Multistate systems and importance measures

Arne Bang Huseby and Kristina Rognlien Dahl

University of Oslo, Norway

STK 4400

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

Multistate systems

STK 4400 1 / 31

A *binary system* is an ordered pair (C, ϕ) where:

$$C = \{1, \ldots, n\}$$
 is the component set.

 $X_i(t) = I$ (Component *i* is functioning at time *t*), $i \in C$ $X(t) = (X_1(t), \dots, X_n(t))$

 $\phi(t) = I$ (The system is functioning at time *t*) $\phi(t) = \phi(\mathbf{X}(t))$

Criticality

A component, $i \in C$, is said to be *critical* for the system at time *t* if: $\phi(0_i, \mathbf{X}(t)) \neq \phi(1_i, \mathbf{X}(t)).$

Now introduce the following notation:

 $X_i^+(t)$ = The *next state* of component *i* at time *t* $X_i^-(t)$ = The *previous state* of component *i* at time *t*

Since each component only has two possible states, we have:

$$X_i^+(t) = X_i^-(t) = \begin{cases} 0 & \text{for } X_i(t) = 1 \\ 1 & \text{for } X_i(t) = 0 \end{cases}$$

NOTE: For t = 0, the notion of a previous state is *not defined*. However, we ignore this problem.

It follows that component *i* is critical for the system at time *t* if:

$$\phi(X_i(t), \boldsymbol{X}(t)) \neq \phi(X_i^+(t), \boldsymbol{X}(t)).$$
(1)

or alternatively:

$$\phi(\boldsymbol{X}_{i}^{-}(t),\boldsymbol{X}(t))\neq\phi(\boldsymbol{X}_{i}(t),\boldsymbol{X}(t)). \tag{2}$$

That is, component *i* is critical at time *t* if changing the component to its next state would result in a system state change as well.

Alternatively, component *i* is critical at time *t* if changing the component to its previous state would result in a system state change as well.

The *Birnbaum measure* of importance of component $i \in C$ at time t, denoted $I_B^{(i)}(t)$, is the probability that the component is critical at time t.

Using our notation we have:

$$\begin{split} I_B^{(i)}(t) &= \mathcal{P}[\phi(X_i(t), \mathbf{X}(t)) \neq \phi(X_i^+(t), \mathbf{X}(t))] \\ &= \mathcal{P}[\phi(X_i^-(t), \mathbf{X}(t)) \neq \phi(X_i(t), \mathbf{X}(t))] \end{split}$$

Multistate systems

A *multistate system* is an ordered pair (C, ϕ) where:

 $C = \{1, \ldots, n\}$ is the component set.

 $\phi = \phi(t)$ = The state of the system at time *t*

In a multistate system the components have multiple states:

 $S_i = \{0, 1, \dots, r_i\}$ = The state set of component $i, i \in C$.

We also introduce the component state processes:

$$X_i(t)$$
 = The state of component *i* at time *t*, $i \in C$
 $X(t) = (X_1(t), \dots, X_n(t))$

The function ϕ is called the *structure function* of the system, and we assume that:

$$\phi(t) = \phi(\boldsymbol{X}(t)).$$

Component life cycles

At this stage we simplify the model by assuming that the components are *repairable* and have the following life cycles:

Each component starts out by being in the top state r_i :

$$X_i(0)=r_i, \quad i\in C.$$

At random points of time $0 < T_{1,r_i}^{(i)} < T_{1,r_{i-1}}^{(i)} < \cdots < T_{1,0}^{(i)}$ the component degrades through the entire state set until it reaches state 0:

$$X_i(T_{1,r_i}^{(i)}) = r_{i-1}$$
 $X_i(T_{1,r_i-1}^{(i)}) = r_{i-2}$ \cdots $X_i(T_{1,1}^{(i)}) = 0.$

At time $T_{1,0}^{(i)}$ the component is repaired or replaced, and a new life cycle starts. For this life cycle the state changes occur at times: $T_{2,r_i}^{(i)} < T_{2,r_i-1}^{(i)} < \cdots < T_{2,0}^{(i)}$, etc.

For $i \in C$ we introduce the functions:

 $f_i: S_i \to \mathbb{R} =$ The *physical state* of component *i*.

Thus, the physical state of component *i* at time *t* is $f_i(X_i(t))$, $i \in C$.

The functions f_1, \ldots, f_n provide a convenient and intuitive way of encoding physical properties into a model.

EXAMPLE: Let component *i* be a pipeline. Then the physical state of the component at a given point of time may be the capacity of the pipeline at this point of time.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

NOTE: A physical property of a component may be any real number (not just integers). In most cases, however, such properties will be *non-negative* numbers.

NOTE: The functions f_1, \ldots, f_n do not need to be nondecreasing. By omitting this restriction, additional useful modeling flexibility is gained.

This allows e.g., for the inclusion of burn-in phases, maintenance as well as minimal or partial repairs of a components as part of its life cycle before it reaches its failure state.

It is common in multistate reliability theory to define ϕ such that it takes values in a set of *non-negative integers*.

Here, however, we avoid this extra layer of abstraction, and let the structure function represent the *physical state* of the system.

Moreover, we assume that ϕ has the following form:

$$\phi(\boldsymbol{X}(t)) = \phi(f_1(\boldsymbol{X}_1(t)), \dots, f_n(\boldsymbol{X}_n(t)))$$

Since the structure function represents a physical quantity, it is easier both to model and to interpret than if it had to be encoded more abstractly in terms of non-negative integers.

EXAMPLE: Flow network

 $f_i(X_i(t))$ = Capacity of component i, i = 1, ..., 7.

Minimal cut sets: $K_1 = \{1, 2\}, K_2 = \{1, 5, 7\}, K_3 = \{2, 3, 4\}, K_4 = \{4, 5, 7\}, K_5 = \{2, 3, 6\}, K_6 = \{6, 7\}$

$$\phi(\boldsymbol{X}(t)) = \min_{1 \leq j \leq 6} \sum_{i \in \mathcal{K}_j} f_i(X_i(t)).$$

For multistate systems there are many ways of defining importance measures. There is no such thing as the *best importance measure*.

Traditional uses of importance measures include:

- In design: Identifying components that should be improved
- In diagnostics: Identifying the components that are most likely to have failed

Other uses of importance measures:

- Understanding the structural and probabilistic properties of a system
- Understanding how each component affects various aspects of system performance

Criticality in multistate systems

We introduce the following notation:

$$X_i^+(t)$$
 = The *next state* of component *i* at time *t*

 $X_i^-(t)$ = The previous state of component *i* at time *t*

Given the life cycles of the components, these quantities are well defined, and we have:

$$X_{i}^{+}(t) = \begin{cases} X_{i}(t) - 1 & \text{for } X_{i}(t) > 0\\ r_{i} & \text{for } X_{i}(t) = 0 \end{cases}$$
$$X_{i}^{-}(t) = \begin{cases} X_{i}(t) + 1 & \text{for } X_{i}(t) < r_{i}\\ 0 & \text{for } X_{i}(t) = r_{i} \end{cases}$$

NOTE: In the binary case $X_i^+(t) = X_i^-(t)$. For components with more than two possible states, however, $X_i^+(t)$ and $X_i^-(t)$ are *not* equal.

Criticality in multistate systems, cont.

We say that component *i* is *n*-critical at time *t* if:

 $\phi(X_i(t), \boldsymbol{X}(t)) \neq \phi(X_i^+(t), \boldsymbol{X}(t)).$

Thus, component *i* is n-critical at time *t* if changing the component to its *next* state would result in a system state change as well.

We say that component *i* is *p*-critical at time *t* if:

 $\phi(X_i^-(t), \boldsymbol{X}(t)) \neq \phi(X_i(t), \boldsymbol{X}(t)).$

Thus, component *i* is p-critical at time *t* if changing the component to its *previous* state would result in a system state change as well.

Multistate importance

The *n*-Birnbaum measure of importance of component *i* at time *t*, denoted $I_{NB}^{(i)}(t)$, is the probability that component *i* is n-critical at time *t*:

$$J_{NB}^{(i)}(t) = P[\phi(X_i(t), \boldsymbol{X}(t)) \neq \phi(X_i^+(t), \boldsymbol{X}(t))].$$

The *p*-Birnbaum measure of importance of component *i* at time *t*, denoted $I_{PB}^{(i)}(t)$, is the probability that component *i* is p-critical at time *t*:

$$I_{PB}^{(i)}(t) = \boldsymbol{P}[\phi(\boldsymbol{X}_i^-(t), \boldsymbol{X}(t)) \neq \phi(\boldsymbol{X}_i(t), \boldsymbol{X}(t))].$$

NOTE: In the binary case we have $I_{NB}^{(i)}(t) = I_{PB}^{(i)}(t) = I_{B}^{(i)}(t)$. In the multistate case, however, we may have $I_{NB}^{(i)}(t) \neq I_{PB}^{(i)}(t)$.

Multistate importance, cont.

Assuming independent component state processes and conditioning on the state of component *i* at time *t* we get:

$$\begin{split} I_{NB}^{(i)}(t) &= \sum_{j=1}^{r_i} P[\phi(j_i, \boldsymbol{X}(t)) \neq \phi((j-1)_i, \boldsymbol{X}(t))] \cdot P[X_i(t) = j] \\ &+ P[\phi(0_i, \boldsymbol{X}(t)) \neq \phi((r_i)_i, \boldsymbol{X}(t))] \cdot P[X_i(t) = 0] \end{split}$$

$$I_{PB}^{(i)}(t) = \sum_{j=0}^{r_i-1} P[\phi((j+1)_i, \mathbf{X}(t)) \neq \phi(j_i, \mathbf{X}(t))] \cdot P[X_i(t) = j] + P[\phi(0_i, \mathbf{X}(t)) \neq \phi((r_i)_i, \mathbf{X}(t))] \cdot P[X_i(t) = r_i]$$

Changing the summation index in the last expression we get:

$$\begin{split} I_{PB}^{(i)}(t) &= \sum_{j=1}^{r_i} P[\phi(j_i, \boldsymbol{X}(t)) \neq \phi((j-1)_i, \boldsymbol{X}(t))] \cdot P[X_i(t) = j-1] \\ &+ P[\phi(0_i, \boldsymbol{X}(t)) \neq \phi((r_i)_i, \boldsymbol{X}(t))] \cdot P[X_i(t) = r_i] \end{split}$$

- E - N

Multistate importance, cont.

We observe that $P[X_i(t) = i]$ in the formula for $I_{NB}^{(i)}(t)$ is replaced by $P[X_i(t) = j - 1]$ in the formula for $I_{PP}^{(i)}(t), j = 1, \dots, r_i$.

Moreover, $P[X_i(t) = 0]$ in the formula for $I_{MR}^{(i)}(t)$ is replaced by $P[X_i(t) = r_i]$ in in the formula for $I_{PP}^{(i)}(t)$.

From this it follows that in the special case where the component state processes are independent and:

$$P[X_i(t) = 0] = P[X_i(t) = 1] = \cdots = P[X_i(t) = r_i],$$

we will have $I_{NB}^{(i)}(t) = I_{PB}^{(i)}(t)$.

In general, however, the two importance measures will not be equal, and may even result in different rankings.

Example 1

Consider a multistate system (C, ϕ) where $C = \{1, 2\}$.

Both components have three possible states: $S_1 = S_2 = \{0, 1, 2\}$.

In this case the component states are identical to the physical states:

 $f_i(j) = j, \quad j \in S_i \quad \text{ and } i \in C.$

The structure function is given by:

$$\phi(X_1(t), X_2(t)) = \min(f_1(X_1(t)), f_2(X_2(t))).$$

Finally, we assume that the component state variables are independent, and that for a given *t* we have:

$$P[X_1(t) = j] = p_j > 0, \quad j \in S_1.$$

 $P[X_2(t) = j] = q_j > 0, \quad j \in S_2.$

We assume that the component state processes are independent, and that for a given *t* we have:

$$P[X_1(t) = j] = p_j > 0, \quad j \in S_1.$$

 $P[X_2(t) = j] = q_j > 0, \quad j \in S_2.$

It is then easy to see that:

$$\begin{split} &P[\phi(0,X_2(t)) \neq \phi(2,X_2(t))] = q_1 + q_2, \\ &P[\phi(1,X_2(t)) \neq \phi(0,X_2(t))] = q_1 + q_2, \\ &P[\phi(2,X_2(t)) \neq \phi(1,X_2(t))] = q_2, \\ &P[\phi(X_1(t),0) \neq \phi(X_1(t),2)] = p_1 + p_2, \\ &P[\phi(X_1(t),1) \neq \phi(X_1(t),0)] = p_1 + p_2, \\ &P[\phi(X_1(t),2) \neq \phi(X_1(t),1)] = p_2. \end{split}$$

Hence, we get

$$\begin{split} I_{NB}^{(1)}(t) &= p_0(q_1+q_2) + p_1(q_1+q_2) + p_2q_2 = q_1+q_2-p_2q_1, \\ I_{NB}^{(2)}(t) &= q_0(p_1+p_2) + q_1(p_1+p_2) + q_2p_2 = p_1+p_2-p_1q_2, \\ I_{PB}^{(1)}(t) &= p_2(q_1+q_2) + p_0(q_1+q_2) + p_1q_2 = q_1+q_2-p_1q_1, \\ I_{PB}^{(2)}(t) &= q_2(p_1+p_2) + q_0(p_1+p_2) + q_1p_2 = p_1+p_2-p_1q_1. \end{split}$$

We observe that $I_{PB}^{(1)}(t) > I_{PB}^{(2)}(t)$ if and only if $q_1 + q_2 > p_1 + p_2$.

However, assuming that $q_1 + q_2 > p_1 + p_2$ and that $p_1 < p_2$ and $q_2 < q_1$, it is possible to obtain the opposite ranking with respect to the n-Birnbaum measure.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Assume e.g., that $p_1 = 0.20$, $p_2 = 0.35$, $q_1 = 0.40$ and $q_2 = 0.20$. Then we have:

$$q_1 + q_2 = 0.60 > p_1 + p_2 = 0.55$$

 $p_2q_1 = 0.14 > p_1q_2 = 0.04$
 $p_1q_1 = 0.08$

Hence, we get:

$$\begin{split} I_{NB}^{(1)}(t) &= q_1 + q_2 - p_2 q_1 = 0.46, \\ I_{NB}^{(2)}(t) &= p_1 + p_2 - p_1 q_2 = 0.51, \\ I_{PB}^{(1)}(t) &= q_1 + q_2 - p_1 q_1 = 0.52, \\ I_{PB}^{(2)}(t) &= p_1 + p_2 - p_1 q_1 = 0.47. \end{split}$$

That is, $I_{NB}^{(1)}(t) < I_{NB}^{(2)}(t)$ while $I_{PB}^{(1)}(t) > I_{PB}^{(2)}(t)$.

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

イロト イヨト イヨト イヨト

For $i \in C$, $j \in S_i$, and k = 1, 2, ... we introduce:

 $W_{kj}^{(i)} = k$ th waiting time in state *j* for component *i*,

We assume that all waiting times are independent and exponentially distributed with:

$$E[W_{kj}^{(1)}] = \begin{cases} 4.5 & \text{for } j = 0\\ 2.0 & \text{for } j = 1\\ 3.5 & \text{for } j = 2 \end{cases}$$
$$E[W_{kj}^{(2)}] = \begin{cases} 4.0 & \text{for } j = 0\\ 4.0 & \text{for } j = 1\\ 2.0 & \text{for } j = 2 \end{cases}$$

• • • • • • • • • • • • •

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

Multistate systems

STK 4400 23 / 31

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

Multistate systems

STK 4400 24 / 31

Importance based on expected physical criticality

The *n**-*Birnbaum measure* of importance of component *i* at time *t*, denoted $I_{NB}^{*(i)}(t)$, is the expected effect of changing *i* to its next state at time *t*:

$$I_{\mathsf{NB}}^{*(i)}(t) = \mathsf{E}\left[\phi(\mathsf{X}_i(t), \mathsf{X}(t)) - \phi(\mathsf{X}_i^+(t), \mathsf{X}(t))\right].$$

The *p**-*Birnbaum measure* of importance of component *i* at time *t*, denoted $I_{NB}^{*(i)}(t)$, is the expected effect of changing *i* to its previous state at time *t*:

$$I_{PB}^{*(i)}(t) = E \left| \phi(X_i^-(t), \boldsymbol{X}(t)) - \phi(X_i(t), \boldsymbol{X}(t)) \right|.$$

NOTE: In the binary case all the different measures are the same:

$$I_{NB}^{*(i)}(t) = I_{NB}^{(i)}(t) = I_{PB}^{*(i)}(t) = I_{PB}^{(i)}(t) = I_{B}^{(i)}(t).$$

Example 2

Consider a multistate system (C, ϕ) where $C = \{1, 2\}$, and where $S_1 = \{0, 1\}$ and $S_2 = \{0, 1, 2\}$.

Moreover, we assume that:

$$egin{aligned} f_1(j) &= 2j, \quad j \in S_1, \ f_2(j) &= j, \quad j \in S_2. \end{aligned}$$

As before, the structure function is given by:

$$\phi(X_1(t), X_2(t)) = \min(f_1(X_1(t)), f_2(X_2(t))).$$

Finally, we again assume that the component state processes are independent, and that for a given *t* we have:

$$P[X_1(t) = j] = p_j > 0, \quad j \in S_1,$$

 $P[X_2(t) = j] = q_j > 0, \quad j \in S_2.$

A (1) > A (2) > A

We then get:

$$\begin{aligned} & E|\phi(0, X_2(t)) - \phi(1, X_2(t))| = q_1 \cdot 1 + q_2 \cdot 2 = q_1 + 2q_2 \\ & E|\phi(1, X_2(t)) - \phi(0, X_2(t))| = q_1 \cdot 1 + q_2 \cdot 2 = q_1 + 2q_2 \\ & E|\phi(X_1(t), 0) - \phi(X_1(t), 2)| = 2p_1 \\ & E|\phi(X_1(t), 1) - \phi(X_1(t), 0)| = p_1 \\ & E|\phi(X_1(t), 2) - \phi(X_1(t), 1)| = p_1 \end{aligned}$$

Hence, it follows that:

$$I_{NB}^{*(1)}(t) = p_0 \cdot (q_1 + 2q_2) + p_1 \cdot (q_1 + 2q_2) = q_1 + 2q_2$$
$$I_{NB}^{*(2)}(t) = q_0 \cdot 2p_1 + q_1 \cdot p_1 + q_2 \cdot p_1 = (1 + q_0)p_1$$

We also have:

$$E[f_1(X_1(t))] = p_0 \cdot 0 + p_1 \cdot 2 = 2p_1$$

$$E[f_2(X_2(t))] = q_0 \cdot 0 + q_1 \cdot 1 + q_2 \cdot 2 = q_1 + 2q_2.$$

We then assume that $E[f_1(X_1(t))] = E[f_2(X_2(t))]$. This implies that:

$$I_{NB}^{*(1)}(t) = q_1 + 2q_2 = 2p_1$$

 $I_{NB}^{*(2)}(t) = (1 + q_0)p_1$

Hence, since we must have $q_0 < 1$, we conclude that $I_{NB}^{*(1)}(t) > I_{NB}^{*(2)}(t)$.

Conclusions and further work

SUMMARY:

- Multistate systems defined with emphasis on physical interpretation
- Importance measures defined relative to next and previous component states
- Framework allowing a physical interpretation of importance measures
- Simulation software available for calculating availability and importance

FURTHER WORK:

- Extensions to more complex life-cycles
- Time independent versions of importance measures

• • • • • • • • • • • •

[1] R. E. Barlow and F. Proschan. Importance of system components and fault tree events. *Stochastic Process Appl* 1975; 3:153–173.

[2] Z. W. Birnbaum. On the importance of different components in a multicomponent system. In Krishnaia PR, editor. *Multivariate Analysis - II*; 1969; 581–592.

[3] A. B. Huseby and B. Natvig. Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems. *Reliability Eng. and Sys. Safety*, 2012; 119: 186–198.

[4] B. Natvig and J. Gåsemyr. New results on the Barlow-Proschan and Natvig measures of component importance in nonrepairable and repairable systems. *Methodology and Computing in Applied Probability*, 2009; 11: 603–620.

・ロン ・四 ・ ・ ヨン ・ ヨン

[5] J. E. Ramirez-Marquez, C. M. Rocco, B. A. Gebre, D. W. Coit, M. Tortorella. New insights on multi-state component criticality and importance. *Reliability Eng. and Sys. Safety*, 2006; 91: 894–904.

[6] J. E. Ramirez-Marquez and D. W. Coit. Multi-state component criticality analysis for reliability improvement in multi-state systems. *Reliability Eng. and Sys. Safety*, 2007; 92: 1608–1619.

[7] C. M. Rocco, J. Moronta, J. E. Ramirez-Marquez, K. Barker. Effects of multi-state links in network community detection. *Reliability Eng. and Sys. Safety*, 2017; 163: 46–56.

[8] S. Si, G. Levitin, H. Dui and S. Sun. Component state-based integrated importance measure for multi-state systems. *Reliability Eng. and Sys. Safety*, 2013; 116: 75–83.

< 日 > < 同 > < 回 > < 回 > < □ > <