ )
tJ−1

00

∂µ
∂θ and ω = J10J

−1

00

∂µ
∂θ − ∂µ

∂γ ,

with derivatives computed at the null model. With maximum likelihood estimators µ̂narr =

µ(θ̂narr, γ0) and µ̂wide = µ(θ̂wide, γ̂wide), under respectively the narrow and the wide models,

we have

√
n(µ̂narr − µtrue) →d Λ0 + ωδ and

√
n(µ̂wide − µtrue) →d Λ0 + ωt(δ −D),

where Λ0 ∼ N(0, τ20 ) and D ∼ Nq(δ,Q) are independent. More generally, with µ̂S the

maximum likelihood estimator under submodel S, where S is a subset of {1, . . . , q},
√
n(µ̂S − µtrue) →d Λ0 + ωt(δ −GSD),

where

GS = πt

SQSπSQ
−1 = πt

S(πSQ
−1πt

S)
−1πSQ

−1

is a q × q matrix determined by this S, involving the projection matrices πS , where πSv

maps v = (v1, . . . , vq) to the subvector vS with vj for j ∈ S.
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