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ABSTRACT: Quantifying operational risk exposure typically involves gathering information from several
sources, including historical data as well as subjective assessments. Using historical data one can estimate both
an incident frequency distribution, as well as an incident consequence distribution. Based on these two distribu-
tions a simulation model can be established. However, by limiting the focus to data related to incidents which
may reappear in the future, one is often left with a relatively short incident history. In order to improve the
risk quantification, it is often necessary to include subjective risk assessments as well. In the present paper we
propose three models for how to combine these two sources of information. In the first model we assume that
the two sources are completely disjoint, while in the second model the two sources are assumed to overlap com-
pletely. The third model represents an intermediate situation where the two sources are partially overlapping.
This third model contains the two first models as limiting cases. The models are illustrated and compared in an
extensive numerical example.

1 INTRODUCTION

When quantifying operational risk exposure one of-
ten needs to gather information from several sources.
Such sources include statistical data based on histor-
ical observations as well as assessments made by a
panel of experts. For the statistical data this represents
observations of actual incidents collected through a
suitable number of years. By counting the number of
incidents per unit of time one can estimate an inci-
dent frequency distribution. Moreover, by looking at
the occurred consequences an incident consequence
distribution can be estimated. Together these two dis-
tributions enable the analyst to build a well-defined
simulation model. In the present paper we refer to this
as the incident database model. While this model may
represent an adequate summary of the past, it may
not work quite as well for the future. Due to changes
in the overall risk picture, older incidents may some-
times be less likely to occur in the future. By limiting
the focus to data related to incidents which may reap-
pear in the future, one is often left with a relatively
short incident history. Moreover, there may be impor-
tant risk factors missing in the incident database. Such
risk factors could arise from recent threats or rare inci-
dents with possibly severe consequences. Thus, in or-
der to improve the risk quantification, it is often nec-

essary to include subjective risk assessments as well.
Typically, this is done by a panel of experts identify-
ing a set of potential risk factors. For all these factors
the experts assess the frequency of occurrence as well
as the risk factor consequence distribution. Based on
these assessments another simulation model can be
established, referred to here as the risk factor model.

Obviously the incident database model and the risk
factor model may be produce results which differ sig-
nificantly. Thus, there is a need to handle these differ-
ences by developing some way of combining the two
models. In this paper we shall discuss three different
approaches to combining incident database model and
risk factor model. Underlying all three approaches is
the assumption that the incident data and the subjec-
tively assessed risk factor model can be viewed as two
different but possibly overlapping sources of informa-
tion. The three approaches represent different cases
with respect to the degree of overlap.

Before introducing the models we review results re-
lated to compound processes and how to incorporate
parameter uncertainty into the models. The proposed
models are illustrated by considering a numerical ex-
ample.



2 COMPOUND PROCESSES

A common approach to modelling the accumulated
consequences from a series of events is using a com-
pound process. Such processes are used extensively
in e.g., insurance mathematics. For an excellent intro-
duction to this field see (Bølviken 2014). This topic
of compound processes is also covered in (McNeil et
al. 2005).

According to this approach the accumulated conse-
quences in a time interval [0, t], denoted Z(t) can be
expressed as:

Z(t) =

N(t)∑
i=1

Xi, (1)

where N(t) denotes the number of events in [0, t],
while Xi denotes the consequence of the ith event,
i = 1,2, . . .. Here N(t) is a non-decreasing stochas-
tic process with non-negative integer values such that
N(0) = 0, also referred to as a counting process. We
refer to this as the event generating process. Typically
one assumes that X1,X2, . . . are stochastically inde-
pendent and identically distributed with distribution
FX , which we refer to as the consequence distribu-
tion.

Using standard results from the theory of com-
pound processes it is very easy to show that:

E[Z(t)] = E[N(t)] · E[Xi], (2)

Var[Z(t)] = E[N(t)] · (Var[Xi] + E[Xi]
2). (3)

Unless one needs to include time dependence or
non-stationarity into the model, a Poisson process is a
common choice for the event generating process. This
type of process is also recommended in (Adachi et al.
2011), and will be used throughout the present paper.
A compound process where the events are generated
from a Poisson prosess, is referred to as a compound
Poisson process. See e.g., (Adelson 1966) or (McNeil
et al. 2005) for more details.

When the event generating process is a Poisson
process, it follows that:

P (N(t) = n) =
(λt)n

n!
e−λt, n = 0,1,2, . . . , (4)

where λ > 0 is a parameter denoting the event inten-
sity per time unit. Thus, for t > 0, N(t) has a Poisson
distribution with parameter λt, i.e.,N(t)∼ Po(λt). In
this context we define a time unit to be one year. We
also introduce:

Nk = N(k)−N(k− 1), k = 1,2, . . . .

Thus, Nk is the number of events in the kth year,
k = 1,2, . . .. Since N(t) is assumed to be a Poisson

process, it follows that N1,N2, . . . is a sequence of in-
dependent variables, all with the same Poisson proba-
bility distribution:

P (Nk = n) =
λn

n!
e−λ, n= 0,1,2, . . . , k = 1,2, . . . .

That is, Nk ∼ Po(λ), k = 1,2, . . ..

2.1 Parameter uncertainty

Realistically, the parameter of the Poisson process is
typically an uncertain quantity. In order to include
this uncertainty into the model, we assess a proba-
bility distribution representing our prior knowledge
about the parameter. A convenient choice is the natu-
ral conjugate distribution, i.e., a Gamma distribution
with positive parameters α and β. The density of this
distribution, denoted by π, is given by:

π(λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0.

In order to assess the hyperparameters α and β, one
may imagine the prior distribution as a result of ob-
serving the process in β time units. (See (Huseby
1989).) When the prior knowledge is considered to
be weak, the value of β should be chosen to be small,
typically less than or equal to 1. The value of α is as-
sessed indirectly using the fact that the prior expected
value of λ is:

E[λ] =
α

β
.

Thus, by assessing a prior point estimate for λ, de-
noted λπ, the parameter α is typically chosen so that:

α = λπβ.

If the parameter uncertainty is taken into account,
the resulting distribution for N(t), referred to as the
prior predictive distribution, becomes:

P (N(t) = n) =
Γ(α+ n)

Γ(α)Γ(n+ 1)
(1− t

β + t
)α(

t

β + t
)n,

for n = 0,1,2, . . .. If α is a non-negative integer, this
distribution is called the negative binomial distribu-
tion. Moreover, by inserting t= 1 into this expression,
we obtain:

P (Nk = n) =
Γ(α+ n)

Γ(α)Γ(n+ 1)
(1− 1

β + 1
)α(

1

β + 1
)n,

for n = 0,1,2, . . . and k = 1,2, . . ..
As one gets observations from the Poisson process,

the prior uncertainty about λ has to be updated using
Bayes’ theorem. See e.g., (Berger 2010). In particu-
lar, if we have observed the process in τ units of time,



during which we have recorded ν events, then the re-
sulting uncertainty distribution, referred to as the pos-
terior distribution is:

π(λ|τ, ν) =
(β + τ)α+ν

Γ(α+ ν)
λα+ν−1e−(β+τ)λ, λ > 0.

For simplicity we denote posterior distribution by π′,
and we observe that this can be written as:

π′(λ) =
β′α

′

Γ(α′)
λα

′−1e−β
′λ, λ > 0.

Thus the posterior distribution is another Gamma dis-
tribution with parameters α′ = α + ν and β′ = β +
τ . Furthermore, the posterior predictive distribution,
i.e., the distribution for N(t) given τ and ν has the
same form as the prior predictive distribution, except
that α is replaced by α′ and β is replaced by β′.

In the following subsections we will use compound
Poisson processes with gamma priors for both the in-
cident database model and the risk factor model, and
we will show how these models can be fitted using the
available information.

2.2 The incident database model

The incident database model is fitted by using data
from incidents that have occurred. Thus, we assume
that we have observed the event process for a pe-
riod of τ units of time. In this period we have ob-
served ν events. For each of these events we have
also recorded their resulting consequences, denoted
X1, . . . ,Xν respectively. We then consider the num-
ber of events in an upcoming period of length 1 year,
denoted NI , where the subscript I indicates that we
are considering the incident database model. For a
given λI , NI ∼ Po(λI). Moreover, we assume that
λI ∼ Gamma(αI , βI). Using the results from Subsec-
tion 2.1, we then get that the posterior predictive dis-
tribution for NI is given by:

P (NI = n) =
Γ(α′I + n)

Γ(α′I)Γ(n+ 1)
(1− 1

β′I + 1
)α

′
I (

1

β′I + 1
)n,

where α′I = αI + ν and β′I = βI + τ .

Using the observed consequences, X1, . . . ,Xν we
can fit a consequence distribution for the incident
database model, denoted FI . This can of course be
done in many different ways ranging from a purely
non-parametric approach using the empirical cumula-
tive distribution to fitting various types of parametric
distributions. In this context we have chosen to fit a
lognormal distribution with mean value ξI and stan-
dard deviation σI , where ξI and σI are estimated us-
ing the observed sample mean and standard deviation
from the given consequence data.

The distribution of the resulting accumulated con-
sequences from the incident database model can now

easily be estimated using Monte Carlo simulation. In
each iteration we start out by sampling the number of
events using the posterior predictive distribution for
NI . This can be done directly using the above de-
rived distribution. Alternatively, the sampling can be
done in two steps: In the first step λI is sampled from
the posterior distribution, i.e., Gamma(α′I , β

′
I). Then

in the second step NI is sampled from the Poisson
distribuion given the sampled value of λI .

Having sampled NI , we then proceed by sampling
NI variables from the fitted consequence distribution,
FI , and add up the results.

2.3 The risk factor model

One of the reasons for including subjectively assessed
operational risks in the calculation is the relatively
short history of relevant incidents. Moreover, recent
changes in both internal and external conditions may
significantly change the various risk factors and even
introduce new and completely unknown factors. Such
changes will tyically not be represented in the in-
cident database. As a result, the observed incidents
alone may give an acceptable description of the im-
pact distribution’s body, but are in many cases not suf-
ficient to describe the tail.

Through the use of a panel of experts a list of r
potential operational risk factors is identified. A com-
mon approach to risk factor modelling is to assess the
probability that the risk factor occurs within a unit of
time, say a year. A weakness with this approach is that
it does not allow repeated events within the same unit
of time. In order to avoid this problem, and allow the
risk factor to occur more than once, we prefer to use
a Poisson model. That is, we assume that the number
of occurrences of the risk factor within a unit of time
is Poisson distributed with a suitable rate. In particu-
lar we let λs denote the rate parameter per year for the
sth risk factor, and letNs denote the number of events
in this period from the sth process s = 1, . . . , r.

Note that this implies that P (Ns = 0) = e−λs . If λs
is small, it follows by a Taylor expansion that P (Ns =
0)≈ 1−λs, and hence, P (Ns > 0)≈ λs. If λs is small
then we also have P (Ns > 0) ≈ P (Ns = 1). Thus, in
such cases the difference between a Poisson model
and a binary model is small, and the rate of the Pois-
son model is close to the probability that the risk fac-
tor occurs in the binary model.

As for the incident database model, we consider
events in an upcoming period of length 1 year. The to-
tal number of events from all processes, denoted NR

is then:

NR =
r∑
s=1

Ns.

Given the rates for the individual processes,
λ1, . . . , λs, it is a well known property of Poisson
processes that NR has a Poisson distribution as well.



More specifically, NR ∼ Po(λR), where:

λR =
r∑
s=1

λs.

The expert panel then assesses priors to each
rate, and we assume that λs ∼ Gamma(αs, βs), s =
1, . . . , r. We recall that the βs-parameters can be in-
terpreted as a measure of the strength of the prior
knowledge. In this context it is convenient to assume
that these parameters are equal for all the r risk fac-
tors. Thus, letting βR denote this common value, we
assume that βs = βR, s = 1, . . . , r. We also introduce:

αR =
r∑
s=1

αs. (5)

Assuming that all the rates of the r processes are
stochastically independent apriori, it is easy to show
that the total rate λR is Gamma distributed as well.
More specifically, λR ∼ Gamma(αR, βR).

For each risk factor the expert panel assesses the
mean value and standard deviation of the resulting
consequences. The mean and standard deviation of
the sth risk factor are denoted ξs and σs respectively,
s = 1, . . . , r.

Now, assume that we know that there has been an
event related to one of the risk factors. However, the
actual risk factor that caused this event is unknown.
We denote the unknown index of this risk factor by S,
and the resulting consequence by XR. Then, it can be
shown that:

P (S = s) =
αs∑r
i=1αi

=
αs
αR

, s = 1, . . . , r.

By the assumptions on the consequence distributions
it follows that for s = 1, . . . , r:

E[XR|S = s] = ξs,

Var[XR|S = s] = σ2
s .

Using elementary probability theory it is the easy to
find the unconditional mean and variance of XR, de-
noted respectively ξR and σ2

R:

ξR = E[XR] =

∑r
s=1 ξsαs
αR

, (6)

σ2
R = Var[XR] =

∑r
s=1(ξ

2
s + σ2

s)αs
αR

− ξ2R. (7)

As a combined consequence distribution for all the
risk factors in the risk factor model we simply use a
lognormal distribution with mean value ξR and stan-
dard deviation σR. We denote this distribution by FR.
The distribution of the resulting accumulated conse-
quences from the risk factor model can then easily be
estimated using Monte Carlo simulation in exactly the
same way as for the incident database model.

3 THE COMBINED MODEL

In this section we turn to the problem of combin-
ing the incident database model and the risk factor
model. In order to do so we will consider three differ-
ent cases.

3.1 No overlap between the models

In the first case we assume that the sets of events cov-
ered by the two models do not overlap at all. Thus,
when combining the two, we have to add the accumu-
lated consequences from both models. However, the
assumption that there is no overlap, also implies that
during the period we have recorded events, none of
these events could be related to any of the risk fac-
tors included in the risk factor model. This means that
the recorded consequences does not contain any rel-
evant information about the risk factor consequence
distribution. Thus, there is no reason to change this in
the simulations. The event generating process, how-
ever, needs to be updated as a result of this, which is
easily done using the methodology introduced in Sub-
section 2.1. With zero observed events over a period
of length τ , the posterior distribution for λR becomes
another Gamma distribution with updated parameters
α′R = αR and β′R = βR + τ .

The distribution of the resulting accumulated con-
sequences from the combined model can again eas-
ily be estimated using Monte Carlo simulation. With
no overlap between the models we generate NI and
NR from their respective posterior predictive distri-
butions. Then we generate NI consequences from FI
andNR consequences from FR and add all the results.

3.2 Full overlap between the models

In the second case we assume that the set of events
covered by the two models overlap completely. Thus,
all the observed incidents are actually events of the
kinds included in the risk factor model. Thus, a com-
bined model should be obtained by updating the risk
factor model using all the incident data. With ν ob-
served events over a period of length τ , the poste-
rior distribution for λR becomes another Gamma dis-
tribution with updated parameters α′R = αR + ν and
β′R = βR + τ .

Concerning the consequence distribution for the
combined model this is derived by updating the con-
sequence distribution for the risk factor model, FR,
according to the observed consequences. The up-
dated consequence distribution is denoted F ′R. There
are many ways of doing this ranging from stringent
Bayesian methods to more ad hoc procedures. Here
we take a simple weighted approach, where we re-
place the mean and the standard deviation of the FR



by:

ξ′R = cξI + (1− c)ξR, (8)

σ′R = cσI + (1− c)σR, (9)

where c ∈ (0,1) is a suitable weight factor. As we
have pointed out already, the αR-parameter can be in-
terpreted as a measure of the number of observations
underlying the prior knowledge, while ν is the num-
ber of real observations. The weight factor should bal-
ance the strengths of these two sources. Hence, we
propose the following weight factor:

c =
ν

αR + ν
.

The distribution of the resulting accumulated con-
sequences from the combined model is once again es-
timated using Monte Carlo simulation. With full over-
lap between the models, there is just one compound
process combining the two models. Thus, we gener-
ate NR from the posterior predictive distribution with
the parameters α′R and β′R. Then we generateNR con-
sequences from F ′R and add all the results.

3.3 Partial overlap between the models

In the third case we assume, perhaps more realisti-
cally, that some of the observed incidents are actually
events of the kinds included in the risk factor model
while the others are not. Thus, we partition the ν ob-
servations into two disjoint sets such that νR is the size
of the set of events included in the risk factor model,
while νI = ν − νR is the the size of the set of events
not included in this model. The partitioning can be
done in many different ways depending on how easy
it is to identify events as being included among the
risk factors. Ideally, this can be done without any un-
certainty, in which case we easily obtain two clearly
separated groups. In more realistic cases, however, it
may be difficult to distinguish between the different
types of events. Still it may be possible to assess the
numbers νR and νI , and then simply create a random
partition such that the two sets get their desired sizes.

Assuming that we have obtained the desired parti-
tion one way or the other, the remaining part of the
procedure is a combination of the first two cases. The
incident part of the model now consists of data from
the νI events. As before NI is sampled from its poste-
rior predictive distribution. However, in this case the
parameters of this distribution become α′I = αI + νI
and β′I = βI + τ . Moreover, the parameters of conse-
quence distribution is estimated based on the conse-
quences of the νI events. We denote these parameters
by ξII and σII .

The risk factor part of the model is constructed sim-
ilarly to the full overlap case. However, in this case
only νR observations are used in the updating. Thus,
the parameters of the Gamma distribution for the rate

become α′R = αR + νR and β′R = βR + τ . Moreover,
the parameters of the consequence distribution are:

ξ′R = cξIR + (1− c)ξR, (10)

σ′R = cσIR + (1− c)σR, (11)

where ξIR and σIR are estimated based on the con-
sequences of the νR events, and the weight factor is
given by:

c =
νR

αR + νR
.

The distribution of the resulting accumulated con-
sequences from the combined model is estimated us-
ing Monte Carlo simulation. Here we generateNI and
NR from their respective posterior predictive distribu-
tions, and then generate and add consequences from
their respective consequence distributions.

Note that the partial overlap model has the other
two models as limiting cases. If we let νR = ν, we get
the full overlap model, while if we let νR = 0, we get
the no overlap model.

4 A NUMERICAL EXAMPLE

In this section we illustrate the proposed methods by
considering a numerical example1. In this example
the incident database consists of data from a period
of τ = 5 years. During this period ν = 460 incidents
are recorded. The prior uncertainty about the rate λI
is modelled as a Gamma distribution with parameters
αI and βI . To avoid that the prior affects the results
significantly, we use a relatively vague prior. That is,
we let αI and βI be small numbers. More specifically,
we let αI = βI = 0.01. The posterior distribution for
λI then becomes a Gamma distribution with parame-
ters α′I = αI + ν = 460.01 and β′I = βI + τ = 5.01.
Thus, the posterior mean of λI is:

E[λI |ν, τ ] =
α′I
β′I

=
460.01

5.01
= 91.818.

Using the consequences from the 460 incidents, we
estimate the mean and standard deviation of the con-
sequence distribution, and get that ξI = 2.176 while
σI = 8.614.

In the risk factor model a set of 30 risk factors are
included. Their respective parameters are shown in
Table 1. In the table the ratio αs/βs, i.e., the prior
mean value of λs, is given for each of the risk factors.
In order to obtain the value of αs, this ratio has to be
multiplied with βs. As in the previous section we as-
sume that βs = βR, s = 1, . . . ,30. In the base case we
let βR = 0.2. However, in the analysis we will vary

1All the incident data and risk factors used in the example are
fictive. Moreover, for simplicity we have skipped the monetary
unit throughout the paper.



Table 1: Risk factor model parameters

s αs/βs ξs σs s αs/βs ξs σs
1 0.1 136 34 16 0.2 72 18
2 0.1 124 31 17 0.1 72 18
3 0.1 120 30 18 0.2 72 18
4 0.2 112 28 19 0.2 60 15
5 0.2 108 27 20 0.1 60 15
6 0.1 96 24 21 0.1 56 14
7 0.1 96 24 22 0.2 52 13
8 0.1 96 24 23 0.1 52 13
9 0.2 80 20 24 0.3 48 12

10 0.3 80 20 25 0.3 48 12
11 0.1 80 20 26 0.3 44 11
12 0.1 80 20 27 0.3 44 11
13 0.2 76 19 28 0.3 40 10
14 0.2 76 19 29 0.3 40 10
15 0.1 76 19 30 0.2 36 9

this in order to study how this parameter affects the
results.

Using (5), (6) and (7) we then obtain αR = 1.080,
ξR = 37.926 and σR = 49.576. The prior mean of λR
is:

E[λR] =
αR
βR

=
1.080

0.2
= 5.40.

We start out by considering the no overlap model.
In this case the parameters of the posterior distribution
for λR are α′R = αR = 1.080 and β′R = βR + τ = 0.2 +
5 = 5.2. Hence, the posterior mean of λR is:

E[λR|ν, τ ] =
α′R
β′R

=
1.080

5.2
= 0.208.

We observe that the mean value of λR is reduced con-
siderably (from 5.40 to 0.208) as a result of observing
the process in τ = 5 years without any of the risk fac-
tor events occurring.

We then turn to the full overlap model. In this
case the parameters of the posterior distribution for
λR are α′R = αR + ν = 1.080 + 460 = 461.080 and
β′R = βR + τ = 0.2 + 5 = 5.2. Hence, the posterior
mean of λR is:

E[λR|ν, τ ] =
α′R
β′R

=
461.080

5.2
= 88.669.

Thus, in this case the mean value of λR is increased
considerably (from 5.40 to 88.669) as a result of ob-
serving the process in τ = 5 years with as many as
460 of the risk factor events occurring.

With a full overlap, however, we also need to up-
date the consequence distribution using the 460 ob-
served consequences. The weight factor, c, is:

c =
ν

αR + ν
=

460

1.080 + 460
= 0.998.

We observe that the weight factor c is relatively high.
As a result when updating the mean value and the
standard deviation of the consequence distribution, a

lot of weight is put on the observed data and less
weight is put on the assessments from the expert
panel. Thus, using (8) and (9), we get:

ξ′R = cξI + (1− c)ξR = 2.260,

σ′R = cσI + (1− c)σR = 8.710.

Thus, both the mean value and the standard deviation
is reduced considerably as a result of the updating.

We recall that main purpose of including the risk
factor model is to obtain a better estimate of the
tail of the accumulated consequence distribution. If
we adopt the full overlap model, this effect is re-
duced considerably since the risk factor consequnce
distribution is strongly drawn towards the incident
database consequnce distribution. Typically, the inci-
dent databse will include a lot of minor events with
small consequences. Such events are not likely to con-
tain relevant information about the risk factors. Thus,
this model tends to put far to much weight on the con-
sequences of the events in the incident database.

On the other hand, if the no overlap model is
adopted, the mean value of the occurence rate λR is
reduced since according to this model no risk factor
events occurred during the observation period. This is
likely not a realistic scenario either.

The partial overlap model, however, tries to balance
these issues by using some but not all the incident data
to update the occurrence rate uncertainty and the con-
sequence distribution. In order to choose the set of
incident data likely to be relevant to the risk factor
distribution, we observe that the consequences associ-
ated with the risk factors typically are high compared
to the consequences in the incident database. Thus,
when selecting incident data relevant to the risk fac-
tors, we use a random criterion where the probabil-
ity of being selected increases by the size of the con-
sequence. More specifically, denoting the probability
that the ith incident is selected by pi, we let:

pi = 1− e−ρXi , i = 1, . . . , ν,

where ρ is a suitable constant. We observe that pi is an
increasing function of ρ. Hence, a high value of ρ im-
plies that a lot of the incidents will be selected, while
a small value of ρ implies that only a few incidents
will be selected. Note, however, that the choice of ρ
depends strongly on the scale of the consequences.
Converting the monetary consequences e.g., between
different currencies implies that ρ must be changed
accordingly. In order to choose a value for ρ it may
be easier to start out by assessing the number νR, i.e.,
the number of incidents used to update the risk factor
model, and then adjust ρ so that the resulting num-
ber of selected incidents is close to ν. In this exam-
ple it was assessed that about a third of the incidents
should be selected. In order to accomplish this we
used ρ = 0.5.



As a result of the random selection, we obtained
that νI = 292 and νR = 168. The updated parameters
for the rate distributions then become

α′I = αI + νI = 0.01 + 292 = 292.01,

β′I = βI + τ = 0.01 + 5 = 5.01,

α′R = αR + νR = 1.080 + 168 = 169.080,

β′R = βR + τ = 0.20 + 5 = 5.20.

The parameters of the consequence distributions
are estimated for the two sets of incidents, and we
get ξII = 0.499, σII = 0.603, ξIR = 5.092 and σIR =
13.778.

Finally, we calculate the weight factor c:

c =
νR

αR + νR
=

168

1.080 + 168
= 0.994.

Then using (10) and (11) we get the updated parame-
ters for the risk factor consequence distribution:

ξ′R = cξIR + (1− c)ξR = 5.302,

σ′R = cσIR + (1− c)σR = 14.007.

Before we run a Monte Carlo simulation using all
these parameters, it is of interest to calculate the mean
and the standard deviations of the total accumulated
consequences using the three models. This is easily
done analytically using (2) and (3).

Table 2: Mean and standard deviations for the three models for
the case when βR = 0.2

No overlap Full overlap Partial overlap
Mean 207.674 200.369 201.472
St.dev. 89.761 84.732 85.608

We observe that the no overlap model has the
largest mean and standard deviation, while the full
overlap model has the smallest mean and standard
deviation. Not surprisingly, the partial overlap model
places itself between the two extremes. The same ten-
dency can be seen when running a simulation on the
three models. The results of this simulation, consist-
ing of 100000 iterations, is shown in Figure 1.

The estimated cumulative distribution curve for the
no overlap model lies slightly more to the right com-
pared to the other models. However, the difference is
almost neglectable. Thus, for the parameters used in
this case, the potential overlap between the incident
database and the risk factors does not have a signifi-
cant effect on the results. One of the reasons for this
is that relatively small weights are put on the prior for
λR. That is, the parameter βR, which we interpret as a
measure of the strength of the prior knowledge about

Figure 1: Estimated cumulative distributions for the accumu-
lated consequences using the no overlap model (red curve), full
overlap model (green curve) and the partial overlap model (blue
curve), βR = 0.2.

λR, is modest. This assessment reflects that experts
often find it difficult to assess the rate parameter in a
compound Poisson process. In order to study in more
detail how βR affects the results, we repeat the calcu-
lations for βR = 0.5 and βR = 1.0 as well. The result-
ing mean and standard deviations for the three models
are shown in Table 3 and Table 4 respectively, while
the estimated cumulative distributions for the models
are shown in Figure 2 and Figure 3 respectively. We
observe that the results for the full overlap model are
almost the same for all three values of βR, while both
the mean and the standard deviation for the no over-
lap model increases as βR increases. The results for
the partial overlap model are in between the two ex-
tremes, but closer to the full overlap model.

As already indicated, a high βR-value implies that
more weight is put on the prior estimate of the rate of
the risk factor model. For the no overlap model one
effect of a change of βR from 0.2 to 1.0 is that the
posterior mean rate E[λR|ν, τ ] increases from 0.208 to
0.900. On the other hand, for the full overlap model a
change in βR from 0.2 to 1.0 implies that the posterior
mean rate E[λR|ν, τ ] decreases from 88.67 to 77.57.
At the same time we recall that the αs-parameters are
not assessed directly. Thus, changes in the value of
βR also affects the values of the αs-parameters, and
hence also the αR-parameter. More specifically, the
increase in βR also results in an increase in αR from
1.080 to 5.400. Hence, the weight factor c is reduced
from 0.998 to 0.988. From this it follows that ξ′R and
σ′R grows. The total effect of this is that the change in
the mean and standard deviation of the total accumu-
lated consequences is virtually neglectable.

This analysis shows the effect of putting more
weight on the prior estimate of the rate of the risk fac-
tor model. As βR increases, the model becomes more
sensitive to changes in the overlap conditions. Thus, it
becomes more important to have more precise knowl-
edge about the degree of overlap. In a real-life appli-
cation, however, the value of βR is more likely to be



small in which case the model is robust with respect to
variations in the overlap conditions. Moreover, even
for slightly higher βR-values, the results of the three
models are not that different.

Table 3: Mean and standard deviations for the three models for
the case when βR = 0.5

No overlap Full overlap Partial overlap
Mean 218.415 200.611 203.240
St.dev. 95.710 84.095 86.017

Figure 2: Estimated cumulative distributions for the accumu-
lated consequences using the no overlap model (red curve), full
overlap model (green curve) and the partial overlap model (blue
curve), βR = 0.5.

Table 4: Mean and standard deviations for the three models for
the case when βR = 1.0

No overlap Full overlap Partial overlap
Mean 233.930 200.960 205.794
St.dev. 103.703 83.240 86.753

Figure 3: Estimated cumulative distributions for the accumu-
lated consequences using the no overlap model (red curve), full
overlap model (green curve) and the partial overlap model (blue
curve), βR = 1.0.

5 CONCLUSIONS

In the present paper we have studied how one can
combine incident data with subjective assements. A
very important issue in relation to this is the degree
of overlap between these two sources of information.
The models we have proposed cover the full range
from no overlap to full overlap. In the case of no over-
lap the consequence data for the incidents is irrele-
vant with respect to the consequence distribution for
the risk factors. Still having observed the processes a
number of years without recording any events related
to the risk factors, is vital information which need to
be taken into account. In the case of full overlap the
incident data is used both to update the rate distribu-
tion and the consequence distribution.

The main focus of this paper has been on the rates
of occurrence of the various risk factors, and how this
can be updated in a consistent way. Far less empha-
sis has been put on how to fit and update the con-
sequence distributions. We have used a very simple
model where lognormal distributions are used both
for incidents and for the sum of the risk factors. More-
over, for the combined model we also use a lognormal
distribution where the parameters are determined by
simple weighted averages. In a more refined model,
one may need to consider a wider variety of distribu-
tion classes, including non-parametric distributions.
For the risk factors a more flexible approach could
include the fitting of specific distributions for each
individual risk factor. Finally, in order to combine
all distributions, a full scale Bayesian updating ap-
proach should be developed. All these issues will be
addressed in an upcoming paper.

Still, despite these shortcomings, the proposed
model, in all its simplicity, contains the most impor-
tant features, and thus enables the analyst to obtain
useful results.
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