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The problem: Combining information

Suppose ) is a parameter of interest, with data y1, ..., yx from
sources 1,. .., k carrying information about . How to combine
these pieces of information?

Standard (and simple) example: y; ~ N(w,crf) are indepenedent,
with known or well estimated o;. Then

KL yi/0? k -
0= S N () )

Often additional variability among the 1);. Would e.g. be interested
in assessing both parameters of ¢ ~ N(vg, 72).

We need extended methods and partly new paradigms for handling
cases with very different types of information.
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Plan

General problem formulation:

Data y; source j carry information about 1);. Wish to assess overall
aspects of these 1;, perhaps for inference concerning some

(1, - -5 Pi)-
A Confidence distributions.
B Previous CD combination methods (Singh, Strawderman, Xie,
Liu, Liu).
C A different II-CC-FF paradigm, via steps Independent

Inspection, Confidence Conversion, Focused Fusion and
confidence-to-likelihood operations.

D1 Example 1: Effective population size for cod.
D2 Example 2: Olympic unfairness.

E Concluding remarks.
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A: Confidence distributions

For a parameter 1), suppose data y give rise to confidence
intervals, say [10.05,%0.05] at level 0.90, but also for other levels.
These are converted into a full distribution of confidence, with

[100.05, %0.95] = [C71(0.05, yobs), C~1(0.95, yobs)],
etc. Here C(1),y) is a cdf in %, for each y, and

C(to, Y) ~ unif at true value vy.

Very useful, also qua graphical summary: the confidence curve

CC(@ZJ) = |]- -2 C('¢>Y0bs)|a

with cc(y) = 0.90 giving the two roots g .05, ¥0.95, €tc.

An extensive theory is available for CDs, cf. Confidence,
Likelihood, Probability, Schweder and Hjort (CUP, 2015).
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B: Liu, Liu, Singh, Strawderman, Xie et al. methods

Data y; give rise to a CD (v, y;j) for 1. Under true value,
(¥, Y;) ~ unif. Hence ®~*(G;(y, ¥})) ~ N(0,1), and

k
Cw) = o( Y wo (G, V)
j=1

is a combined CD, if the weights w; are nonrandom and
k 2
2w =1
This is a versatile and broadly applicable method, but with some
drawbacks: (a) trouble when estimated weights w; are used; (b)

lack of full efficiency. In various cases, there are better CD
combination methods, with higher confidence power.

Better (in various cases): sticking to likelihoods and sufficiency.
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CD combination via confidence likelihoods

Combining information, for inference about focus parameter
¢ = P(¢1,...,1%k): General [I-CC-FF paradigm for combination of
information sources:

[I: Independent Inspection: From data source y; to estimate and
intervals, yielding a CD:
i = G(¥)-

CC: Confidence Conversion: From the confidence distribution to a
confidence log-likelihood,

Ci(Y;) = Le ()

FF: Focused Fusion: Use the combined confidence log-likelihood
le = Zj’le ¢ j(1)j) to construct a CD for the given focus
¢ = ¢(11,...,1), perhaps via profiling, median-Bartletting, etc.:

Ec(wla B 71/}k) — E:.fusion(gb)-

FF is also the (focused) Summary of Summaries operation.
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Carrying out steps Il, CC, FF can be hard work, depending on
circumstances. The CC step is sometimes the hardest (conversion
of CD to log-likelihood). The simplest method is normal
conversion,

lej(¥) = —3TH(eei(¥y)) = —3{@7H(G¥))},
but more elaborate methods may typically be called for.

Sometimes step |l needs to be based on summaries from other work
(e.g. from point estimate and a .95 interval to approximate CD).

With raw data and sufficient time for careful modelling, steps Il
and CC may lead to £ j(v);) directly. Even then having individual
CDs for the 1); is informative and useful.
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Illustration 1: Classic meta-analysis.

[I: Independent Inspection: Statistical work with data source y;
leads to 0 ~ N(uj,07); Gi(vy) = (¢ — ¥y)/05).

CC: Confidence Conversion: From C;(1);) to

lej(¥y) = =3 (05 — )02,

FF: Focused Fusion: With a common mean parameter across
studies: Summing /. j(1);) leads to classic answer

- YK /o : 1

==L ~ Ny, (D 1/a7) ).
Zj’le 1/0? ( (; UJ) )

With ; varying as N()o, 72): then 1@ ~ N(2o, 72 +012). CD for T:
C(7) = Pro{Qk(7) = Qrobs(7)} =1 — Tk—1(Qk,0bs(7)),

with Qk(7) = ijzl{z@ — ()Y )(? + UJ?). There is a positive
confidence probability for 7 = 0. CD for ¢: based on
t-bootstrapping and

t = (4(F) — ¥)/k(7).

8/18



lllustration 2: Let Y; ~ Gamma(aj, #), with known shape a;.

[I: Independent Inspection: Optimal CD for ¢ based in Y] is
Gi(0) = G(0yj, aj,1).

CC: Confidence Conversion: From C;(#) to

lej(pj) = —Oyj + ajlog¥.

FF: Focused Fusion: Summing confidence log-likelihoods,
Crusion(8) = G(0 Zjlleyj, ijzl aj, 1). This is the optimal CD for
0, and has higher CD performance than the Singh, Strawderman,
Xie type

k
(o) = o( 3w (G(9)),
j=1

even for the optimally selected w;.

Crucially, the 1I-CC-FF strategy is very general and can be used
with very different data sources (e.g. hard and soft and big and
small data). The potential of the [I-CC-FF paradigm lies in its use
for much more challenging applications (where each of Il, CC, FF
might be hard).
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D1: Effective population size ratio for cod

A certain population of cod is studied. Of interest is both actual
population size N and effective population size N, (the size of a
hypothetical stable population, with the same genetic variability as
the full population, and where each individual has a binomially
distributed number of reproducing offspring). The biological focus
parameter in this study is ¢ = Ng/N.

Steps II-CC for N: A CD for N, with confidence log-likelihood: A
certain analysis leads to confidence log-likelihood

Le(N) = —1(N — 1847)% /5342,

Steps II-CC for No: A CD for N, with confidence log-likelihood:
This is harder, via genetic analyses, etc., but yields confidence
log-likelihood

lee(Ne) = —3(N2 —198°)/s?

for certain estimated transformation parameters (b, s).
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Step FF for the ratio: A CD for ¢ = N./N. This is achieved via
log-likelihood profiling and median-Bartletting,

Corof (@) = max{lc(N) + lce(Ne): Ne/N = ¢}.
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D2: The Olympic unfairness of the 1000 m

Olympic speedskaters run the 1000 m in less than 70 seconds
(speed more than 50 km/h). They skate two and a half laps, in
pairs, with a draw determining inner/outer. Acceleration matters
(mv2/rp > mv?/ry with r; =25 m and r, =29 m), and so does
fatigue at end of race.

Start in inner lane: three inners, two outers.

Start in outer lane: two inners, three outers.
| shall estimate the Olympic unfairness parameter d, the difference
between outer and inner, for top skaters.

start outer

v [ i 777777777777777 -

start inner

\\\;\; 7777777777777777777777 l 777777777777777777777 771’/_,’

200m, 600m, finish
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In the Olympics: only one race. In the annual World Sprint
Championships: they race 500 m and 1000 m both Saturday and
Sunday, and they switch start lanes.

The six best men, from Calgary, January 2012, Saturday and
Sunday, with ‘i’ and ‘o’ start lanes, and passing times:

200 m 600 m 1000 m 200 m 600 m 1000 m
S. Groothuis i 16.61 4148 1:.0750 o 1650 41.10 1:06.96
Kyou-Hyuk Lee i 16.19 41.12 1:08.01 o 16.31 40.94 1:07.99
T.-B. Mo o 1657 4167 1:0799 i 16.27 4154 1:07.99
M. Poutala i 1648 4150 1:08.20 o 16.47 4155 1:08.34
S. Davis o 1680 4152 1:.07.25 i 17.02 41.72 1:07.11
D. Lobkov i 1631 4129 1:0810 o 1635 41.26 1:08.40

SO WN

| need a model for (Sat, Sun) results (Y1, Y2), utilising passing
times u; 1, v 1 for Sat race and u; 2, vj > for Sun race, along with
—1 if no. j starts in inner on Saturday,

zj1 = . . :
’ 1 if no. i starts in outer on Saturday,

—1 if no. i starts in inner on Sunday,
Zip = : . .
1 if no. i starts in outer on Sunday.
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My model for (Sat, Sun) results, for skater i:

Yii = a1+ buji+cvi1+ %dz,'71 +6; + €ils
Yio = ap+ bujp + cvip + 3dzjo + 0 + €.

Here u; 1, uj > are 200 m passing time, v; 1, Vv; > are 600 m passing
time; d; follows the skater, with 6; ~ N(0, x?) across skaters; and
€i.1,€i2 are independent N(O,o2). The inter-skater correlation is
p=K2/(0? + ).

Crucially, outer lane start means adding %d, inner lane start means
adding —%d, so d is overall difference due to start lane. Fairness
means d should be very close to zero.

The model has seven parameters, and | need full analysis of
dataset from each World Sprint Championships event to get hold
of a CD for the focus parameter d.
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From full analysis of World Sprint events 2014, ..., 2001 (seven
parameters in each model), | get hold of

2!\j ~ N(dj’ 012)7

and | then use d; ~ N(dp, 72). Full CD analyses are then available
for dy and for 7.

Olympic unfairness
0.2
L
confidence

T T T T T T T T T T
2000 2005 2010 2015 000 002 004 006 008 0.10

events tau 15/18



Confidence curves cc(d;) for the fourteen unfairness parameters,
over 2014 to 2001. The overall estimate 0.14 seconds (advantage
inner-starter) is very significant, and big enough to make medals
change necks.

confidence curves

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Olympic unfairness

Conclusion: The skaters need to run twice. (I've told the ISU.)
16/18



E: Concluding remarks (and further questions)

a. If we have the raw data, and have the time and resources to do
all the full analyses ourselves, then we would find the C;(1);) in
Step Il = Independent Inspection. In real world we would often
only be able to find a point estimate and a 95% interval for the ;.
We may still squeeze an approximate CD out of this.

b. Step CC = Confidence Conversion is often tricky. There is no
one-to-one correspondence between log-likelihoods and CDs. Data
protocol matters. See CLP (2015).

c. Step FF = Focused Fusion may be accomplished by profiling the
combined confidence log-likelihood, followed by fine-tuning
(Bartletting, median correction, abc bootstrapping).

d. We see a good potential for the |I-CC-FF scheme in harder
applications involving hard and soft data, as well as with big and
small data. Such applications will be worked with inside the
FocuStat research programme 2014-2018.
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T y bock Lays cut 3 methodalogy of confidsnce ditributions and puts them
Ehrcwgh their paces. Ameng ather merits they bead 10 cptimal combinatians of
confidence from dferent sources of Information, and Wy can make compie
miodeds amenable to objective and indeed priordree analysh for less subjectively
tickans. The e ture of theary, ilustrations, apphcations and
A levels of experience, a well 31 for data
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Confidence,
Likelihood and
Probability

Statistical Inference with
Confidence Distributions

Some corfidence distriutions are bess cipersed than their compesiiors. This
concept kads 1o 3 theory of risk hunction and comparond kos distribations of
confidence. heeyman-Pearsan type theorems kading to optimal conddenie are
developed and richly dhustrated. Exact and eptimal confidencs dtributicn b the
gokd standard fox infermed epitemic ditributions

Confiderwe dbtributions and Bkebbood functions are intertwined, allowing prior
chtributiont 10 be made part of the Bhelicxd. Meta-analyss in ikeihood terms
s deweloped aad 1aken beyond tradionsl methods, 3uiting It in pasticular 1o
combining information acss dierse dat sousces
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Pl Lid Hort i geofessor of mathemsticsl 11385tk i the Departmend of
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More material: CLP, Cambridge University Press, 2015




