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Binary systems

A binary system is an ordered pair (C,φ) where:

C = {1, . . . , n} is the component set.

Xi(t) = I(Component i is functioning at time t), i ∈ C

X (t) = (X1(t), . . . ,Xn(t))

φ(t) = I(The system is functioning at time t)

φ(t) = φ(X (t))
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Criticality

A component, i ∈ C, is said to be critical for the system at time t if:

φ(0i ,X (t)) ∕= φ(1i ,X (t)).

Now introduce the following notation:

X+
i (t) = The next state of component i at time t

X−
i (t) = The previous state of component i at time t

Since each component only has two possible states, we have:

X+
i (t) = X−

i (t) =

!
0 for Xi(t) = 1
1 for Xi(t) = 0

NOTE: For t = 0, the notion of a previous state is not defined.
However, we ignore this problem.
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Criticality, cont.

It follows that component i is critical for the system at time t if:

φ(Xi(t),X (t)) ∕= φ(X+
i (t),X (t)). (1)

or alternatively:

φ(X−
i (t),X (t)) ∕= φ(Xi(t),X (t)). (2)

That is, component i is critical at time t if changing the component to
its next state would result in a system state change as well.

Alternatively, component i is critical at time t if changing the component
to its previous state would result in a system state change as well.
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The Birnbaum measure of component importance

The Birnbaum measure of importance of component i ∈ C at time t ,
denoted I(i)B (t), is the probability that the component is critical at time t .

Using our notation we have:

I(i)B (t) = P[φ(Xi(t),X (t)) ∕= φ(X+
i (t),X (t))]

= P[φ(X−
i (t),X (t)) ∕= φ(Xi(t),X (t))]
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Multistate systems
A multistate system is an ordered pair (C,φ) where:

C = {1, . . . , n} is the component set.

φ = φ(t) = The state of the system at time t

In a multistate system the components have multiple states:

Si = {0, 1, . . . , ri} = The state set of component i , i ∈ C.

We also introduce the component state processes:

Xi(t) = The state of component i at time t , i ∈ C

X (t) = (X1(t), . . . ,Xn(t))

The function φ is called the structure function of the system, and we assume
that:

φ(t) = φ(X (t)).
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Component life cycles

At this stage we simplify the model by assuming that the components
are repairable and have the following life cycles:

Each component starts out by being in the top state ri :

Xi(0) = ri , i ∈ C.

At random points of time 0 < T (i)
1,ri

< T (i)
1,ri−1 < · · · < T (i)

1,0 the component
degrades through the entire state set until it reaches state 0:

Xi(T
(i)
1,ri

) = ri−1 Xi(T
(i)
1,ri−1) = ri−2 · · · Xi(T

(i)
1,1) = 0.

At time T (i)
1,0 the component is repaired or replaced, and a new life

cycle starts. For this life cycle the state changes occur at times:
T (i)

2,ri
< T (i)

2,ri−1 < · · · < T (i)
2,0, etc.
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Physical component states

For i ∈ C we introduce the functions:

fi : Si → R = The physical state of component i .

Thus, the physical state of component i at time t is fi(Xi(t)), i ∈ C.

The functions f1, . . . , fn provide a convenient and intuitive way of
encoding physical properties into a model.

EXAMPLE: Let component i be a pipeline. Then the physical state of
the component at a given point of time may be the capacity of the
pipeline at this point of time.
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Physical component states, cont.

NOTE: A physical property of a component may be any real number
(not just integers). In most cases, however, such properties will be
non-negative numbers.

NOTE: The functions f1, . . . , fn do not need to be nondecreasing. By
omitting this restriction, additional useful modeling flexibility is gained.

This allows e.g., for the inclusion of burn-in phases, maintenance as
well as minimal or partial repairs of a components as part of its life
cycle before it reaches its failure state.

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Multistate systems STK 4400 9 / 31



Physical system states

It is common in multistate reliability theory to define φ such that it takes
values in a set of non-negative integers.

Here, however, we avoid this extra layer of abstraction, and let the
structure function represent the physical state of the system.

Moreover, we assume that φ has the following form:

φ(X (t)) = φ(f1(X1(t)), . . . , fn(Xn(t)))

Since the structure function represents a physical quantity, it is easier
both to model and to interpret than if it had to be encoded more
abstractly in terms of non-negative integers.
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EXAMPLE: Flow network

1

2

3

4

5 6

7
S T

fi(Xi(t)) = Capacity of component i , i = 1, . . . , 7.

Minimal cut sets: K1 = {1, 2}, K2 = {1, 5, 7}, K3 = {2, 3, 4}, K4 = {4, 5, 7},
K5 = {2, 3, 6}, K6 = {6, 7}

φ(X (t)) = min
1≤j≤6

!

i∈Kj

fi(Xi(t)).
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Importance measures

For multistate systems there are many ways of defining importance
measures. There is no such thing as the best importance measure.

Traditional uses of importance measures include:
In design: Identifying components that should be improved
In diagnostics: Identifying the components that are most likely to
have failed

Other uses of importance measures:
Understanding the structural and probabilistic properties of a
system
Understanding how each component affects various aspects of
system performance
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Criticality in multistate systems

We introduce the following notation:

X+
i (t) = The next state of component i at time t

X−
i (t) = The previous state of component i at time t

Given the life cycles of the components, these quantities are well defined,
and we have:

X+
i (t) =

"
Xi(t)− 1 for Xi(t) > 0
ri for Xi(t) = 0

X−
i (t) =

"
Xi(t) + 1 for Xi(t) < ri

0 for Xi(t) = ri

NOTE: In the binary case X+
i (t) = X−

i (t). For components with more than
two possible states, however, X+

i (t) and X−
i (t) are not equal.
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Criticality in multistate systems, cont.

We say that component i is n-critical at time t if:

φ(Xi(t),X (t)) ∕= φ(X+
i (t),X (t)).

Thus, component i is n-critical at time t if changing the component to
its next state would result in a system state change as well.

We say that component i is p-critical at time t if:

φ(X−
i (t),X (t)) ∕= φ(Xi(t),X (t)).

Thus, component i is p-critical at time t if changing the component to
its previous state would result in a system state change as well.
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Multistate importance

The n-Birnbaum measure of importance of component i at time t ,
denoted I(i)NB(t), is the probability that component i is n-critical at time t :

I(i)NB(t) = P[φ(Xi(t),X (t)) ∕= φ(X+
i (t),X (t))].

The p-Birnbaum measure of importance of component i at time t ,
denoted I(i)PB(t), is the probability that component i is p-critical at time t :

I(i)PB(t) = P[φ(X−
i (t),X (t)) ∕= φ(Xi(t),X (t))].

NOTE: In the binary case we have I(i)NB(t) = I(i)PB(t) = I(i)B (t). In the
multistate case, however, we may have I(i)NB(t) ∕= I(i)PB(t).
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Multistate importance, cont.
Assuming independent component state processes and conditioning on the
state of component i at time t we get:

I(i)NB(t) =
ri!

j=1

P[φ(ji ,X (t)) ∕= φ((j − 1)i ,X (t))] · P[Xi(t) = j]

+ P[φ(0i ,X (t)) ∕= φ((ri)i ,X (t))] · P[Xi(t) = 0]

I(i)PB(t) =
ri−1!

j=0

P[φ((j + 1)i ,X (t)) ∕= φ(ji ,X (t))] · P[Xi(t) = j]

+ P[φ(0i ,X (t)) ∕= φ((ri)i ,X (t))] · P[Xi(t) = ri ]

Changing the summation index in the last expression we get:

I(i)PB(t) =
ri!

j=1

P[φ(ji ,X (t)) ∕= φ((j − 1)i ,X (t))] · P[Xi(t) = j − 1]

+ P[φ(0i ,X (t)) ∕= φ((ri)i ,X (t))] · P[Xi(t) = ri ]
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Multistate importance, cont.

We observe that P[Xi(t) = j] in the formula for I(i)NB(t) is replaced by
P[Xi(t) = j − 1] in the formula for I(i)PB(t), j = 1, . . . , ri .

Moreover, P[Xi(t) = 0] in the formula for I(i)NB(t) is replaced by P[Xi(t) = ri ] in
in the formula for I(i)PB(t).

From this it follows that in the special case where the component state
processes are independent and:

P[Xi(t) = 0] = P[Xi(t) = 1] = · · · = P[Xi(t) = ri ],

we will have I(i)NB(t) = I(i)PB(t).

In general, however, the two importance measures will not be equal, and may
even result in different rankings.
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Example 1
Consider a multistate system (C,φ) where C = {1, 2}.

Both components have three possible states: S1 = S2 = {0, 1, 2}.

In this case the component states are identical to the physical states:

fi(j) = j , j ∈ Si and i ∈ C.

The structure function is given by:

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))).

Finally, we assume that the component state variables are independent, and
that for a given t we have:

P[X1(t) = j] = pj > 0, j ∈ S1.

P[X2(t) = j] = qj > 0, j ∈ S2.
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Example 1, cont.

We assume that the component state processes are independent, and
that for a given t we have:

P[X1(t) = j] = pj > 0, j ∈ S1.

P[X2(t) = j] = qj > 0, j ∈ S2.

It is then easy to see that:

P[φ(0,X2(t)) ∕= φ(2,X2(t))] = q1 + q2,

P[φ(1,X2(t)) ∕= φ(0,X2(t))] = q1 + q2,

P[φ(2,X2(t)) ∕= φ(1,X2(t))] = q2,

P[φ(X1(t), 0) ∕= φ(X1(t), 2)] = p1 + p2,

P[φ(X1(t), 1) ∕= φ(X1(t), 0)] = p1 + p2,

P[φ(X1(t), 2) ∕= φ(X1(t), 1)] = p2.
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Example 1, cont.

Hence, we get

I(1)NB(t) = p0(q1 + q2) + p1(q1 + q2) + p2q2 = q1 + q2 − p2q1,

I(2)NB(t) = q0(p1 + p2) + q1(p1 + p2) + q2p2 = p1 + p2 − p1q2,

I(1)PB (t) = p2(q1 + q2) + p0(q1 + q2) + p1q2 = q1 + q2 − p1q1,

I(2)PB (t) = q2(p1 + p2) + q0(p1 + p2) + q1p2 = p1 + p2 − p1q1.

We observe that I(1)PB (t) > I(2)PB (t) if and only if q1 + q2 > p1 + p2.

However, assuming that q1 + q2 > p1 + p2 and that p1 < p2 and q2 < q1, it is
possible to obtain the opposite ranking with respect to the n-Birnbaum
measure.
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Example 1, cont.
Assume e.g., that p1 = 0.20, p2 = 0.35, q1 = 0.40 and q2 = 0.20. Then we
have:

q1 + q2 = 0.60 > p1 + p2 = 0.55

p2q1 = 0.14 > p1q2 = 0.04

p1q1 = 0.08

Hence, we get:

I(1)NB(t) = q1 + q2 − p2q1 = 0.46,

I(2)NB(t) = p1 + p2 − p1q2 = 0.51,

I(1)PB (t) = q1 + q2 − p1q1 = 0.52,

I(2)PB (t) = p1 + p2 − p1q1 = 0.47.

That is, I(1)NB(t) < I(2)NB(t) while I(1)PB (t) > I(2)PB (t).
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Example 1, cont.

For i ∈ C, j ∈ Si , and k = 1, 2, . . . we introduce:

W (i)
kj = k th waiting time in state j for component i ,

We assume that all waiting times are independent and exponentially
distributed with:

E [W (1)
kj ] =

#
$%

$&

4.5 for j = 0
2.0 for j = 1
3.5 for j = 2

E [W (2)
kj ] =

#
$%

$&

4.0 for j = 0
4.0 for j = 1
2.0 for j = 2
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Example 1, cont.
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Figure: I(1)PB (t) (red curve) I(2)PB (t) (green curve)
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Example 1, cont.
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Importance based on expected physical criticality

The n*-Birnbaum measure of importance of component i at time t , denoted
I∗(i)NB (t), is the expected effect of changing i to its next state at time t :

I∗(i)NB (t) = E
''φ(Xi(t),X (t))− φ(X+

i (t),X (t))
'' .

The p*-Birnbaum measure of importance of component i at time t , denoted
I∗(i)NB (t), is the expected effect of changing i to its previous state at time t :

I∗(i)PB (t) = E
''φ(X−

i (t),X (t))− φ(Xi(t),X (t))
'' .

NOTE: In the binary case all the different measures are the same:

I∗(i)NB (t) = I(i)NB(t) = I∗(i)PB (t) = I(i)PB(t) = I(i)B (t).
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Example 2
Consider a multistate system (C,φ) where C = {1, 2}, and where S1 = {0, 1}
and S2 = {0, 1, 2}.

Moreover, we assume that:

f1(j) = 2j , j ∈ S1,

f2(j) = j , j ∈ S2.

As before, the structure function is given by:

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))).

Finally, we again assume that the component state processes are
independent, and that for a given t we have:

P[X1(t) = j] = pj > 0, j ∈ S1,

P[X2(t) = j] = qj > 0, j ∈ S2.
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Example 2, cont.

We then get:

E |φ(0,X2(t))− φ(1,X2(t))| = q1 · 1 + q2 · 2 = q1 + 2q2

E |φ(1,X2(t))− φ(0,X2(t))| = q1 · 1 + q2 · 2 = q1 + 2q2

E |φ(X1(t), 0)− φ(X1(t), 2)| = 2p1

E |φ(X1(t), 1)− φ(X1(t), 0)| = p1

E |φ(X1(t), 2)− φ(X1(t), 1)| = p1

Hence, it follows that:

I∗(1)NB (t) = p0 · (q1 + 2q2) + p1 · (q1 + 2q2) = q1 + 2q2

I∗(2)NB (t) = q0 · 2p1 + q1 · p1 + q2 · p1 = (1 + q0)p1
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Example 2, cont.

We also have:

E [f1(X1(t))] = p0 · 0 + p1 · 2 = 2p1

E [f2(X2(t))] = q0 · 0 + q1 · 1 + q2 · 2 = q1 + 2q2.

We then assume that E [f1(X1(t))] = E [f2(X2(t))]. This implies that:

I∗(1)NB (t) = q1 + 2q2 = 2p1

I∗(2)NB (t) = (1 + q0)p1

Hence, since we must have q0 < 1, we conclude that I∗(1)NB (t) > I∗(2)NB (t).
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Conclusions and further work

SUMMARY:
Multistate systems defined with emphasis on physical
interpretation
Importance measures defined relative to next and previous
component states
Framework allowing a physical interpretation of importance
measures
Simulation software available for calculating availability and
importance

FURTHER WORK:
Extensions to more complex life-cycles
Time independent versions of importance measures
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