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Abstract

We propose a new framework for modelling repairable multistate systems emphasis-
ing physical properties of components and systems. The Birnbaum measure is gener-
alised and characterised along two axes: forward-looking versus backward-looking, and
with respect to how criticality is measured. Forward-looking importance measures focus
on the next component states: The most important component has the highest prob-
ability of changing the system state. Backward-looking importance measures focus on
the previous component states: The most important component has the highest prob-
ability of having changed the system state. Moreover, two approaches to measuring
criticality are considered: probability of criticality versus impact of criticality. Exam-
ples show that the chosen importance measure affects the ranking of the components.
Both periodic life cycles as more general semi-Markov processes are considered.

System reliability; Repairable multistate systems; Importance measures

1 Introduction

One of the main problems in reliability theory is to find out how the reliability of a complex
system can be determined from knowledge of the reliabilities of its components. A weakness
of traditional binary reliability theory is that the system and the components are always
described just as functioning or failed. This approach often represents an oversimplification
in real-life situations where the system and their components are capable of assuming a
whole range of levels of performance, varying from perfect functioning to complete failure.

Basic reliability theory for multistate systems was established in the mid 1980s, and
has been developed continuously. In particular, many different tools for analysing the
importance of components in multistate systems have been developed. There are two main
reasons calculating importance of components in a system. Firstly, it permits the analyst
to determine which components merit the most additional research and development to
improve overall system reliability at minimum cost or effort. Secondly, it may be used in
diagnostics as a way of generating a list of components ordered with respect to how likely
they are to have caused the system failure.

It should be noted that no measure of importance can be expected to be universally
best irrespective of usage purpose. Still comparing different measures is often of interest.
The classical approaches to importance measures include Birnbaum, Barlow-Proschan and
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Natvig measures of component importance, including the dual extensions of the latter mea-
sures. The measures are treated in details in Huseby and Natvig (2010), Huseby and Natvig
(2012), Natvig and G̊asemyr (2009), Natvig (2011a), Natvig (2011b), Natvig et al. (2011).
Furthermore, a number of applications have been proposed, e.g in Natvig et al. (2009) the
extended Natvig measure is applied to an offshore oil and gas production system. In par-
ticular, the Birnbaum measure of component importance provides a dynamic approach to
determining importance of the components in the system. The Birnbaum measure of a given
component is defined as the probability that such component is critical to the functioning
of the system. Furthermore, time-independent Barlow-Proschan measure of importance can
be expressed as a weighted average of the Birnbaum measure with respect to the compo-
nent lifetime densities. The Barlow-Proschan measure implies that components with long
lifetimes compared to the system lifetime will have a large reliability importance. An al-
ternative measure can be defined by instead focussing on components which greatly reduce
the remaining system lifetime by failing. This is reflected by the Natvig measures.

Recent work in this area includes generalisations of some well-established binary mea-
sures of component importance to multistate repairable systems. Importance measures of
components in a multistate system have been studied from some new perspectives based
on various real-life situations. E.g., a cost-based importance measure, as an extension of
Birnbaum measure has been proposed in Wu and Coolen (2013). It is pointed out that ex-
isting importance measures have paid little attention to the costs incurred by maintaining a
system and its components. This paper considers costs of improving component reliability,
costs due to component failure and cost of system failure, and provides possible extensions
and applications of importance measures.

Si et al. (2013) introduces an importance measure for multistate systems which is used to
identify weak components which affect the reliability of a system. Traditionally, importance
measures do not consider how transition rates between different component states may affect
the system. The paper describe in which state a component should be kept in order to ensure
a desired level of system performance. An application to an oil transportation system is
presented to illustrate how the suggested importance measure can be used.

Finally, Wu et al. (2016) introduces a component maintenance priority measure. Per-
forming preventive maintenance on a component in a system may affect system availability.
To avoid such a reduction on availability, one may adopt the following method: if a com-
ponent fails, preventive maintenance is carried out on a number of the other components
while the failed component is being repaired. The importance measure can be used to select
components for the preventive maintenance.

In the present paper we propose a new framework for modelling repairable multistate
systems emphasising physical properties of components and systems. Within this frame-
work we suggest four different generalisations of the classical Birnbaum measure. All these
are true generalisations in the sense that they are reduced to the classical measure in
the binary case. The measures are characterised along two axes: forward-looking versus
backward-looking, and with respect to how criticality is measured. Forward-looking impor-
tance measures focus on the next component states. According to this approach the most
important component is the one that has the highest probability of changing the system
state. Backward-looking importance measures focus on the previous component states: Ac-
cording to this approach the most important component is the one that has the highest
probability of having changed the system state. Furthermore, two approaches to measuring
criticality are considered: probability of criticality versus impact of criticality.

In the first sections of the paper each component follows periodic life cycles, starting out
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in the top state, and then transiting through the lower states until they fail. Then they are
repaired or replaced, and a new life cycle starts. In the second part of the paper the life
cycles of the components are modelled using general semi-Markov processes.

2 Binary systems

Before we introduce a framework for multistate systems, we review some basic concepts
from the binary case. Assume that (C, φ) is a binary system, where C = {1, . . . , n} is the
component set, and φ is the structure function. Moreover, let X(t) = (X1(t), . . . , Xn(t))
where Xi(t) represents the state of component i ∈ C at time t. Thus, Xi(t) = 1 if component
i is functioning at time t, and zero otherwise. We assume that all the components start out
as functioning. When a component fails, it is either repaired back to its functioning state
or replaced by a new component, and a new life cycle begins.

The structure function φ = φ(X(t)) represents the state of the system at time t. That
is, φ(X(t)) = 1 if the system is functioning at time t, and zero otherwise. According to
standard conventions from reliability theory, the notation φ(xi,X) is interpreted as:

φ(xi,X) = φ(X1, . . . , Xi−1, xi, Xi+1, . . . , Xn).

In cases where the index i is obvious from the context, we simply write φ(x,X).

A component, i ∈ C, is said to be critical for the system at time t if:

φ(0i,X(t)) 6= φ(1i,X(t)). (2.1)

The condition Eq. (2.1) can be rewritten in a way that makes it easy to extend it to mul-
tistate systems. We let X+

i (t) and X−i (t) denote respectively the next and previous state
of component i, i = 1, . . . , n. Obviously, in a binary system each component only has two
possible states. Thus, in such cases we must have:

X+
i (t) = X−i (t) =

{
0 for Xi(t) = 1

1 for Xi(t) = 0
(2.2)

In systems where the components may have more than two states, however, we typically
have that X+

i (t) 6= X−i (t). Using the above notation, we may write Eq. (2.1) as:

φ(Xi(t),X(t)) 6= φ(X+
i (t),X(t)). (2.3)

or alternatively:
φ(X−i (t),X(t)) 6= φ(Xi(t),X(t)). (2.4)

Hence, component i is critical at time t if changing the component to its next state would
result in a system state change as well. Alternatively, component i is critical at time t if
changing the component to its previous state would result in a system state change as well.

According to Birnbaum (1969) the Birnbaum measure of importance of component i ∈ C
at time t, denoted I

(i)
B (t), is the probability that the component is critical at time t. Using

Eq. (2.3) or Eq. (2.4) this implies that we have:

I
(i)
B (t) = P [φ(Xi(t),X(t)) 6= φ(X+

i (t),X(t))] (2.5)

= P [φ(X−i (t),X(t)) 6= φ(Xi(t),X(t))]
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3 Multistate systems

For an extensive introduction to multistate systems we refer to Natvig (2011a). In the
present paper we define a multistate system similar to a binary system as an ordered pair
(C, φ), where C = {1, . . . , n} is the component set, and φ is the structure function. More-
over, we let X(t) = (X1(t), . . . , Xn(t)) where Xi(t) is the state variable of component i at
time t. Contrary to a binary system, however, both the components and the system may
be in multiple states (not just 0 and 1). More specifically, if i ∈ C, we let Si = {0, 1, . . . , ri}
denote the set of states for component i.

We assume that each component starts out by being in its top-level state, i.e., state ri for
component i. Then at random points of time the component transits downwards through
the state set until it reaches state 0. At this stage the component is repaired or replaced
by a new component, and a new life cycle starts. In Section 4 we consider more general
semi-Markov processes.

For each component i ∈ C we also introduce a function fi : Si → R representing the
physical state of the component as a function of the state. Thus, if Xi(t) = xi ∈ Si, then
the physical state of component i at time t is fi(Xi(t)) = fi(xi). If e.g., component i is
a pipeline, then the physical state of the component at a given point of time may be the
capacity of the pipeline at this point of time. Being a physical property of the pipeline,
this may be any non-negative number, and the function fi provides a convenient way of
encoding this directly into the model.

Note that the functions f1, . . . , fn do not necessary need to be nondecreasing. By avoid-
ing this restriction additional useful modeling flexibility is gained. This allows e.g., for
the inclusion of burn-in phases, maintenance as well as minimal or partial repairs of a
components as part of its life cycle before it reaches its failure state.

The structure function φ represents the state of the system expressed as a function of
the states of the components. It is common in multistate reliability theory to assume that
φ also assumes values in a set of non-negative integers. In this context, however, we let the
structure function represent the physical state of the system and that:

φ(X(t)) = φ(f1(X1(t)), . . . , fn(Xn(t)))

Thus, the physical state of the system is a function of the physical states of the components.
The advantage with this approach is that the system state is expressed in terms of physical
quantities rather than being encoded more abstractly as non-negative integers.

3.1 Criticality and importance in multistate systems

In order to extend the definition of criticality and importance we consider a multistate sys-
tem (C, φ). Let i ∈ C, and let Si = {0, 1, . . . , ri} be the set of states for this component. We
then introduce X+

i (t) and X−i (t) as respectively the next and previous state of component
i, i = 1, . . . , n. With more than two possible states for each component, the mathematical
expressions for X+

i (t) and X−i (t) are different. More specifically, we have:

X+
i (t) =

{
Xi(t)− 1 for Xi(t) > 0

ri for Xi(t) = 0

X−i (t) =

{
Xi(t) + 1 for Xi(t) < ri

0 for Xi(t) = ri
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Based on X+
i (t) and X−i (t) we introduce two notions of criticality. We say that component

i is n-critical at time t if:

φ(Xi(t),X(t)) 6= φ(X+
i (t),X(t)). (3.1)

Hence, component i is n-critical at time t if changing the component to its next state would
result in a system state change as well. Similarly we say that component i is p-critical at
time t if:

φ(X−i (t),X(t)) 6= φ(Xi(t),X(t)). (3.2)

Hence, component i is p-critical at time t if changing the component to its previous state
would result in a system state change as well.

We then proceed by introducing two possible generalisations of the Birnbaum measure
to multistate systems. We define the n-Birnbaum measure of importance of component

i at time t, denoted I
(i)
NB(t), as the probability that the component is n-critical at time

t. Similarly, we define the p-Birnbaum measure of importance of component i at time t,

denoted I
(i)
PB(t), as the probability that the component is p-critical at time t. Hence, using

Eq. (3.1) and Eq. (3.2) we get:

I
(i)
NB(t) = P [φ(Xi(t),X(t)) 6= φ(X+

i (t),X(t))], (3.3)

I
(i)
PB(t) = P [φ(X−i (t),X(t)) 6= φ(Xi(t),X(t))]. (3.4)

Note that by Eq. (2.2) it follows that I
(i)
NB(t) = I

(i)
PB(t) = I

(i)
B (t) in the binary case. In the

multistate case, however, we may have I
(i)
NB(t) 6= I

(i)
PB(t). In order to take a closer look at

the difference between the two importance measures, we rewrite the expressions Eq. (3.3)
and Eq. (3.4) by conditioning on the state of component i and get:

I
(i)
NB(t) =

ri∑
u=1

P [φ(u,X(t)) 6= φ(u− 1,X(t))] · P [Xi(t) = u] (3.5)

+ P [φ(0,X(t)) 6= φ(ri,X(t))] · P [Xi(t) = 0]

I
(i)
PB(t) =

ri−1∑
u=0

P [φ(u+ 1,X(t)) 6= φ(u,X(t))] · P [Xi(t) = u] (3.6)

+ P [φ(0,X(t)) 6= φ(ri,X(t))] · P [Xi(t) = ri]

Changing the summation index in Eq. (3.6) this expression becomes:

I
(i)
PB(t) =

ri∑
u=1

P [φ(u,X(t)) 6= φ(u− 1,X(t))] · P [Xi(t) = u− 1] (3.7)

+ P [φ(0,X(t)) 6= φ(ri,X(t))] · P [Xi(t) = ri]

Comparing Eq. (3.5) and Eq. (3.7) we observe that P [Xi(t) = u] in Eq. (3.5) is replaced by
P [Xi(t) = u− 1] in Eq. (3.7), u = 1, . . . , ri. Moreover, P [Xi(t) = 0] in Eq. (3.5) is replaced
by P [Xi(t) = ri] in Eq. (3.7). From this it follows that if P [Xi(t) = 0] = P [Xi(t) = 1] =

· · · = P [Xi(t) = ri], we will have I
(i)
NB(t) = I

(i)
PB(t). In general, however, the two importance

measures will be different.
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Example 3.1 We consider a multistate system (C, φ) where C = {1, 2}. Both components
have three possible states, 0, 1, 2. For simplicity, we assume that these states are identical to
the physical states, i.e., fi(u) = u, u = 0, 1, 2 and i = 1, 2. Moreover, the structure function
is given by:

φ(X1(t), X2(t)) = min(f1(X1(t)), f2(X2(t))).

For a given t we assume that P [X1(t) = u] = pu and P [X2(t) = u] = qu, u = 0, 1, 2. It is
then easy to see that:

P [φ(0, X2(t)) 6= φ(2, X2(t))] = q1 + q2,

P [φ(1, X2(t)) 6= φ(0, X2(t))] = q1 + q2,

P [φ(2, X2(t)) 6= φ(1, X2(t))] = q2,

P [φ(X1(t), 0) 6= φ(X1(t), 2)] = p1 + p2,

P [φ(X1(t), 1) 6= φ(X1(t), 0)] = p1 + p2,

P [φ(X1(t), 2) 6= φ(X1(t), 1)] = p2.

Inserting this into Eq. (3.5) and Eq. (3.7) we get after some simplifications that:

I
(1)
NB(t) = q1 + q2 − p2q1,

I
(2)
NB(t) = p1 + p2 − p1q2,

I
(1)
PB(t) = q1 + q2 − p1q1,

I
(2)
PB(t) = p1 + p2 − p1q1.

We observe that I
(1)
PB(t) > I

(2)
PB(t) if and only if q1 + q2 > p1 + p2. However, assuming that

q1 + q2 > p1 + p2 and at the same time choosing p1 < p2 and q1 > q2, it is possible to obtain
the opposite ranking with respect to the n-Birnbaum measure.

Assume e.g., that p1 = 0.20, p2 = 0.35, q1 = 0.40 and q2 = 0.20. We then get I
(1)
NB(t) =

0.46 while I
(2)
NB(t) = 0.51. Furthermore, I

(1)
PB(t) = 0.52 while I

(2)
PB(t) = 0.47. That is,

I
(1)
NB(t) < I

(2)
NB(t) while I

(1)
PB(t) > I

(2)
PB(t) �

Example 3.2 In this example we also consider a multistate system (C, φ) where C = {1, 2},
and where both components have three possible states, 0, 1, 2. As in the previous example we
let f1(u) = u, u = 0, 1, 2. However, in this case we let f2(0) = 0, f2(1) = 2 and f2(2) = 1.
Thus, component 2 starts out in its intermediate physical state 1 before its best physical
state 2 is reached. The structure function is once again:

φ(X1(t), X2(t)) = min(f1(X1(t)), f2(X2(t))),

and for a given t we let P [X1(t) = u] = pu and P [X2(t) = u] = qu, u = 0, 1, 2. We now get:

P [φ(0, X2(t)) 6= φ(2, X2(t))] = q1 + q2,

P [φ(1, X2(t)) 6= φ(0, X2(t))] = q1 + q2,

P [φ(2, X2(t)) 6= φ(1, X2(t))] = q1,

P [φ(X1(t), 0) 6= φ(X1(t), 2)] = p1 + p2,

P [φ(X1(t), 1) 6= φ(X1(t), 0)] = p1 + p2,

P [φ(X1(t), 2) 6= φ(X1(t), 1)] = p2.
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Inserting this into Eq. (3.5) and Eq. (3.7) we get:

I
(1)
NB(t) = q1 + q2 − p2q2,

I
(2)
NB(t) = p1 + p2 − p1q2,

I
(1)
PB(t) = q1 + q2 − p1q2,

I
(2)
PB(t) = p1 + p2 − p1q1.

We now assume that P [f1(X1(t)) = u] = P [f2(X2(t)) = u], u = 0, 1, 2. This implies that
p2 = q1 and p1 = q2. Focussing first on the n-Birnbaum measure, it follows that:

I
(1)
NB(t) > I

(2)
NB(t) if and only if p2 < p1.

Assume more specifically that p2 = q1 = 0.3 and p1 = q2 = 0.4. We then get:

I
(1)
NB(t) = 0.58 and I

(2)
NB(t) = 0.54.

Thus, even though f1(X1(t)) and f2(X2(t)) has the same distribution, and the structure
function is symmetric with respect to f1 and f2, component 1 has higher importance than
component 2 when the n-Birnbaum measure is used. If instead p2 > p1, the ranking is
reversed. Similar results hold for the p-Birnbaum measure �

3.2 Importance based on expected physical criticality

The importance measures introduced so far are based on a binary notion of criticality: either
a component is critical, or it is not critical. At the same time our definition of the structure
function φ is assumed to represent some physical quantity. In this section we utilise this as
a basis for two new importance measures. More specifically, for a given multistate system

(C, φ) we introduce ∆
(i)
N (t) and ∆

(i)
P (t) defined for t > 0 and i ∈ C as:

∆
(i)
N (t) =

∣∣φ(Xi(t),X(t))− φ(X+
i (t),X(t))

∣∣
∆

(i)
P (t) =

∣∣φ(Xi(t)
−,X(t))− φ(Xi(t),X(t))

∣∣
We observe that ∆

(i)
N (t) measures the absolute value of the change in system state as

a result of component i changing from its current state Xi(t) to its next state X+
i (t).

Similarly, ∆
(i)
P (t) measures the absolute value of the change in system state as a result of

component i changing from its previous state X−i (t) to its current state Xi(t).

The n*-Birnbaum measure of importance of component i at time t, denoted I
∗(i)
NB(t), is

defined as the expected value of ∆
(i)
N (t):

I
∗(i)
NB(t) = E

∣∣φ(Xi(t),X(t))− φ(X+
i (t),X(t))

∣∣ . (3.8)

Similarly, the p*-Birnbaum measure of importance of component i at time t, denoted I
∗(i)
NB(t),

is defined as the expected value of ∆
(i)
P (t):

I
∗(i)
PB (t) = E

∣∣φ(X−i (t),X(t))− φ(Xi(t),X(t))
∣∣ . (3.9)
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Note that in the binary case all the different measures are the same:

I
(i)
NB(t) = I

(i)
PB(t) = I

∗(i)
NB(t) = I

∗(i)
PB (t) = I

(i)
B (t).

In order to show how these measures can computed, we expand the expressions Eq. (3.8)
and Eq. (3.9) by conditioning on the state of component i and get:

I
∗(i)
NB(t) =

ri∑
u=1

E|φ(u,X(t))− φ(u− 1,X(t))| · P [Xi(t) = u] (3.10)

+ E|φ(0,X(t))− φ(ri,X(t))| · P [Xi(t) = 0]

I
∗(i)
PB (t) =

ri−1∑
u=0

E|φ(u+ 1,X(t))− φ(u,X(t))| · P [Xi(t) = u] (3.11)

+ E|φ(0,X(t))− φ(ri,X(t))| · P [Xi(t) = ri]

Again we change the summation index in Eq. (3.11) and get:

I
(i)
PB(t) =

ri∑
u=1

E|φ(u,X(t))− φ(u− 1,X(t))| · P [Xi(t) = u− 1] (3.12)

+ E|φ(0,X(t))− φ(ri,X(t))| · P [Xi(t) = ri]

Using the same arguments as in the previous section, it follows that I
(i)
NB(t) = I

(i)
PB(t)

if P [Xi(t) = 0] = P [Xi(t) = 1] = · · · = P [Xi(t) = ri]. In general, however, the two
importance measures will be different.

Example 3.3 Consider a multistate system (C, φ) where C = {1, 2}, and where S1 = {0, 1}
and S2 = {0, 1, 2}. Moreover, we assume that:

f1(u) = 2u, u ∈ S1,
f2(u) = u, u ∈ S2.

As before, the structure function is given by:

φ(X1(t), X2(t)) = min(f1(X1(t)), f2(X2(t))).

Finally, we again assume that the component state processes are independent, and that for
a given t we have:

P [X1(t) = u] = pu > 0, u ∈ S1,
P [X2(t) = u] = qu > 0, u ∈ S2.

Noting that component 1 only have two states, we get:

E|φ(1, X2(t))− φ(0, X2(t))| = E|φ(0, X2(t))− φ(1, X2(t))| = q1 + 2q2

Inserting this into Eq. (3.10) and using that p0 + p1 = 1 we get:

I
∗(1)
NB (t) = (q1 + 2q2)p1 + (q1 + 2q2)p0 = q1 + 2q2
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For component 2 we have:

E|φ(X1(t), 1)− φ(X1(t), 0)| = p1

E|φ(X1(t), 2)− φ(X1(t), 1)| = p1

E|φ(X1(t), 0)− φ(X1(t), 2)| = 2p1

Inserting this into Eq. (3.10) and using that q0 + q1 + q2 = 1 we get:

I
∗(2)
NB (t) = p1q1 + p1q2 + 2p1q0 = (1 + q0)p1

We also have:

E[f1(X1(t))] = 0 · p0 + 2 · p1 = 2p1

E[f2(X2(t))] = 0 · q0 + 1 · q1 + 2 · q2 = q1 + 2q2.

In order to make the comparison between the components as fair as possible, we assume
that their distributions are so that E[f1(X1(t))] = E[f2(X2(t))], i.e., 2p1 = q1 + 2q2. This
implies that:

I
∗(1)
NB (t) = 2p1

I
∗(2)
NB (t) = (1 + q0)p1

Since we have assumed that q1 > 0 and q2 > 0, it follows that q0 < 1. Hence, we conclude
that even though both components have the same expected performance we can still have

I
∗(1)
NB (t) > I

∗(2)
NB (t) �

4 Importance measures for semi-Markov processes

In the previous sections we assumed that each life cycle of a component was determinis-
tic with respect to the states the component transited through. As a result the next and
previous states at a given point of time, denoted respectively X+

i (t) and X−i (t) were both
determined with probability one by the current state Xi(t). We now relax this assumption,
and allow the components to follow a general semi-Markov process, where the state tran-
sitions follow a Markov chain, referred to as the built-in Markov chain. Thus, each time
component i enters a state u ∈ Si, it remains there for a random amount of time, and then

makes a transition into state v ∈ Si with probability P
(i)
uv . The full matrix of transition

probabilities for the built-in Markov chain for component i is denoted P (i), i ∈ C. Given
this matrix we have that:

P (X+
i (t) = v|Xi(t) = u) = P (i)

uv , u, v ∈ Si. (4.1)

In order to find a similar expression for the conditional distribution of X−i (t), we need the
transition matrix for the backwards version of the built-in Markov chain, which we denote
by Q(i). It then follows that:

P (X−i (t) = v|Xi(t) = u) = Q(i)
uv , u, v ∈ Si. (4.2)
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Within this more general context the definitions of I
(i)
NB(t) and I

(i)
PB(t) given in Eq. (3.3) and

Eq. (3.4) are still valid. However, the equations Eq. (3.5) and Eq. (3.6) have to be modified
as follows:

I
(i)
NB(t) =

∑
u,v∈Si

P [φ(u,X(t)) 6= φ(v,X(t))] · P [Xi(t) = u] · P (i)
uv (4.3)

I
(i)
PB(t) =

∑
u,v∈Si

P [φ(u,X(t)) 6= φ(v,X(t))] · P [Xi(t) = u] ·Q(i)
uv (4.4)

We henceforth focus on the asymptotic properties of the processes and ommit the time
t from the notation. For component i ∈ C we denote the stationary probabilities of the

built-in Markov chain by π
(i)
u , u ∈ Si. We then have the following well-known relation

between the transition matrices P (i) and Q(i) (see e.g., Ross (2014)):

Q(i)
uv =

π
(i)
v

π
(i)
u

P (i)
vu , u, v ∈ Si. (4.5)

Note that if the stationary distribution of the built-in Markov chain is uniform, i.e., if

π
(i)
u = 1/(ri + 1), for all u ∈ Si, we have:

Q(i) = (P (i))T , i ∈ C.

It is well-known that an irreducible aperiodic finite Markov chain has a uniform stationary
distribution if and only if P (i) is a doubly stochastic matrix, i.e., all row sums and column
sums are equal to 1.

In order to proceed we now introduce the times spent in each state between the transi-
tions. More specifically, we let:

W
(i)
ku = The kth waiting time in state u for component i.

We assume that all the waiting times are independent, and that for all components i ∈ C
and states u ∈ Si the waiting times W

(i)
1u ,W

(i)
2u , . . . are identically distributed with finite

mean µ
(i)
u . Then it follows from standard renewal theory (see e.g., Ross (2014)) that the

stationary distribution of Xi is given by:

P [Xi = u] =
π
(i)
u µ

(i)
u∑

v∈Si
π
(i)
v µ

(i)
v

, u ∈ Si, i ∈ C. (4.6)

Combining Eq. (4.6) with Eq. (4.3) and Eq. (4.4) we get the following expressions for the
stationary importance measures:

I
(i)
NB =

∑
u,v∈Si

P [φ(u,X) 6= φ(v,X)] · π
(i)
u µ

(i)
u∑

v∈Si
π
(i)
v µ

(i)
v

· P (i)
uv (4.7)

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) 6= φ(v,X)] · π
(i)
u µ

(i)
u∑

v∈Si
π
(i)
v µ

(i)
v

·Q(i)
uv (4.8)

Using these formulas it is easy to establish a sufficient condition for when I
(i)
NB = I

(i)
PB.
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Theorem 4.1 Assume that µ
(i)
0 = · · · = µ

(i)
ri . Then I

(i)
NB = I

(i)
PB.

Proof: If µ
(i)
0 = · · · = µ

(i)
ri , the stationary distribution given in Eq. (4.6) is simplified to:

P [Xi = u] = π(i)u , u ∈ Si, i ∈ C.

Inserting this into Eq. (4.12) and Eq. (4.13), we get:

I
(i)
NB =

∑
u,v∈Si

P [φ(u,X) 6= φ(v,X)] · π(i)u · P (i)
uv

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) 6= φ(v,X)] · π(i)u ·Q(i)
uv

We then insert the expression for Q
(i)
uv given in Eq. (4.5) into the last equation and get:

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) 6= φ(v,X)] · π(i)v · P (i)
vu

Hence, by interchanging u and v we get that I
(i)
NB = I

(i)
PB as stated �

Another special case occurs when the transition matrix P (i) is doubly stochastic.

Theorem 4.2 Assume that the transition matrix P (i) is doubly stochastic. Then we have:

I
(i)
NB =

∑
u,v∈Si

P [φ(u,X) 6= φ(v,X)] · µ
(i)
u∑

v∈Si
µ
(i)
v

· P (i)
uv

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) 6= φ(v,X)] · µ
(i)
u∑

v∈Si
µ
(i)
v

· P (i)
vu

Proof: If the transition matrix P (i) is doubly stochastic, it is easy to see that the stationary
distribution of the built-in Markov chain is uniform. Hence, the stationary distribution given
in Eq. (4.6) is simplified to:

P [Xi = u] =
µ
(i)
u∑

v∈Si
µ
(i)
v

, u ∈ Si, i ∈ C. (4.9)

Moreover, the transition matrix Q(i) is equal to (P (i))T . That is:

Q(i)
uv = P (i)

vu , for all u, v ∈ Si.

By combining these observations the stated result follows �

We observe that by Eq. (4.12) and Eq. (4.13) I
(i)
NB and I

(i)
PB depends both on the stationary

distributions and the transition matrices P (i) and Q(i). Thus, even if two components have
equal stationary distributions, they may still have different importance. The following
example illustrates this.
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Example 4.3 We consider once again a multistate system (C, φ) where C = {1, 2}, and
where both components have three possible states, 0, 1, 2. For simplicity we again let fi(u) =
u, u = 0, 1, 2, i = 1, 2. Moreover, as before the structure function is given by:

φ(X1(t), X2(t)) = min(f1(X1(t)), f2(X2(t))).

The transition matrices of the built-in Markov chains are:

P (1) =

0.1, 0.3, 0.6
0.6, 0.1, 0.3
0.3, 0.6, 0.1

 , P (2) =

0.7, 0.1, 0.2
0.2, 0.7, 0.1
0.1, 0.2, 0.7

 ,
while the mean waiting times are:

µ
(i)
0 = 2.5, µ

(i)
1 = 3.5, µ

(i)
0 = 4.0, i = 1, 2.

It is easy to see that both P (1) and P (2) are doubly stochastic. Thus, the stationary
distributions of the built-in Markov chains are uniform. Thus, we may calculate importance
using Theorem 4.2. In particular, the stationary distributions can be calculated using the
simplified formula given in Eq. (4.9), and we get:

P [Xi = 0] = 0.25, P [Xi = 1] = 0.35, P [Xi = 2] = 0.40, i = 1, 2.

We now focus on I
(i)
NB. The corresponding results for I

(i)
PB are obtained in a similar

fashion and are approximately the same in this case. In order to calculate I
(i)
NB, we need to

compute a sum over all u, v ∈ Si. Since, however, we obviously have:

P [φ(u,X2) 6= φ(v,X2)] = 0 if u = v,

only the terms where u 6= v need to be included. Moreover, by symmetry we of course also
have:

P [φ(u,X2) 6= φ(v,X2)] = P [φ(v,X2) 6= φ(u,X2)].

Using this we get the following non-zero probabilities for component 1:

P [φ(0, X2) 6= φ(1, X2)] = P [X2 = 1] + P [X2 = 2] = 0.75,

P [φ(0, X2) 6= φ(2, X2)] = P [X2 = 1] + P [X2 = 2] = 0.75,

P [φ(1, X2) 6= φ(0, X2)] = P [φ(0, X2) 6= φ(1, X2)] = 0.75,

P [φ(1, X2) 6= φ(2, X2)] = P [X2 = 2] = 0.40,

P [φ(2, X2) 6= φ(0, X2)] = P [φ(0, X2) 6= φ(2, X2)] = 0.75,

P [φ(2, X2) 6= φ(1, X2)] = P [φ(1, X2) 6= φ(2, X2)] = 0.40.

Moreover, since these probabilities only depend on the stationary distribution of component
2, and both components have the same stationary distribution, we get exactly the same
probabilities for component 2. Thus, we have all the quantities needed in order to compute

the importance measures using the formula for I
(i)
NB given in Theorem 4.2, and we get:

I
(1)
NB = 0.55425, I

(2)
NB = 0.18475
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We observe that component 1 is much more important than component 2, even though
they both have exactly the same stationary distributions. The reason for this is that com-
ponent 2 has a much higher probability of staying in the same state when a transition
happens compared to component 1, i.e., 0.7 versus 0.1. Hence, for component 2 most
of the weight from the transition probabilities are put on terms where u = v, and for
these terms P [φ(X1, u) 6= φ(X1, v)] = 0. For component 1 on the other hand most of
the weight from the transition probabilities are put on terms where u 6= v, and for these
terms P [φ(u,X2) 6= φ(v,X2)] > 0.

In many applications transitions from one state directly back to the same state does
not make sense. In order to avoid this we may e.g., replace the matrices of transition
probabilities of the built-in Markov chains with the following:

P (1) =

0.0, 0.1, 0.9
0.9, 0.0, 0.1
0.1, 0.9, 0.0

 , P (2) =

0.0, 0.9, 0.1
0.1, 0.0, 0.9
0.9, 0.1, 0.0

 ,
We observe that in these transition matrices all the diagonal terms are 0.0. Thus, the
probability of staying in the same state after a transition has happened is zero.

It is again easy to verify that both P (1) and P (2) are doubly stochastic. This implies that
the stationary probabilities are the same as in the previous case. The change in transition
probabilities, however, implies that the importance measures change considerably. In this
case we get:

I
(1)
NB = 0.61175, I

(2)
NB = 0.62575,

implying that component 2 is now slightly more important than component 1.
By comparing transition matrices we also notice that P (1) = (P (2))T . By Theorem 4.2

this implies that:

I
(1)
PB = I

(2)
NB, and I

(2)
PB = I

(1)
NB.

Hence, the importance ranking is reversed if we apply the p-Birnbaum measure instead of
the n-Birnbaum measure �

4.1 Expected physical criticality for semi-Markov processes

We close this section by briefly showing how the importance measures based on expected
physical criticality, introduced in Subsection 3.2 can be extended to semi-Markov processes.
We observe that Eq. (3.8) and Eq. (3.9) are valid also in the general case. In order to calcu-
late the n*-Birnbaum measure and the p*-Birnbaum measure, we again expand Eq. (3.8) and
Eq. (3.9) by conditioning on the state of component i and get formulas similar to Eq. (4.3)
and Eq. (4.4):

I
∗(i)
NB(t) =

∑
u,v∈Si

E|φ(u,X(t))− φ(v,X(t))| · P [Xi(t) = u] · P (i)
uv (4.10)

I
∗(i)
PB (t) =

∑
u,v∈Si

E|φ(u,X(t))− φ(v,X(t))] · P [Xi(t) = u| ·Q(i)
uv (4.11)

13



Focussing on the asymptotic properties and using the same arguments as we did for I
(i)
NB

and I
(i)
PB, we get the following analogues to Eq. (4.12) and Eq. (4.13):

I
∗(i)
NB =

∑
u,v∈Si

E|φ(u,X)− φ(v,X)| · π
(i)
u µ

(i)
u∑

v∈Si
π
(i)
v µ

(i)
v

· P (i)
uv (4.12)

I
∗(i)
PB =

∑
u,v∈Si

E|φ(u,X)− φ(v,X)| · π
(i)
u µ

(i)
u∑

v∈Si
π
(i)
v µ

(i)
v

·Q(i)
uv (4.13)

Having these formulas the following results can easily be proved using exactly the same

arguments as we used for the corresponding results for I
(i)
NB and I

(i)
PB:

Theorem 4.4 Assume that µ
(i)
0 = · · · = µ

(i)
ri . Then I

∗(i)
NB = I

∗(i)
PB .

Theorem 4.5 Assume that the transition matrix P (i) is doubly stochastic. Then we have:

I
∗(i)
NB =

∑
u,v∈Si

E|φ(u,X)− φ(v,X)| · µ
(i)
u∑

v∈Si
µ
(i)
v

· P (i)
uv

I
∗(i)
PB =

∑
u,v∈Si

E|φ(u,X)− φ(v,X)| · µ
(i)
u∑

v∈Si
µ
(i)
v

· P (i)
vu

We close this section by considering an example.

Example 4.6 We consider the multistate system (C, φ) introduced in Example 4.3. In

order to compute I
∗(1)
NB we start out by determining E|φ(u,X2)− φ(v,X2)| for all u, v ∈ S1.

We note again that:
E|φ(u,X2)− φ(v,X2)| = 0 if u = v,

implying that only the terms where u 6= v need to be included. Moreover, by symmetry we
have:

E|φ(u,X2)− φ(v,X2)| = E|φ(v,X2)− φ(u,X2)|.

Using this we get the following non-zero expectations for component 1:

E|φ(0, X2)− φ(1, X2)| = 1 · P [X2 = 1] + 1 · P [X2 = 2] = 0.75,

E|φ(0, X2)− φ(2, X2)| = 1 · P [X2 = 1] + 2 · P [X2 = 2] = 1.15,

E|φ(1, X2)− φ(0, X2)| = E|φ(0, X2)− φ(1, X2)| = 0.75,

E|φ(1, X2)− φ(2, X2)| = 1 · P [X2 = 2] = 0.40,

E|φ(2, X2)− φ(0, X2)| = E|φ(0, X2)− φ(2, X2)| = 1.15,

E|φ(2, X2)− φ(1, X2)| = E|φ(1, X2)− φ(2, X2)| = 0.40.

Moreover, since these expectations only depend on the stationary distribution of component
2, and both components have the same stationary distribution, we get exactly the same
expectations for component 2. Thus, we have all the quantities needed in order to compute
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the importance measures using the formula for I
∗(1)
NB and I

∗(2)
NB given in Theorem 4.5. If the

transition matrices are:

P (1) =

0.1, 0.3, 0.6
0.6, 0.1, 0.3
0.3, 0.6, 0.1

 , P (2) =

0.7, 0.1, 0.2
0.2, 0.7, 0.1
0.1, 0.2, 0.7

 ,
we get that:

I
∗(1)
NB = 0.66225, I

∗(2)
NB = 0.22075

In particular component 1 is much more important than component 2, even though they both
have exactly the same stationary distributions. If the transition matrices are:

P (1) =

0.0, 0.1, 0.9
0.9, 0.0, 0.1
0.1, 0.9, 0.0

 , P (2) =

0.0, 0.9, 0.1
0.1, 0.0, 0.9
0.9, 0.1, 0.0

 ,
we get that:

I
∗(1)
NB = 0.71775, I

∗(2)
NB = 0.77975

Since P (1) = (P (2))T , Theorem 4.5 implies that:

I
∗(1)
PB = I

∗(2)
NB , and I

∗(2)
PB = I

∗(1)
NB .

Hence, the importance ranking is reversed if we apply the p*-Birnbaum measure instead of
the n*-Birnbaum measure.

We observe that these results are very similar to the corresponding results for I
(1)
NB and

I
(2)
NB found in Example 4.3, except that the importance measures are somewhat greater in

this case �

5 A numerical example

The examples presented in the previous sections are of course extremely simple and carefully
chosen in order to illustrate the theoretical results. For these examples it was very easy to
calculate the importance measures manually. In this section we present a somewhat larger
example where the importance measures are estimated using Monte Carlo simulations.

1

2

3

4

5 6

7
S T

Figure 5.1: A network flow system

15



In this example we consider a directed network flow system consisting of 7 components
representing the directed edges of the network. The system is illustrated in Figure 5. The
physical state functions of the components, f1, . . . , f7, represent the flow capacity of the
components. The physical state of the system is the amount of flow that can be sent trough
the network from the source node S to the terminal node T .

In order to express the system state as a function of the component states we identify
the minimal cut sets in the network. These are K1 = {1, 2}, K2 = {1, 5, 7}, K3 = {2, 3, 4},
K4 = {4, 5, 7}, K5 = {2, 3, 6}, K6 = {6, 7}. According to the well-known max-flow-min cut
theorem (see Ford and Fulkerson (1956)) we then have1:

φ(X(t)) = min
1≤j≤6

∑
i∈Kj

fi(Xi(t)).

The component state functions in this example are given by:

f1(u) = f6(u) = 2.5 · u, u = 0, 1, 2.

f2(u) = f7(u) = 1.5 · u, u = 0, 1, 2.

f3(u) = f5(u) = 5.0 · u, u = 0, 1.

f4(u) = 1.0 · I(u = 1) + 2.5 · I(u = 2), u = 0, 1, 2.

We observe that if all components are in their respective top state, the maximal flow through
the network is 8. The mean waiting times for the different states of the components are
given in Table 5.1.

Comp. µ
(i)
0 µ

(i)
1 µ

(i)
2

1 2.5 3.5 4.5
2 2.5 3.5 4.5
3 4.5 5.5 -
4 2.5 3.5 4.5
5 4.5 5.5 -
6 2.5 3.5 4.5
7 2.5 3.5 4.5

Table 5.1: Mean waiting times

Finally, the transition probabilities for the components are:

P (1) = P (2) = P (6) = P (7) =

0.0, 0.0, 1.0
1.0, 0.0, 0.0
0.4, 0.6, 0.0

 ,

P (3) = P (5) =

[
0.0, 1.0
1.0, 0.0

]
, P (4) =

0.0, 0.0, 1.0
1.0, 0.0, 0.0
0.6, 0.4, 0.0

 .
In the simulation all waiting times were sampled from exponential distributions with the

respective mean values. For the asymptotic results, however, the choice of distribution is of
course not important.

1It should be noted that there exists efficient algorithms for calculating the system state without having
to identify all the minimal cut sets. However, in this simple case with only 6 minimal cut sets we just use
the standard formula.
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We ran 10000 simulations of the system over a time frame of 500 time units. The resulting
estimated importance measures are given in Table 5.2.

Comp. I
(i)
NB I

(i)
PB I

∗(i)
NB I

∗(i)
PB

1 0.53 0.56 1.34 1.48
2 0.64 0.66 1.24 1.39
3 0.34 0.34 0.83 0.83
4 0.40 0.40 0.77 0.83
5 0.34 0.34 0.83 0.83
6 0.53 0.56 1.34 1.48
7 0.64 0.66 1.24 1.39

Table 5.2: Estimated importance

Due to the structural symmetry in the network as well as the chosen distribution param-
eters and transition probabilities, the components are grouped into four sets: C1 = {1, 6},
C2 = {2, 7}, C3 = {3, 5}, C4 = {4} with respect to importance. Within these groups the
importance measures are equal regardless of which measure we use. However, we observe

that the overall ranking depends on the chosen importance measure. If we choose I
(i)
NB or

I
(i)
PB, the components in C2 are the most important components followed by C1, C4 and

C3. On the other hand if we choose I
∗(i)
NB , the components in C1 are the most important

components followed by C2, C3 and C4. Finally, if we choose I
∗(i)
PB , the components in C1

are still the most important components followed by C2. In this case, the components in
C3 and C4 are tied.

This example shows that there is a difference between just being critical and the physical
effect of being critical. The components in C2 have a very high probability of being critical
to the system. However, the components in this set have lower flow capacities compared to
the components in C1. Thus, the ranking of these two sets is reversed when the measures

I
∗(i)
NB or I

∗(i)
PB are used. The same effect can be seen in the ranking between C3 and C4.

The suggested measures allow the analyst to examine criticality from different viewpoints
which is of interest both in a diagnostic setting as well as when the analysis is done in order
to support decisions regarding improvement of the system.

6 Conclusions

In the present paper we have described a framework for modelling repairable multistate
systems emphasising the physical properties of the components and the system. Within
this framework we have generalised the Birnbaum measure to such systems in four different
ways. Two of the suggested measures define component criticality at a given point of time
relative to the next state of the component. These measures have a forward-looking focus
which is often useful when the analysis is done in order to support decisions regarding
improvement of the system. The two other measures define component criticality at a
given point of time relative to the previous state of the component. These measures have a
backward-looking focus which is often useful in a diagnostic setting.

The suggested measures can also be classified with respect to how criticality is measured.
Two of the suggested measures focus on whether a component is critical or not, while the
other two measures include information about the physical effects of being critical. Exam-
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ples presented in the paper show that these viewpoints may result in different importance
ranking of the components.

The paper considers both simple periodic component life cycles as more general semi-
Markov processes and presents results on when the various measures are equal or can be
simplified computationally.

The proposed measures can be interpreted as time-dependent measures reflecting compo-
nent importance at a given point of time. Alternatively, the measures can be interpreted as
asymptotic measures representing component importance given that the system has reached
a stationary status. In cases where the component life cycles are long compared to the time
frame under consideration or when the component processes are not time-homogenous, it
may be of interest to find non-asymptotic, time-independent importance measures. Future
work within this area will focus on this problem.
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