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Value-at-risk
Let X be some risk, and introduce SX (x) = P(X > x). The α-level
value-at-risk associated with the risk X , denoted by Vα[X ], is given by
S−1

X (α). More formally, we define:

Vα[X ] = S−1
X (α) = inf{x : P(X > x) ≤ α}. (1)

In the special case where X is absolutely continuously distributed, we have:

Vα[X ] = S−1
X (α) = x if and only if P(X > x) = α.

More generally, if SX is strictly decreasing, we have that:

Vα[X ] = x if and only if P(X > x) ≤ α ≤ P(X ≥ x). (2)

Finally, if X is a discrete random variable, we have that:

Vα[X ] = x if and only if P(X > x) ≤ α < P(X ≥ x). (3)
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Value-at-risk (cont.)

Proposition (Monotonicity)

For any strictly increasing continuous function φ we have:

Vα[φ(X )] = S−1
φ(X)(α) = φ(S−1

X (α)) (4)

PROOF: We note that since φ is strictly increasing, it follows by (1) that:

Vα[φ(X )] = inf{y : P(φ(X ) > y) ≤ α}
= inf{y : P(X > φ−1(y)) ≤ α}.

We then substitute y = φ(x) and φ−1(y) = x , and get:

Vα[φ(X )] = inf{φ(x) : P(X > x) ≤ α}
= φ(inf{x : P(X > x) ≤ α})
= φ(S−1

X (α)).
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Value-at-risk (cont.)

Corollary (Linearity)

For a > 0 and b ∈ R we have:

Vα[aX + b] = aVα[X ] + b.

PROOF: The result follows directly from the monotonicity property by noting
that:

φ(X ) = aX + b

is a strictly increasing function for all a > 0 and b ∈ R.
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Value-at-risk and optimal design
Let V = (V1, . . . ,Vn) ∈ V be a vector of environmental variables and let
α ∈ (0,1) be a given probability representing an acceptable level of risk. We
assume that we have determined a function C(u) defined for all unit vectors
u ∈ Rn such that:

P[u′V > C(u)] = α, for all u ∈ Rn. (5)

We also introduce the following notation:

Π(u) = {V ∈ V : u′V = C(u)},

Π+(u) = {V ∈ V : u′V > C(u)},

Π−(u) = {V ∈ V : u′V ≤ C(u)}

Hence, we have:

P[V ∈ Π+(u)] = P[u′V > C(u)] = α, for all u ∈ Rn. (6)
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Value-at-risk and optimal design (cont.)

Next we let x = (x1, . . . , xm) be a vector of design variables for a given system
representing various parameters such as capacity, thickness, strength etc.

Every design is referred to simply by its corresponding vector of design
variables, i.e., x . The set of possible designs is denoted by X .

The performance function of a system is denoted by g, and is assumed to be
a function of both V and x :

g = g(V ,x).

The performance function is used to identify environmental conditions where
the system fails. More specifically, the system fails if and only if g(V ,x) > 0.
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Value-at-risk and optimal design (cont.)

The cost of a system failure is denoted by K . We also introduce a
deterministic function κ = κ(x) representing the cost of the design x , and
assume that:

κ(x) < K for all x ∈ X .

The total cost, denoted H, is then given by:

H(V ,x) = K · I[g(V ,x) > 0] + κ(x).

The α-level value-at-risk of a given design, denoted Vα(H), is given by:

Vα(H) = S−1
H (α),

where SH(h) = 1− FH(h) = P(H > h). Thus, Vα(H) is the (1− α)-percentile
of the distribution of H.

Our main objective is to choose a design x so that Vα(H) is minimised.
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Value-at-risk and optimal design (cont.)

Since κ(x) is deterministic, it follows by the linearity of Vα that:

Vα[H] = Vα[K · I[g(V ,x) > 0]] + κ(x).

We observe that K · I[g(V ,x) > 0] is a discrete random variable with only two
possible values, 0 and K . Its distribution is given by:

P[K · I[g(V ,x) > 0] = K ] = P[g(V ,x) > 0],

P[K · I[g(V ,x) > 0] = 0] = P[g(V ,x) ≤ 0].

By (3) we know that:
Vα[K · I[g(V ,x) > 0]] = y ,

if and only if:

P[K · I[g(V ,x) > 0] > y ] ≤ α < P[K · I[g(V ,x) > 0] ≥ y ]
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Value-at-risk and optimal design (cont.)

In particular, we have P[K · I[g(V ,x) > 0] > K ] = 0 < α implying that:

Vα[K · I[g(V ,x) > 0]] = K ,

if and only if:

P[K · I[g(V ,x) > 0] ≥ K ] = P[g(V ,x) > 0] > α

Furthermore, we have P[K · I[g(V ,x) > 0] ≥ 0] = 1 > α implying that:

Vα[K · I[g(V ,x) > 0]] = 0,

if and only if:

P[K · I[g(V ,x) > 0] > 0] = P[g(V ,x) > 0] ≤ α
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Value-at-risk and optimal design (cont.)

Summarising this we get:

Vα(K · I[g(V ,x) > 0]) =

{
K if P[g(V ,x) > 0] > α

0 if P[g(V ,x) > 0] ≤ α

From this it follows that:

Vα(H) =

{
K + κ(x) if P[g(V ,x) > 0] > α

κ(x) if P[g(V ,x) > 0] ≤ α

Since we have assumed that κ(x) < K for all x ∈ X , it follows that an optimal
design x must be chosen so that:

P[g(V ,x) > 0] ≤ α (7)
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Value-at-risk and optimal design (cont.)

Theorem (Halfspace condition)

A sufficient condition for (7) to hold is that g(V ,x) ≤ 0 for all V such that
u′V ≤ C(u), where u ∈ Rn is a suitably chosen unit vector.

PROOF: The condition implies that if g(V ,x) > 0, then u′V > C(u).

Hence, by (5) we get that:

P[g(V ,x) > 0] ≤ P[u′V > C(u)] = α.

Hence, we conclude that (7) is satisfied.
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Value-at-risk and optimal design (cont.)

We then let u ∈ Rn be a unit vector and consider the following
subclass of designs:

X (u) = {x ∈ X : g(V ,x) ≤ 0 for all V ∈ Π−(u)}.

By the halfspace condition theorem we know that the condition (7) is
satisfied for all designs x ∈ X (u).

Hence, an optimal design within the subclass X (u) can be found by
minimising κ(x) with respect to x ∈ X (u).

Different choices of the unit vector u will generate different optimal
designs. However, the choice of u may often be a result of initial
concept decisions related to the system of interest. Thus, it may not be
necessary to consider multiple subclasses of design.
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Example: Structural reliability

We consider a system whose performance depends on the non-negative
environmental variables, V = (V1, . . . ,Vn) ∈ V. The system fails if:

AV > x

where A = Am×n is a matrix, and the design x = (x1, . . . , xm) is a vector of
strengths.

The cost of the design x is given by:

κ(x) = c1x1 + · · ·+ cmxm.

We want to minimise κ(x) subject to P[AV > x ] ≤ α. Since this failure
probability may be difficult to compute, we instead minimise κ(x) subject to:

{V ∈ V : AV > x} ⊆ {V ∈ V : u′V > C(u)}. (8)
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Example: Structural reliability

It follows that if the design x satisfies (8), then:

P[AV > x ] ≤ P[u′V > C(u)] = α.

For a given design x , we can then check if it satisfies (8) by solving the
following LP-problem:

Minimise u′V subject to AV ≥ x . (9)

Let V 0 denote the solution to (9). Then x satisfies (8) if and only if:

u′V 0 > C(u).

By using a suitable iteration method one can then find a design x which
minimises κ(x) subject to (8).
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