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Environmental contours

Let (T ,H) ∈ R2 be a vector of environmental variables where e.g.,:

T = Wave period
H = Significant wave height

The distribution of (T ,H) is assumed to be absolutely continuous
with respect to the Lebesgues measure in R2.
An environmental contour is then defined as the boundary of a set
B ⊆ R2, and denoted ∂B.
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Contours and failure regions

The environmental contour ∂B represents possible design requirements
for some structure of interest.

The failure region F ⊆ R2 of a structure is the set of states of the
environmental variables where the structure fails.

The exact shape of the failure region of a structure is typically be
unknown at this stage.

It may still be possible to argue that the failure region belongs to a
certain family denoted by E .

A contour ∂B will be evaluated with respect to the family E .

The family E depends on B in such a way that F ∩ B ⊆ ∂B for all F ∈ E .

If the size of B is increased (i.e., the structure is strengthened), the
family of possible failure regions, E , is reduced, and hence also the
failure probability.
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Environment contour and failure region
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Convex failure regions

It is often natural to assume that a failure region is convex:

(t  , h  )1      1

(t  , h  )2      2

This means that if the structure fails at two distinct points (t1, h1) and
(t2, h2), then it also fails for all states on the straight line between these
points.
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Exceedance probability

The exceedance probability of B with respect to E is defined as:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}.

NOTE: The exceedance probability is an upper bound on the failure
probability of the structure assuming that the true failure region is a
member of the family E .

For a given target exceedance probability pe ∈ (0, 0.5) our goal is to
find a set B such that Pe(B, E) = pe.
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Maximal failure regions

A failure region F ∈ E is said to be maximal if there does not exist a
region F ′ ∈ E such that F ⊂ F ′.

The family of maximal regions in E is denoted by E∗. If F1,F2 ∈ E and
F1 ⊆ F2, we obviously have:

P[(T ,H) ∈ F1] ≤ P[(T ,H) ∈ F2].

From this it follows that:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}

= sup{P[(T ,H) ∈ F ] : F ∈ E∗}.
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Supporting halfspaces
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Sea state:

T = Wave period

H = Sign. wave height
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Halfspace Π+

Halfspace Π-

Π is a supporting hyperplane of the convex set B

Π+ is a supporting halfspace of the convex set B
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Halfspaces and maximal failure regions

Proposition (Halfspace failure region)

Assume that B is convex and that E is a family of convex sets such that
F ∩ B ⊆ ∂B for all F ∈ E . We then have:

E∗ = P(B) = The family of supporting half-spaces of B.

Moreover, we have:

Pe(B, E) = sup{P[(T ,H) ∈ Π+] : Π+ ∈ P(B)}.
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Supporting hyperplane theorems

Theorem (Projection hyperplane)

Let S ∈ Rn be a closed convex set, and assume that x0 /∈ S. Then
there exists a supporting hyperplane Π = {x : c′x = d} of S such that:

c′x ≤ d for all x ∈ S, and c′x0 > d .
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Convex contours

Given a target exceedance probability, pe ∈ (0, 0.5) our first aim is to
find a convex set B ⊆ R2 such that Pe(B, E) = pe, where E is the family
of all convex failure regions F ⊆ R2 such that F ∩ B ⊆ ∂B.

We start out by introducing the pe-level percentile function of the joint
distribution of (T ,H):

C(θ) = inf{C : P[T cos(θ) + H sin(θ) > C] = pe}, θ ∈ [0, 2π).

We observe that:

C(θ) = The (1 − pe)-percentile of Y (θ) = T cos(θ) + H sin(θ)
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Convex contours (cont.)

For θ ∈ [0, 2π) we also introduce :

Π(θ) = {(t , h) : t cos(θ) + h sin(θ) = C(θ)}
Π+(θ) = {(t , h) : t cos(θ) + h sin(θ) ≥ C(θ)},
Π−(θ) = {(t , h) : t cos(θ) + h sin(θ) ≤ C(θ)}.

By the definition of C(θ) and the assumption that the distribution of
(T ,H) is absolutely continuous with respect to the Lebesgues
measure in R2 it follows that for all θ ∈ [0, 2π) we have:

P[(T ,H) ∈ Π+(θ)] = P[T cos(θ) + H sin(θ) ≥ C(θ)]

= P[T cos(θ) + H sin(θ) > C(θ)] = pe
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Proper convex contours

We now assume that there exists a closed convex set B such that:

P(B) = {Π+(θ) : θ ∈ [0, 2π)}. (1)

That is, Π+ ∈ P(B) if and only if Π+ = Π+(θ) for some θ ∈ [0, 2π).

Thus, we may choose any Π+ ∈ P(B), and let θ ∈ [0, 2π) be such that
Π+ = Π+(θ). It then follows that:

P[(T ,H) ∈ Π+] = P[(T ,H) ∈ Π+(θ)]

= P[T cos(θ) + H sin(θ) > C(θ)] = pe.

Since this holds for any Π+ ∈ P(B), we must have:

Pe(B, E) = pe.

If there exists a closed convex set B such that (1) holds, ∂B is said to be a
proper convex contour.
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The intersection contour formula

Theorem (Intersection contour)
Assume that there exists a closed convex set B satisfying (1).

Then B is given by:
B =



θ∈[0,2π)
Π−(θ).

PROOF: By (1) it follows that:

B ⊆ Π−(θ), for all θ ∈ [0, 2π).

This implies that:
B ⊆



θ∈[0,2π)
Π−(θ).
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The intersection contour formula (cont.)

Assume then that there exists a point (t0, h0) ∈


θ∈[0,2π) Π
−(θ) such

that (t0, h0) /∈ B.

By the projection hyperplane theorem it follows that there exists a
hyperplane Π = {(t , h) : c1t + c2h = d} such that:

c1t + c2h ≤ d for all (t , h) ∈ B,
c1t0 + c2h0 > d .

Without loss of generality we may assume that c = (c1, c2)
′ is a unit

vector of the form (cos(θ0), sin(θ0))
′ for some θ0 ∈ [0, 2π).

Thus, the above inequalities may be rewritten as:

t cos(θ0) + h sin(θ0) ≤ d , for all (t , h) ∈ B,
t0 cos(θ0) + h0 sin(θ0) > d .
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The intersection contour formula (cont.)

However, since (t0, h0) ∈


θ∈[0,2π) Π
−(θ), it follows that we also have:

t0 cos(θ0) + h0 sin(θ0) ≤ C(θ0).

Hence, by combining these relations we get that:

t cos(θ0) + h sin(θ0) < C(θ0), for all (t , h) ∈ B,

which implies that Π(θ0) cannot be a supporting hyperplane of B. This
contradicts the assumption (1). Hence, we conclude that if (1) holds
true, we must have:

B =


θ∈[0,2π)
Π−(θ). (2)
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The intersection contour formula (cont.)

In a given practical situation the C-function must be estimated
pointwise using Monte Carlo simulations.

Moreover, B will typically be approximated by a polygon:

B̂ =
n

i=1

Π̂−(θi),

where θ1, . . . , θn ∈ [0,π) are suitably chosen angles.

In the following we shall see how this can be done.
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Estimating C(θ) using Monte Carlo simulation

Assume that we have a sample from the joint distribution of (T ,H)
generated using Monte Carlo simulation:

(T1,H1), . . . , (Tn,Hn)

For a given angle θ ∈ [0, 2π) we calculate the projections of these
points onto the unit vector (cos(θ), sin(θ)), i.e.:

Yi(θ) = Ti cos(θ) + Hi sin(θ), i = 1, . . . , n

These projections are then sorted in ascending order:

Y(1)(θ) ≤ Y(2)(θ) ≤ · · · ≤ Y(n)(θ).
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Estimating C(θ) using crude Monte Carlo (cont.)

Assuming that k ≤ n is an integer such that:

k
n
≈ 1 − pe.

Then C(θ) can be estimated by:

Ĉ(θ) = Y(k)(θ)
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Challenges using crude Monte Carlo simulation

In many typical applications pe can be very small, i.e., less than
0.1%. In such cases a large number of simulations are needed in
order to obtain stable estimates.
Processing the results in order to obtain the contours can be
much more time consuming.
Storing a large number of simulation results in the computer
memory can represent a challenge.
Most of the simulations yield results close to the central area of
the joint distribution, and thus very few results provide information
about the contour area.

An improved simulation method will be given later.
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Polygon approximation of B

At this stage we assume that we have estimated the C-function for a suitable
set of angles θ1, . . . , θn ∈ [0,π), and we let Ĉ(θ1), . . . , Ĉ(θn) denote the
corresponding estimates. Using these estimates, we define:

Π̂+(θi) = {(t , h) : t cos(θ) + h sin(θ) ≥ Ĉ(θi)}

Π̂(θi) = {(t , h) : t cos(θ) + h sin(θ) = Ĉ(θi)}

Π̂−(θi) = {(t , h) : t cos(θ) + h sin(θ) ≤ Ĉ(θi)}

B can then be approximated by a polygon of the following form:

B̂ =
n

i=1

Π̂−(θi).

By considering the intersections between consecutive hyperplanes Π(θi) and
Π(θi+1), we find the corners of the polygon, and hence also the polygon itself.

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours STK 4400 21 / 93



Polygon approximation of B (cont.)

Estimating the polygon B̂ using only a few simulations and
hyperplanes:
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Figure: 1000 simulations, n = 90.
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Polygon approximation of B (cont.)

By increasing the number of simulations and hyperplanes, a smoother
contour is obtained:
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Figure: 1000000 simulations, n = 360.
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Polygon approximation of B (cont.)

If we zoom in on the border of B̂, we still find substantial "irregularities":
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Figure: 1000000 simulations, n = 360.
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Supporting hyperplanes and contours

Π(θ   )j-1

Π(θ )j

Π(θ    )j+1

B

Figure: Ideal case: All hyperplanes support B

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours STK 4400 25 / 93



Supporting hyperplanes and contours (cont.)

Π(θ   )j-1

Π(θ )j

Π(θ    )j+1

B

Figure: Irregular case: The hyperplane Π(θj) does not support B
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The "true" contour

In the following we assume that C(θ) is known and differentiable for all
θ ∈ [0, 2π). The boundary ∂B can then be derived from C(θ) as follows:

For a given angle θ ∈ [0, 2π) and a small number δ > 0 consider the
intersection between Π(θ) and Π(θ + δ).

The point (t , h) where the two hyperplanes intersect satisfies:

t cos(θ) + h sin(θ) = C(θ),

t cos(θ + δ) + h sin(θ + δ) = C(θ + δ),

Multiplying the first equation by sin(θ + δ) and the second equation by
− sin(θ), we get:

t cos(θ) sin(θ + δ) + h sin(θ) sin(θ + δ) = sin(θ + δ)C(θ),

t cos(θ + δ)(− sin(θ)) + h sin(θ + δ)(− sin(θ)) = − sin(θ)C(θ + δ),
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The "true" contour (cont.)

Adding these two equations we get:

t [cos(θ) sin(θ + δ)− cos(θ + δ) sin(θ)] = sin(θ + δ)C(θ)− sin(θ)C(θ + δ).

We notice that:

cos(θ) sin(θ + δ)− cos(θ + δ) sin(θ) = sin(θ + δ − θ) = sin(δ),

and hence, t is given by:

t =
sin(θ + δ)C(θ)− sin(θ)C(θ + δ)

sin(δ)
.

By a similar argument we get that h is given by:

h =
− cos(θ + δ)C(θ) + cos(θ)C(θ + δ)

sin(δ)
.
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The "true" contour (cont.)

As δ → 0 the intersection point (t , h) will converge to a point in Π(θ) which we
denote by (t(θ), h(θ)).

Using l’Hôpital’s rule we get that:

lim
δ→0+

t = t(θ) = lim
δ→0+

cos(θ + δ)C(θ)− sin(θ)C′(θ + δ)

cos(δ)

= C(θ) cos(θ)− C′(θ) sin(θ),

and

lim
δ→0+

h = h(θ) = lim
δ→0+

sin(θ + δ)C(θ) + cos(θ)C′(θ + δ)

cos(δ)

= C(θ) sin(θ) + C′(θ) cos(θ).
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The "true" contour (cont.)

Hence, (t(θ), h(θ)) can be written as:


t(θ)
h(θ)


=


C(θ) −C′(θ)
C′(θ) C(θ)


·

cos(θ)
sin(θ)


, (3)

where C′(θ) denotes the derivative of C(θ).

We then let:
∂B = {(t(θ), h(θ)) : θ ∈ [0, 2π)}.

Assuming that ∂B is a simple closed curve, B is the set enclosed by ∂B.

If B is convex, this implies that B ⊆ Π−(θ), and that Π+(θ) ∩ B ∕= ∅ for all
θ ∈ [0, 2π), and hence it has the correct exceedance probability.

Unfortunately, this may not always be true.
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Convexity properties of B

We assume that the C(θ) is two times differentiable, and consider the
derivative of (t(θ), h(θ)) with respect to θ.

By (3) we get that:

t ′(θ) = C′(θ) cos(θ)− C(θ) sin(θ)− C′′(θ) sin(θ)− C′(θ) cos(θ)

= −[C(θ) + C′′(θ)] sin(θ)

h′(θ) = C′′(θ) cos(θ)− C′(θ) sin(θ) + C′(θ) sin(θ) + C(θ) cos(θ)

= [C(θ) + C′′(θ)] cos(θ).

That is, we have:


t ′(θ)
h′(θ)


= [C(θ) + C′′(θ)] ·


− sin(θ)
cos(θ)


, (4)

where C′′(θ) denotes the second derivative of C(θ).

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours STK 4400 31 / 93



Convexity properties of B (cont.)

As θ runs through [0, 2π), the point (t(θ), h(θ)) runs counterclockwise through
the boundary ∂B.

∂B

B (t(θ), h(θ))

(t(θ+Δ), h(θ+Δ))

(t'(θ+Δ), h'(θ+Δ))

(t'(θ), h'(θ))

The derivative (t ′(θ), h′(θ)) is the tangent vector to ∂B at (t(θ), h(θ)).
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Convexity properties of B (cont.)

NOTE: Intuitively, the set B is convex if the angle between (t ′(θ), h′(θ)) and
(t ′(θ +∆), h′(θ +∆)) is positive for any θ ∈ [0, 2π) and small ∆ > 0.

In order to check this, we define:

v(θ) = (t ′(θ), h′(θ), 0), θ ∈ [0, 2π),

and calculate:

v(θ)× v(θ +∆) =



i j k

t ′(θ) h′(θ) 0

t ′(θ +∆) h′(θ +∆) 0



= (0, 0, t ′(θ) · h′(θ +∆)− h′(θ) · t ′(θ +∆))
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Convexity properties of B (cont.)

By the right-hand rule of the cross-product the angle between (t ′(θ), h′(θ), 0)
and (t ′(θ +∆), h′(θ +∆), 0) is positive if and only if:

t ′(θ) · h′(θ +∆)− h′(θ) · t ′(θ +∆) > 0.
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Convexity properties of B (cont.)
Inserting the expressions for the derivatives given in (4) we get:

t ′(θ) · h′(θ +∆)− h′(θ) · t ′(θ +∆)

= [C(θ) + C′′(θ)] · [C(θ +∆) + C′′(θ +∆)]

· (− sin(θ) cos(θ +∆) + sin(θ +∆) cos(θ))

= [C(θ) + C′′(θ)] · [C(θ +∆) + C′′(θ +∆)] sin(∆).

Since ∆ > 0 is small, we have sin(∆) > 0. Hence, the angle between
(t ′(θ), h′(θ)) and (t ′(θ +∆), h′(θ +∆)) is positive if and only if:

[C(θ) + C′′(θ)] · [C(θ +∆) + C′′(θ +∆)] > 0, for all θ ∈ [0, 2π),∆ > 0 small,

By changing the origin of the coordinate system so that C > 0, it can be
shown that there exists at least one θ0 ∈ [0, 2π) such that C(θ) + C′′(θ) > 0.
Hence, B is convex if and only if:

C(θ) + C′′(θ) > 0 for all θ ∈ [0, 2π).
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Example: A bivariate normal distribution

Assume that T and H are independent normally distributed with E(T ) = µT ,
E(H) = µH and SD(T ) = SD(H) = σ.

Thus, T̃ = (T − µT )/σ and H̃ = (H − µH)/σ are independent standard
normally distributed.

By the rotational symmetry property of the standard bivariate normal
distribution it follows that:

P[T̃ cos(θ) + H̃ sin(θ) > qe] = pe, for all θ ∈ [0, 2π),

where qe denotes the (1 − pe)-percentile of the standard normal distribution.

Hence, for all θ ∈ [0, 2π) we get that:

P[T cos(θ) + H sin(θ) > µT cos(θ) + µH sin(θ) + σqe] = pe.
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Convexity properties of B (cont.)
Thus, we have:

C(θ) = µT cos(θ) + µH sin(θ) + σqe,

C′(θ) = −µT sin(θ) + µH cos(θ)

By inserting these expressions into (3) we obtain:

t(θ) = C(θ) cos(θ)− C′(θ) sin(θ)

= [µT cos(θ) + µH sin(θ) + σqe] cos(θ)

− [−µT sin(θ) + µH cos(θ)] sin(θ)

= µT + σqe cos(θ)

h(θ) = C′(θ) cos(θ) + C(θ) sin(θ)

= [−µT sin(θ) + µH cos(θ)] cos(θ)

+ [µT cos(θ) + µH sin(θ) + σqe] sin(θ)

= µH + σqe sin(θ)
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Constructing convex contours (cont.)

Putting it all together we conclude that ∂B can be written as:


t(θ)
h(θ)


=


µT
µH


+


σqe 0
0 σqe


·

cos(θ)
sin(θ)



Moreover, the second derivative of C is given by:

C′′(θ) = −µT cos(θ)− µH sin(θ).

Hence, we get:

C(θ) + C′′(θ) = σqe > 0, for all θ ∈ [0, 2π).

In this case ∂B is a circle with radius σqe centered at (µT , µH). Thus, ∂B is a
simple closed curve, and B is indeed a convex set.
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Numerical example based on MC simulation

EXAMPLE: An environmental contour estimated by using Monte Carlo
simulation.

We let pe = 1.37 · 10−5, which corresponds to a return period of 25
years.

The joint long-term models for significant wave height, denoted by H,
and wave period denoted by T is given by:

fT ,H(t , h) = fH(h)fT |H(t |h)

where a three-parameter Weibull distribution is used for the significant
wave height, H, and a lognormal conditional distribution is used for the
wave period, T .
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Numerical example (cont.)

The Weibull distribution is parameterized by a location parameter, γ, a
scale parameter α, and a shape parameter β:

fH(h) =
β

α


h − γ

α

β−1

e−[(h−γ)/α]β , h ≥ γ.

The lognormal distribution has two parameters, the log-mean µ and
the log-standard deviation σ and is expressed as:

fT |H(t |h) =
1

t
√

2π
e−[(ln(t)−µ)2/(2σ2)], t ≥ 0,
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Numerical example (cont.)

The dependence between H and T is modelled by letting the
parameters µ and σ be expressed in terms of H as follows:

µ = E [ln(T )|H = h] = a1 + a2ha3 ,

σ = SD[ln(T )|H = h] = b1 + b2eb3h.

The parameters a1, a2, a3, b1, b2, b3 are estimated using available data
from the relevant geographical location.
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Numerical example based on MC simulation (cont.)

TOTAL SEA – WEST OF SHETLAND

Table: Fitted parameter for the three-parameter Weibull distribution for
significant wave heights

α β γ
2.259 1.285 0.701

Table: Fitted parameter for the conditional log-normal distribution for wave
periods

i = 1 i = 2 i = 3
ai 1.069 0.898 0.243
bi 0.025 0.263 -0.148
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Numerical example based on MC simulation (cont.)
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Figure: 1000000 simulations, n = 360.
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Measuring angles along an environmental contour
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Estimated angles along ∂B.
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Figure: 1000000 simulations, n = 360.
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Estimated values for C(θ) + C ′′(θ)
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Figure: 1000000 simulations, n = 360.
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Smoothing the estimated C-curve

To get rid of the loops along the contour, we may use a smoothed version of
the estimated C-curve.

C̃(θj) =

+k
i=−k ωiC(θj+i)
+k

i=−k ωi
, j = 1, . . . , n,

for suitable integer k ≥ 0 and weights ω−k , . . . ,ω+k .

NOTE: In the above formula the indices are "looped", so that θn+i = θi ,
i = 1, 2, . . . , k , while θ1−i = θn+1−i , i = 1, 2, . . . , k .

In the following example we have used k = 5 and:

ω−i = ω+i = (6 − k), i = 0, 1, . . . , 5.
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Original (red) and smoothed (green) C-curves
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Figure: 1000000 simulations, n = 360.
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Estimated angles along ∂B smoothed
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Figure: 1000000 simulations, n = 360.
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Estimated values for C(θ) + C ′′(θ) smoothed
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Figure: 1000000 simulations, n = 360.
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Original and smoothed contours
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Figure: 1000000 simulations, n = 360.
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Transformed contours

Transformed contours
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Transformed contours
The Rosenblatt transformation, denoted Ψ, depends on the joint distribution
of (T ,H), and is such that if:

(T ′,H ′) = Ψ(T ,H),

then T ′ and H ′ are independent standard normally distributed.

The normal space = The space containing (T ′,H ′).

The environmental space = The space containing (T ,H).

For a given set B′ in the normal space, we let E ′ be the family of all convex
sets F ′ in the normal space such that F ′ ∩ B′ ⊆ ∂B′.

If B′ is convex, it follows by the halfspace failure region proposition that:

E ′∗ = P(B′).
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Transformed contours (cont.)
Let pe < 0.5 be the desired exceedance probability, and let r > 0 denote the
(1 − pe)-percentile in the standard normal distribution.

A contour ∂B′ for (T ′,H ′) is constructed by letting B′ be a circle centered at
the origin and with radius r .

B'

Normal space:

r T'

H'

NOTE: Since T ′ and H ′ are standard normally distributed, it follows that:

P[T ′ > r ] = P[H ′ > r ] = pe.
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Transformed contours (cont.)
If Π+ ∈ P(B′), it follows by the rotational symmetry property of normal
distribution that:

P[(T ′,H ′) ∈ Π+] = P[T ′ > r ] = pe.

B'
r

Π+

B'
r

T' > r

T'T'

H'H'

Since this is true for all Π+ ∈ P(B′), we then get:

Pe(B′, E ′) = sup{P[(T ′,H ′) ∈ Π+] : Π+ ∈ P(B′)} = pe.
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Transformed contours (cont.)

The set B is then obtained by transforming the set B′ from normal
space back to the environmental space using the inverse Rosenblatt
transformation.

That is, we let B be given by:

B = Ψ−1(B′) = {(t , h) = Ψ−1(x , y) : (x , y) ∈ B′}

B = Ψ-1(B' )B'

Normal space: Environmental space:

r
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The inverse Rosenblatt transformation

The transformation of (T ′,H ′) into (T ,H) is done in two steps:

Step 1. Transform (T ′,H ′) into (U,V ) such that U and V are
independent and uniformly distributed on [0, 1].

Step 2. Transform (U,V ) into (T ,H)

We let Φ denote the cumulative distribution function of the standard
normal distribution. Thus, if X is standard normally distributed, we
have:

P(X ≤ x) = Φ(x).

The cumulative distribution function of H is denoted FH , while the
conditional distribution function of T given H is denoted FT |H .
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The inverse Rosenblatt transformation (cont.)

Step 1. In this step we let:

U = Φ(H ′),

V = Φ(T ′).

This implies that for all u, v ∈ [0, 1] we have:

P(U ≤ u) = P(Φ(H ′) ≤ u) = P(H ′ ≤ Φ−1(u))

= Φ(Φ−1(u)) = u,

P(V ≤ v) = P(Φ(T ′) ≤ v) = P(T ′ ≤ Φ−1(v))

= Φ(Φ−1(v)) = v .

Hence, U and V are independent and uniformly distributed on [0, 1].
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The inverse Rosenblatt transformation (cont.)

Step 2. In this step we let:

H = F−1
H (U),

T = F−1
T |H(V |H).

This implies that for all h, t we have:

P(H ≤ h) = P(F−1
H (U) ≤ h)

= P(U ≤ FH(h)) = FH(h),

P(T ≤ t |H = h) = P(F−1
T |H(V |h) ≤ t |H = h)

= P(V ≤ FT |H(t |h)|H = h) = FT |H(t |h).
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Mixtures of distributions

Handling discrete mixtures of distributions
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Mixtures of distributions

Mixtures of distributions occur when modelling environmental variables
which depend on different background variables:

Seasonal effects – Separate models fitted for each season (or
month)

Directional effects – Separate models fitted for each direction
(north, east, south and west)

NOTE: Only discrete mixtures will be considered here.
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Mixtures of distributions (cont.)

We focus on the distribution of H only. The conditional distribution of
T |H is handled completely similar.

Assume that the cumulative distribution function for H is a the mixture
of FH,1, . . . ,FH,m:

FH(h) =
m

j=1

αjFH,j(h),

where αj ≥ 0, j = 1, . . . ,m, and
m

j=1 αj = 1.

We assume that FH,1, . . . ,FH,m are m cumulative distribution functions
which are all continuous and strictly increasing. Moreover, we assume
that the inverse functions F−1

H,1, . . . ,F
−1
H,m are known and easy to

calculate.
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Mixtures of distributions (cont.)

Assume that U = u, and that we want to compute H, h = F−1
H (u). This

is equivalent to solving the following equation:

FH(h) =
m

j=1

αjFH,j(h) = u.

We claim that if h is the solution to this equation, then:

hmin = min
1≤j≤m

hj ≤ h ≤ hmax = max
1≤j≤m

hj ,

where:
hj = F−1

H,j (u), j = 1, . . . ,m.
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Mixtures of distributions (cont.)

To prove this we note that since the cumulative distribution functions are
non-decreasing and

m
j=1 αj = 1, we have:

FH(hmin) =
m

j=1

αjFH,j(hmin) ≤
m

j=1

αjFH,j(hj) =
m

j=1

αju = u

Similarly, we have:

FH(hmax) =
m

j=1

αjFH,j(hmax) ≥
m

j=1

αjFH,j(hj) =
m

j=1

αju = u

Since FH,1, . . . ,FH,m are continuous and strictly increasing, it follows that FH
is continuous and strictly increasing as well. Thus, since:

FH(hmin) ≤ u ≤ FH(hmax)

there must exist some h ∈ [hmin, hmax ] such that FH(h) = u.
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Mixtures of distributions (cont.)

Having identified the interval [hmin, hmax ] which must contain a unique
h such that:

FH(h) =
m

j=1

αjFH,j(h) = u.

the solution to this equation can easily be found numerically, e.g., by
using the bisection method.
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Exceedance probability of transformed contours

Estimating the exceedance probability of transformed contours
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Convex failure regions in the normal space

In the environmental space we may compute the exceedance probability of
the contour for the case where E is given by:

E = {F = Ψ−1(F ′) : F ′ ∈ E ′},

If we do this, we get:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}
= sup{P[(T ,H) ∈ Ψ−1(F ′)] : F ′ ∈ E ′}
= sup{P[(T ′,H ′) ∈ F ′] : F ′ ∈ E ′}
= sup{P[(T ′,H ′) ∈ F ′] : F ′ ∈ E ′∗}
= sup{P[(T ′,H ′) ∈ Π+] : Π+ ∈ P(B′)} = pe.

Hence, the contour ∂B has the desired exceedance probability with respect to
the family E of failure regions.
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Exceedance probability of transformed contours

PROBLEM: We observe that E consists of transformed convex sets, where
the transformation depends on the joint distribution of (T ,H).

Environmental conditions may vary a lot from location to location. If the family
E depends on the joint distribution of (T ,H), E also varies from location to
location.

The true failure region of a given mechanical construction, however, should
be the same irrespective of location.

In the following we instead assume that E is the family of convex sets F such
that F ∩ B ⊆ ∂B.
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Convex failure regions in the environmental space

We recall that the exceedance probability of B with respect to E is defined as:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}.

Since a transformed set B may not itself be convex, the family of maximal
failure regions, E∗ is in general not equal to P(B). Hence, it turns out to be
difficult to go through all sets F ∈ E∗ in order to identify the set with the
highest probability.

Instead we work with a slightly modified family of failure regions denoted Ẽ ,
defined as follows:

Ẽ = {F̃(u) : u ∈ ∂B},

where F̃(u) is the set of all points v /∈ B that are visible from u.

A point v /∈ B is said to be visible from u if the line between u and v does not
intersect the interior of B.
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Visible points
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u

v1
v4

v2

v3

From the point u, the three points v1, v2 and v3 are visible, while the
point v4 is not visible.
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Visibility method

Proposition

Assume that F ∈ E . Then there exists a set F̃ ∈ Ẽ such that F ⊆ F̃ .

PROOF: Let F ∈ E . Then there exists a set F∗ ∈ E∗ such that F ⊆ F∗. Then
there must exist at least one point u ∈ ∂B such that u ∈ F∗. If this is not the
case, this contradicts that F∗ is a maximal failure region.

Now, let v ∈ F∗ be arbitrary. Since F∗ is convex, the line segment between u
and v is contained inside F∗.

Since F∗ ∩ B ⊆ ∂B, the line segment between u and v does not intersect the
interior of B.

Hence, v is visible from u, and since v was chosen arbitrarily, this implies that
all points in F∗ are visible from u.

Thus, by letting F̃ = F̃(u) ∈ Ẽ , we get that:

F ⊆ F∗ ⊆ F̃ .
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Visibility method (cont.)

Corollary

Let B be an environmental contour set. Then we have:

Pe(B, E) ≤ Pe(B, Ẽ)

PROOF: Let F ∈ E . Then by the above proposition there exists a set F̃ ∈ Ẽ
such that F ⊆ F̃ .

Hence, we have:
P[(T ,H) ∈ F ] ≤ P[(T ,H) ∈ F̃ ]

From this it follows that:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}

≤ sup{P[(T ,H) ∈ F̃ ] : F̃ ∈ Ẽ}

= Pe(B, Ẽ).
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Visible points - example 1
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Figure: Estimation of P((T ,H) ∈ F̃(u1)) using simulated visible points

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours STK 4400 73 / 93



Visible points - example 2
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Figure: Estimation of P((T ,H) ∈ F̃(u2)) using simulated visible points
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Visibility method (cont.)

It can be shown that if B is convex and ∂B is a differentiable curve, we
get that:

Pe(B, E) = Pe(B, Ẽ).

Thus, in such cases Pe(B, Ẽ) is exact. Furthermore, in general the sets
in Ẽ are almost convex. Thus, Pe(B, Ẽ) is typically a very good upper
bound on the true exceedance probability.

An efficient algorithm for estimating Pe(B, Ẽ) is given in Huseby et al
(2019).
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Numerical example
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Figure: Environmental contours for five individual submodels before mixing.
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Numerical example (cont.)
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Figure: Environmental contour for the mixed bivariate distribution.
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Numerical example (cont.)
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Figure: Estimated probabilities for the sets F̃(ui), i = 1, . . . , 360 for the
original environmental contour (green), the desired exceedance probability
(red) and an adjusted environmental contour (blue)
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Numerical example (cont.)

Figure: Environmental contour along with simulated outcomes in the sets
F̃(u105) (red scatter) and F̃(u205) (green scatter).
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Numerical example (cont.)
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Figure: Original (red curve) and adjusted (green curve) environmental
contours for the mixed bivariate distribution.
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Estimating C(θ) revisited

Improved estimation method
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Estimating C(θ) revisited

Assume that X and Y are independent and normally distributed with mean 0
and standard deviation 1. We then let:

R =


X 2 + Y 2,

V = atan2(Y ,X ),

where the function atan2(y , x) is defined as follows:

atan2(y , x) =






arctan( y
x ) if x > 0,

arctan( y
x ) + π if x < 0 and y ≥ 0,

arctan( y
x )− π if x < 0 and y < 0,

π
2 if x = 0 and y > 0,
−π

2 if x = 0 and y < 0,
undefined if x = 0 and y = 0.

This implies that R and V are the polar coordinates of (X ,Y ).
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Estimating C(θ) revisited (cont.)

Now R and V are independent, and Z = R2 is χ2-distributed with 2 degrees
of freedom, while V is R[0, 2π]-distributed.

This means that the density of Z is :

fZ (z) =
1
2

e−z/2, for z > 0,

which is an exponential distribution with rate λ = 1/2.

This implies that P(Z > z) = e−z/2.

Thus, the probability that (X ,Y ) is located outside a circle with centrum in
origin and with a radius r is equal to e−r2/2.
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Estimating C(θ) revisited (cont.)

To simulate from the distribution of (X ,Y ) we start by generating U
and V , where U ∼ R[0, 1] and V ∼ R[0, 2π].

We then let Z = −2 ln(U). Now, it is easy to show that Z gets the
density fZ . We also calculate R =

√
Z . Since R and V are the polar

coordinates to (X ,Y ), we find that:

X = R cos(V ) =
√

Z · cos(V ),

Y = R sin(V ) =
√

Z · sin(V ).

We then let (T ,H) = Ψ−1(X ,Y ), where Ψ−1 is the inverse Rosenblatt
transformation for the joint distributions of T and H. This way (T ,H)
gets the correct joint distribution.
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Estimating C(θ) revisited (cont.)

Let θ ∈ [0, 2π), and let S(θ) = T cos(θ) + H sin(θ).

For a given exceedance probability pe we wish to estimate C(θ) such that
P(S(θ) > C(θ)) = pe.

By simulating (T ,H) n times, each time calculating the resulting value of S(θ),
we can estimate C(θ) by the order observator S(k)(θ), where k is such that:

1 − k
n
=

n − k
n

≈ pe.

If pe is very small, i.e., 0.1%, a large number of simulations are needed in
order to obtain stable estimates.

Most of the simulations yield results close to the central area of the joint
distribution. Very few of the simulated values provide information about the
contour area.
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Alternative Monte Carlo sampling scheme

IDEA: Avoid sampling points from the central area of the joint
distribution, and just sample points close to the contour.

Simulate (X ,Y ) from the conditional distribution for (X ,Y ) given that
this vector falls outside a circle with radius, say r0.

Simulate (X ,Y ) from the conditional distribution given that
R =

√
X 2 + Y 2 > r0.

Simulate (X ,Y ) from the conditional distribution for (X ,Y ) given that
Z = X 2 + Y 2 > z0 = r2

0 .
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Alternative Monte Carlo sampling scheme (cont.)

The conditional distribution for Z given that Z > z0 is given by:

P(Z > z|Z > z0) =
P(Z > z


Z > z0)

P(Z > z0)
=

P(Z > z)
P(Z > z0)

= e−(z−z0)/2.

Hence, given that Z > z0, (Z − z0) is exponentially distributed with λ = 1/2.

Thus, we can simulate from the conditional distribution for Z given Z > z0 by
generating U ∼ R[0, 1] and let:

Z = z0 − 2 ln(U) = r2
0 − 2 ln(U).

The angle V is generated from the R[0, 2π]-distribution.

Finally, we let X =
√

Z cos(V ) and Y =
√

Z sin(V ), and (T ,H) = Ψ−1(X ,Y ),
where Ψ−1 is the inverse Rosenblatt transformation.
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Alternative Monte Carlo sampling scheme (cont.)

NOTE: The simulations are focused in the area of interest on the outer
edge of the outcome space where we expect that the contour is.

However, we need to correct for this by estimating the percentile
function C(θ) using an adjusted exceedance probability which takes
into acount that we are not simulating from the true joint distributions of
T and H.

We let p′
e = P(S(θ) > C(θ)|R > r0) be this adjusted exceedance

probability, and assume that r0 is chosen such that the event
{S(θ) > C(θ)} is contained in the event {R > r0}.

We can achieve this by ensuring that r0 is not too large.
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Alternative Monte Carlo sampling scheme (cont.)

Assuming that the event {S(θ) > C(θ)} is contained in the event
{R > r0}, we have:

p′
e = P(S(θ) > C(θ)|R > r0) =

P(S(θ) > C(θ)


R > r0)

P(R > r0)

=
P(S(θ) > C(θ))

P(R > r0)

=
pe

e−r2
0 /2

= er2
0 /2 · pe,

where we have used that:

P(R > r0) = P(Z > r2
0 ) = e−r2

0 /2.
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Alternative Monte Carlo sampling scheme (cont.)

We can then simulate n times from this conditional distribution and
estimate C(θ) by the order observation S(k ′)(θ), but where k ′ is
determined so that:

1 − k ′

n
=

n − k ′

n
≈ p′

e = er2
0 /2 · pe.

NOTE: Since r0 > 0, we have er2
0 /2 > 1.

Hence, p′
e > pe and k ′ < k . This means that a (much) larger fraction of

the simulated data is used to estimate C(θ).
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Alternative Monte Carlo sampling scheme (cont.)

Ideally, we would like r0 to be as large as possible to maximize the
effect of the importance sampling. At the same time we must ensure
that the event {S(θ) > C(θ)} is contained in the event {R > r0}.

We let O denote a circle centered in the origin with radius r0. Then r0
must be chosen so that the transformed set Ψ−1(O) is contained
inside the contour we want to estimate.

Experiences has shown that we get a stable estimate by choosing
r0 = 0.95 · r , where r is the radius we use to determine the transformed
contour.
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Estimating a contour without importance sampling
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Estimating a contour with importance sampling
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