Multi-reservoir production optimization

Arne Bang Huseby and Kristina Rognlien Dahl

University of Oslo, Norway

STK 4400

Potential production rates as functions of cumulative production

Consider the oil production from a field consisting of n reservoirs that share a processing facility with a constant process capacity K > 0.

$$\mathbf{Q}(t) = (Q_1(t), \dots, Q_n(t)) = \text{Cumulative production functions}$$

 $\mathbf{f}(t) = (f_1(t), \dots, f_n(t)) = \text{Pot. production rate (PPR) functions}$

We assume that the *ultimately recoverable volumes* from the *n* reservoirs are respectively V_1, \ldots, V_n , and that:

$$0 \leq Q_i(t) \leq V_i, \quad i = 1, \ldots n.$$

Moreover, we assume that:

$$f_i(t) = f_i(Q_i(t)), \quad t \geq 0, \ i = 1, \dots n.$$

Typically, f_i will be a decreasing function of Q_i , i = 1, ..., n.

Actual production restricted by processing capacity

If the sum of the potential production rates exceeds the capacity K of the processing facility, i.e.,

$$\sum_{i=1}^n f_i(t) > K$$

the production needs to be choked.

$$\boldsymbol{q}(t) = (q_1(t), \dots, q_n(t)) = \text{Actual production rates after choking}$$

$$q(t) = \sum_{i=1}^{n} q_i(t)$$
 = Total production rate at time t

$$Q(t) = \sum_{i=1}^{n} Q_i(t)$$
 = Total cumulative production at time t

Production strategy

A *production strategy* is defined for all $t \ge 0$:

$$b = b(t) = (b_1(t), \dots, b_n(t)),$$

where $b_i(t)$ represents the *choke factor*, i.e., the fraction of the potential production rate of the *i*th reservoir that is actually produced at time t, i = 1, ..., n.

The *actual production rates* from the reservoirs after the production is choked are given by:

$$q_i(t) = \frac{dQ_i(t)}{dt} = b_i(t)f_i(Q_i(t)), \quad i = 1, \ldots, n.$$

Valid production strategies

To satisfy the physical constraints of the reservoirs and the process facility, we require that:

$$0 \le b_i(t) \le 1, \quad i = 1, ..., n, \quad t \ge 0.$$

$$\sum_{i=1}^{n} b_i(t) f_i(Q_i(t)) \le K.$$

 $\mathcal B$ denotes the class of production strategies that satisfy these physical constraints. We refer to production strategies ${\pmb b} \in \mathcal B$ as *valid production strategies*.

Valid production strategies (cont.)

Proposition

Consider a reservoir with PPR-function f(t) = f(Q(t)), and let b^1 and b^2 be two choke factor functions such that:

$$0 \le b^1(t) \le b^2(t) \le 1$$
 for all $t \ge 0$.

Let Q^1 and Q^2 denote the resulting cumulative production functions, and let:

$$q^{1}(t) = b^{1}(t)f(Q^{1}(t))$$

$$q^2(t) = b^2(t) f(Q^2(t))$$

be the corresponding actual production rates. We assume that $Q^1(0) = Q^2(0) = 0$. Then $Q^1(t) \le Q^2(t)$ for all $t \ge 0$.

Valid production strategies (cont.)

Proposition

Consider a reservoir with PPR-function f(t) = f(Q(t)), and let $\{b^k\}_{k=1}^{\infty}$ be a monotone (i.e., either nondecreasing or nonincreasing) sequence of choke factor functions.

Moreover, let $\{Q(\cdot,b^k)\}_{k=1}^{\infty}$ be the resulting sequence of cumulative production functions, assuming the boundary condition $Q(0,b^k)=0$ for all k.

Then $\{Q(\cdot, b^k)\}_{k=1}^{\infty}$ converges pointwise to the cumulative production function $Q(\cdot, b)$ for all $t \ge 0$ where $b = \lim_{k \to \infty} b^k$ is the pointwise limit of the choke factor functions.

Admissible production strategies

An *admissible production strategy* is defined as a valid production strategy \boldsymbol{b} where the total production rate q(t) satisfies the following constraint for all $t \geq 0$:

$$q(t) = \sum_{i=1}^{n} b_i(t) f_i(Q_i(t)) = \min\{K, \sum_{i=1}^{n} f_i(Q_i(t))\}.$$

 $\mathcal{B}' \subseteq \mathcal{B}$ denotes the class of admissible strategies.

If $\mathbf{b} \in \mathcal{B}'$ and $T_K = \sup\{t \geq 0 : \sum_{i=1}^n f_i(Q_i(t)) \geq K\}$ is the plateau length, then:

$$q(t) = K,$$
 $0 \le t \le T_K.$ $q(t) = \sum_{i=1}^{n} f_i(Q_i(t)),$ $t > T_K.$

Objective functions

An *objective function* is a mapping $\phi: \mathcal{B} \to \mathbb{R}$ such that if $\boldsymbol{b}^1, \boldsymbol{b}^2 \in \mathcal{B}$, we prefer \boldsymbol{b}^2 to \boldsymbol{b}^1 if $\phi(\boldsymbol{b}^2) \ge \phi(\boldsymbol{b}^1)$.

An *optimal production strategy* with respect to ϕ is a production strategy $\boldsymbol{b}^{opt} \in \mathcal{B}$ such that $\phi(\boldsymbol{b}^{opt}) \geq \phi(\boldsymbol{b})$ for all $\boldsymbol{b} \in \mathcal{B}$.

Monotone objective functions

Definition

An objective function ϕ is said to be monotone if for any pair of production strategies \mathbf{b}^1 , $\mathbf{b}^2 \in \mathcal{B}$ such that $\mathbf{Q}(t, \mathbf{b}^1) \leq \mathbf{Q}(t, \mathbf{b}^2)$ for all $t \geq 0$ we have $\phi(\mathbf{b}^1) \leq \phi(\mathbf{b}^2)$.

Proposition

Let ϕ be a monotone objective function, and let \mathbf{b}^1 , $\mathbf{b}^2 \in \mathcal{B}$ be such that $\mathbf{b}^1(t) \leq \mathbf{b}^2(t)$ for all $t \geq 0$. Then $\phi(\mathbf{b}^1) \leq \phi(\mathbf{b}^2)$.

Proposition

Let ϕ be a monotone objective function, and let $\mathbf{b} \in \mathcal{B}$. Then there exists $\mathbf{b}' \in \mathcal{B}'$ such that $\phi(\mathbf{b}') > \phi(\mathbf{b})$.

Symmetric objective functions

Definition

An objective function ϕ is said to be symmetric if it depends on a production strategy **b** only through the total production rate function $q(\cdot, \mathbf{b})$ (or equivalently through $Q(\cdot, \mathbf{b})$).

Proposition

Let ϕ be a symmetric objective function. Then ϕ is monotone if and only if for any pair of production strategies, \mathbf{b}^1 and \mathbf{b}^2 such that $Q(t, \mathbf{b}^1) \leq Q(t, \mathbf{b}^2)$ for all $t \geq 0$, we have $\phi(\mathbf{b}^1) \leq \phi(\mathbf{b}^2)$.

Symmetric objective functions (cont.)

Proposition

Let ϕ be a symmetric objective function, and let $\mathbf{b} \in \mathcal{B}'$. Then $\phi(\mathbf{b})$ is uniquely determined by $\mathbf{Q}(T_K(\mathbf{b}))$. Thus, we may write $\phi(\mathbf{b}) = \phi(\mathbf{Q}(T_K(\mathbf{b})))$.

Since ϕ is assumed to be symmetric, it depends on \boldsymbol{b} only through q. Furthermore, since $\boldsymbol{b} \in \mathcal{B}'$, we know that q(t) = K whenever $0 \le t \le T_K(\boldsymbol{b})$. This implies that:

$$Q(T_K(\boldsymbol{b})) = \sum_{i=1}^n Q_i(T_K(\boldsymbol{b})) = KT_K(\boldsymbol{b}).$$

Hence, the plateau length $T_K(\mathbf{b})$ can be recovered from $\mathbf{Q}(T_K(\mathbf{b}))$ as:

$$T_K(\boldsymbol{b}) = K^{-1} \sum_{i=1}^n Q_i(T_K(\boldsymbol{b})).$$

Symmetric objective functions (cont.)

If $t > T_K(\mathbf{b})$, it follows since $\mathbf{b} \in \mathcal{B}'$ that:

$$q(t) = \sum_{i=1}^{n} q_i(t) = \sum_{i=1}^{n} f_i(Q_i(t))$$

By the Picard-Lindelöf's theorem $q_i(t)$ is uniquely determined for all $t > T_K(\mathbf{b})$ by its respective differential equation along with the boundary condition given by the value $Q_i(T_K(\mathbf{b}))$, $i = 1, \ldots, n$.

Thus, q(t) is uniquely determined by $\mathbf{Q}(T_K(\mathbf{b}))$ for all $t \geq 0$, and hence so is ϕ

Symmetric objective functions (cont.)

As an example we consider the following objective function:

$$\phi(\mathbf{b}) = \int_0^\infty I\{q(u) \ge C\}q(u)e^{-Ru}du,$$

$$0 \le C \le K, \quad R \ge 0,$$

where R is a discount factor, and C is a threshold value reflecting the minimum acceptable production rate. We refer to this objective function as a truncated discounted production objective function.

This objective function is both *monotone* and *symmetric*. Hence, for any admissible production strategy, \boldsymbol{b} , $\phi(\boldsymbol{b})$ is uniquely determined by $\mathbf{Q}(T_{\mathcal{K}}(\mathbf{b})).$

In order to study the optimization problem further we introduce the following sets:

$$\mathcal{Q} = [0, V_1] \times \cdots \times [0, V_n],$$

$$\mathcal{M} = \{ \mathbf{Q} \in \mathcal{Q} : \sum_{i=1}^n f_i(Q_i) \ge K \},$$

$$\bar{\mathcal{M}} = \{ \mathbf{Q} \in \mathcal{Q} : \sum_{i=1}^n f_i(Q_i) < K \}.$$

Thus, \mathcal{Q} is the set of possible cumulative production vectors, \mathcal{M} is the subset of \mathcal{Q} where the oil can be produced at the maximum rate K, and $\bar{\mathcal{M}}$ is the subset of \mathcal{Q} where the oil cannot be produced at the maximum rate K.

The sets Q, \mathcal{M} and $\overline{\mathcal{M}}$:

We shall see that the solution to the optimization problem depends on the shape of $\mathcal M$ and $\bar{\mathcal M}$:

Proposition

Consider a field with n reservoirs with PPR-functions f_1, \ldots, f_n .

- (i) If f_1, \ldots, f_n are convex, the set $\bar{\mathcal{M}}$ is convex.
- (ii) If f_1, \ldots, f_n are concave, the set \mathcal{M} is convex.

NOTE: If $\bar{\mathcal{M}}$ is convex, then $\bar{\mathcal{M}} \cup \partial(\mathcal{M})$ is convex as well. Similarly, if \mathcal{M} is convex, then $\mathcal{M} \cup \partial(\mathcal{M})$ is convex as well.

Assume first that the PPR-functions are convex, and let $\mathbf{Q}^1=(Q_1^1,\ldots,Q_n^1)$ and $\mathbf{Q}^2=(Q_1^2,\ldots,Q_n^2)$ be two vectors in $\bar{\mathcal{M}}$. Thus, we have:

$$\sum_{i=1}^{n} f_i(Q_i^j) < K, \qquad j = 1, 2.$$

Then let $0 \le \alpha \le 1$, and consider the vector

 $\mathbf{Q} = (Q_1, \dots, Q_n) = \alpha \mathbf{Q}^1 + (1 - \alpha) \mathbf{Q}^2$. Since the PPR-functions are convex, we have:

$$\sum_{i=1}^{n} f_{i}(Q_{i}) = \sum_{i=1}^{n} f_{i}(\alpha Q_{i}^{1} + (1 - \alpha)Q_{i}^{2})$$

$$\leq \alpha \sum_{i=1}^{n} f_{i}(Q_{i}^{1}) + (1 - \alpha) \sum_{i=1}^{n} f_{i}(Q_{i}^{2}) < K$$

Thus, we conclude that $\mathbf{Q} \in \overline{\mathcal{M}}$ as well. Hence $\overline{\mathcal{M}}$ is convex.

Assume then that the PPR-functions are concave, and let $\mathbf{Q}^1=(Q_1^1,\ldots,Q_n^1)$ and $\mathbf{Q}^2=(Q_1^2,\ldots,Q_n^2)$ be two vectors in \mathcal{M} . Thus, we have:

$$\sum_{i=1}^n f_i(Q_i^j) \geq K, \qquad j=1,2.$$

Then let $0 \le \alpha \le 1$, and consider the vector

 $\mathbf{Q} = (Q_1, \dots, Q_n) = \alpha \mathbf{Q}^1 + (1 - \alpha) \mathbf{Q}^2$. Since the PPR-functions are concave, we have:

$$\sum_{i=1}^{n} f_{i}(Q_{i}) = \sum_{i=1}^{n} f_{i}(\alpha Q_{i}^{1} + (1 - \alpha)Q_{i}^{2})$$

$$\geq \alpha \sum_{i=1}^{n} f_{i}(Q_{i}^{1}) + (1 - \alpha) \sum_{i=1}^{n} f_{i}(Q_{i}^{2}) \geq K$$

Thus, we conclude that $\mathbf{Q} \in \mathcal{M}$ as well. Hence \mathcal{M} is convex.

Let \boldsymbol{b} be any production strategy, and consider the points in \mathcal{Q} generated by $\boldsymbol{Q}(t) = \boldsymbol{Q}(t,\boldsymbol{b})$ as t increases. From the boundary conditions we know that $\boldsymbol{Q}(0) = \boldsymbol{0}$. Furthermore, $\boldsymbol{Q}(t)$ will move along some path in \mathcal{M} until the boundary $\partial(\mathcal{M})$ is reached.

We denote the path $\{ \mathbf{Q}(t, \mathbf{b}) : 0 \le t < \infty \}$ by $\mathcal{P}(\mathbf{b})$.

If $\mathbf{b} \in \mathcal{B}$, $\mathcal{P}(\mathbf{b})$ is said to be a *valid path*, while if $\mathbf{b} \in \mathcal{B}'$, $\mathcal{P}(\mathbf{b})$ is called an *admissible path*.

In general only a subset of ${\mathcal M}$ can be reached by admissible paths. We denote this subset by ${\mathcal M}'.$

Let
$$\partial(\mathcal{M}') = \partial(\mathcal{M}) \cap \mathcal{M}'$$
.

We assume that all points in $\partial(\partial(\mathcal{M}'))$ are reachable by admissible paths.

Algorithm

Let ϕ be a monotone, symmetric objective function. Then a production strategy **b** which is optimal with respect to ϕ can be found as follows:

STEP 1. Find $\mathbf{Q}^{opt} \in \partial(\mathcal{M}')$ such that $\phi(\mathbf{Q}^{opt}) \geq \phi(\mathbf{Q})$ for all $\mathbf{Q} \in \partial(\mathcal{M}')$.

STEP 2. Find a production strategy $\mathbf{b} \in \mathcal{B}'$ such that $\mathbf{Q}(T_K(\mathbf{b})) = \mathbf{Q}^{opt}$.

WE RECALL THE FOLLOWING:

For an admissible path the total production rate equals K all the way until the path reaches $\partial(\mathcal{M}')$. Moreover, the plateau length $T_K(\boldsymbol{b})$ is the point of time when the path reaches $\partial(\mathcal{M}')$, implying that:

$$\partial(\mathcal{M}') = \{\textbf{\textit{Q}}(\textit{T}_{\textit{K}}(\textbf{\textit{b}})): \textbf{\textit{b}} \in \mathcal{B}'\}$$

Moreover, we know that $\phi(\mathbf{b}) = \phi(\mathbf{Q}(T_K(\mathbf{b})))$ given that $\mathbf{b} \in \mathcal{B}'$ and ϕ is symmetric.

To solve the optimization problem given in Step 1 of the algorithm, we assume that it is possible to extend the definition of ϕ to all vectors $\mathbf{Q} \in \mathcal{Q}$. Moreover, we assume that the extended version of ϕ is non-decreasing in \mathbf{Q} .

That is, if \mathbf{Q}^1 , $\mathbf{Q}^2 \in \mathcal{Q}$ and $\mathbf{Q}^1 \leq \mathbf{Q}^2$, then $\phi(\mathbf{Q}^1) \leq \phi(\mathbf{Q}^2)$.

Having extended ϕ in this way, the problem is now to maximize $\phi(\mathbf{Q})$ subject to the constraint that $\mathbf{Q} \in \partial(\mathcal{M}')$.

Definition

Let $S \subseteq \mathbb{R}^n$ be a convex set. We say that a function $g: S \to \mathbb{R}$ is quasi-convex if for any pair of vectors $\mathbf{x}_1, \mathbf{x}_2 \in S$ and $\lambda \in [0, 1]$ we have:

$$g(\lambda \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{x}_2) \leq \max\{g(\boldsymbol{x}_1), g(\boldsymbol{x}_2)\}.$$

NOTE: A function which is convex is also quasi-convex.

However, a quasi-convex function is not necessarily convex.

Proposition

Let $S \subseteq \mathbb{R}^n$ be a convex set, and let $g: S \to \mathbb{R}$ be a quasi-convex function. Moreover, let $\mathbf{x}_1, \dots, \mathbf{x}_n \in S$, and let $\lambda_1, \dots, \lambda_n \in [0, 1]$, be such that $\sum_{i=1}^n \lambda_i = 1$. Then:

$$g(\sum_{i=1}^n \lambda_i \boldsymbol{x}_i) \leq \max\{g(\boldsymbol{x}_1), \ldots, g(\boldsymbol{x}_n)\}.$$

Proposition

Let $S \subseteq \mathbb{R}^n$ be a convex set, and let $g: S \to \mathbb{R}$. Then g is quasi-convex if and only if the sets $L_y = \{ \boldsymbol{x} \in S : g(\boldsymbol{x}) \leq y \}$ are convex for all y.

A function which is quasi-convex but not convex.

A function which is neither quasi-convex nor convex.

Theorem

Consider a field with n reservoirs with convex PPR-functions f_1, \ldots, f_n . Furthermore, let ϕ be a symmetric, monotone objective function.

Assume also that ϕ , interpreted as a function of **Q**, can be extended to a non-decreasing, quasi-convex function defined on the set Q.

Then an optimal vector, denoted \mathbf{Q}^{opt} , i.e., a vector maximizing $\phi(\mathbf{Q})$ subject to $\mathbf{Q} \in \partial(\mathcal{M}')$, can always be found within the set $\partial(\partial(\mathcal{M}'))$.

Let $\mathbf{Q} \in \partial(\mathcal{M}')$ be chosen arbitrarily. Then it can be shown that there exists m vectors $\mathbf{Q}_1, \dots, \mathbf{Q}_m \in \partial(\partial(\mathcal{M}'))$ and non-negative numbers $\alpha_1, \dots, \alpha_m$ such that $\sum_{i=1}^m \alpha_i \leq 1$ and such that:

$$\mathbf{Q} = \sum_{i=1}^{m} \alpha_i \mathbf{Q}_i.$$

We then introduce $\mathbf{Q}' = (\sum_{i=1}^m \alpha_i)^{-1} \mathbf{Q}$. Thus, \mathbf{Q}' is a convex combination of $\mathbf{Q}_1, \ldots, \mathbf{Q}_m$. Moreover, since $\sum_{i=1}^m \alpha_i \leq 1$, we have $\mathbf{Q} \leq \mathbf{Q}'$.

Since f_1, \ldots, f_n are convex, the set $\overline{\mathcal{M}} \cup \partial(\mathcal{M})$ is convex, so \mathbf{Q}' must belong to this set. Hence, since ϕ is assumed to be non-decreasing and guasi-convex, it follows that:

$$\phi(\mathbf{Q}) \leq \phi(\mathbf{Q}') \leq \max\{\phi(\mathbf{Q}_1), \dots, \phi(\mathbf{Q}_m)\}.$$

Since **Q** was chosen arbitrarily, we conclude that for any $\mathbf{Q} \in \partial(\mathcal{M}')$, there exists some boundary point $\mathbf{Q}^* \in \partial(\partial(\mathcal{M}'))$ such that $\phi(\mathbf{Q}) < \phi(\mathbf{Q}^*).$

Hence, an optimal vector, \mathbf{Q}^{opt} , can always be found within the set $\partial(\partial(\mathcal{M}')).$

Truncated discounted production

We again consider a *truncated discounted production* objective function:

$$\phi(\mathbf{b}) = \int_0^\infty I\{q(u) \ge C\}q(u)e^{-Ru}du,$$

$$0 \le C \le K, \quad R \ge 0,$$

where R is a discount factor, and C is a threshold value reflecting the minimum acceptable production rate.

We recall that this objective function is both *monotone* and *symmetric*. Hence, for any admissible production strategy, \boldsymbol{b} , $\phi(\boldsymbol{b})$ is uniquely determined by $\boldsymbol{Q}(T_K(\boldsymbol{b}))$.

In this case we consider the special case where C = K.

If $\mathbf{b} \in \mathcal{B}'$, we know that q(u) = K if and only if $0 \le u \le T_K(\mathbf{b})$, so in this case the objective function is reduced to:

$$\phi_{C,R}(\mathbf{b}) = \phi_{K,R}(\mathbf{b}) = K \int_0^{T_K(\mathbf{b})} e^{-Ru} du = KR^{-1} (1 - e^{-RT_K(\mathbf{b})}),$$

when R > 0, while $\phi_{C,0}(\mathbf{b}) = \phi_{K,0}(\mathbf{b}) = KT_K(\mathbf{b})$.

When $\boldsymbol{b} \in \mathcal{B}'$, we have q(u) = K for all $0 \le u \le T_K(\boldsymbol{b})$, so:

$$KT_K(\boldsymbol{b}) = \sum_{i=1}^n Q_i(T_K(\boldsymbol{b})).$$

Hence, $T_K(\mathbf{b}) = K^{-1} \sum_{i=1}^n Q_i(T_K(\mathbf{b})) = K^{-1}\ell(\mathbf{Q})$, where:

$$\ell(\mathbf{Q}) = \sum_{i=1}^n Q_i.$$

From this it follows that $\phi_{K,R}$, interpreted as a function of \boldsymbol{Q} , can be extended to \mathcal{Q} by letting:

$$\phi_{K,R}(\boldsymbol{Q}) = \left\{ \begin{array}{ll} R^{-1}K[1 - \exp(-RK^{-1}\ell(\boldsymbol{Q}))] & \text{if } R > 0, \\ \\ \ell(\boldsymbol{Q}) & \text{if } R = 0, \end{array} \right.$$

It can be shown that $\phi_{K,R}$ is *quasi-linear*, i.e., both quasi-convex and quasi-concave (regardless of R).

Thus, if all the PPR-functions are convex, it follows that an optimal vector, \mathbf{Q}^{opt} , i.e., a vector maximizing $\phi_{K,R}(\mathbf{Q})$ subject to $\mathbf{Q} \in \partial(\mathcal{M}')$, can always be found within the set $\partial(\partial(\mathcal{M}'))$.

Finding the optimal value of $\phi_{K,0}(\mathbf{Q}) = \ell(\mathbf{Q})$ in the convex and concave cases.

Definition

Consider a field with n reservoirs with PPR-functions f_1, \ldots, f_n , and let $\pi = (\pi_1, \ldots, \pi_n)$ be a permutation vector representing the prioritization order of the reservoirs.

The priority strategy relative to π is defined by letting the production rates at time t, $q_1(t), \ldots, q_n(t)$, be given by:

$$q_{\pi_i}(t) = \min[f_{\pi_i}(Q_{\pi_i}(t)), K - \sum_{j < i} q_{\pi_j}(t)], \qquad i = 1, \ldots, n.$$

We observe that when assigning the production rate $q_{\pi_i}(t)$ to reservoir π_i , this is limited by $K - \sum_{j < i} q_{\pi_j}(t)$, i.e., the remaining processing capacity after assigning production rates to all the reservoirs with higher priority.

- If $f_{\pi_i}(Q_{\pi_i}(t)) \leq K \sum_{j < i} q_{\pi_j}(t)$, reservoir π_i can be produced without any choking, and the remaining processing capacity is passed on to the reservoirs with lower priorities.
- If on the other hand $f_{\pi_i}(Q_{\pi_i}(t)) > K \sum_{j < i} q_{\pi_j}(t)$, the production at reservoir π_i is choked so that $q_{\pi_i}(t) = K \sum_{j < i} q_{\pi_j}(t)$. Thus, in this case *all the remaining processing capacity* is used on this reservoir, and nothing is passed on to the reservoirs with lower priorities.

We introduce the following quantities (i = 1, ..., n):

$$T_i = T_i(m{b}^{m{\pi}}) = \inf\{t \geq 0 : \sum_{j=1}^i f_{\pi_j}(Q_{\pi_j}(t,m{b}^{m{\pi}})) < K\}.$$

We also let $T_0 = 0$, and note that we obviously have:

$$0=T_0\leq T_1\leq \cdots \leq T_n=T_K(\boldsymbol{b^{\pi}}).$$

Thus, $T_1, ..., T_n$ defines an increasing sequence of *subplateau sets*, $[0, T_1], ..., [0, T_n]$, where the last one is equal to the plateau interval $[0, T_K(\boldsymbol{b}^{\boldsymbol{\pi}})]$.

 T_1, \ldots, T_n are called the *subplateau lengths* for the given priority strategy.

We now let $i \in \{1, ..., n\}$, and assume that $T_{i-1} < t < T_i$. Then the reservoirs $\pi_1, ..., \pi_{i-1}$ are produced without choking, i.e.:

$$q_{\pi_j}(t) = f_{\pi_j}(Q_{\pi_j}(t)), \qquad j = 1, \ldots, i-1.$$

Furthermore, the reservoir π_i is produced with choking so that:

$$q_{\pi_i}(t) = K - \sum_{j < i} q_{\pi_j}(t) = K - \sum_{j < i} f_{\pi_j}(Q_{\pi_j}(t)).$$

Finally the reservoirs π_{i+1}, \ldots, π_n are not produced at all.

NOTE: For $t \geq T_i$ we have:

$$f_{\pi_i}(Q_{\pi_i}(t)) \leq K - \sum_{j < i} q_{\pi_j}(t) = K - \sum_{j < i} f_{\pi_j}(Q_{\pi_j}(t)).$$

Thus, from this point of time the reservoir π_i can be produced without any choking. Thus, for $t \geq T_i$ we have $q_{\pi_i}(t) = f_{\pi_i}(Q_{\pi_i}(t))$.

Summarizing this we see that for i = 1, ..., n, the production rate, $q_{\pi_i}(t)$ is given by:

$$q_{\pi_i}(t) = \left\{ egin{array}{ll} 0 & ext{if } t < T_{i-1}, \ \\ K - \sum_{j < i} f_{\pi_j}(Q_{\pi_j}(t)) & ext{if } T_{i-1} \leq t < T_i, \ \\ f_{\pi_i}(Q_{\pi_i}(t)) & ext{if } t \geq T_i. \end{array}
ight.$$

If π is a permutation vector, the corresponding priority strategy is denoted by ${\bf b}^{\pi}$.

The class of all priority strategies is denoted by \mathcal{B}^{PR} .

Priority strategies generate *admissible paths* such that $Q(T_K(\mathbf{b}^{\pi}), \mathbf{b}^{\pi}) \in \partial(\partial(\mathcal{M}'))$.

We introduce the set $\mathcal{A}\subseteq\mathcal{Q}$ consisting of the union of all admissible paths. Thus, we have:

$$\mathcal{A} = \{ \mathbf{Q}(t, \mathbf{b}) : t \ge 0, \mathbf{b} \in \mathcal{B}' \}.$$

Lemma

Consider a field with n reservoirs with PPR-functions f_1, \ldots, f_n . Moreover, let $\pi = (\pi_1, \ldots, \pi_n)$ be a permutation vector, and let \mathbf{b}^{π} be the corresponding priority strategy. Then we have:

$$\mathbf{Q}(t, \mathbf{b}^{\pi}) \in \partial(\mathcal{A})$$
 for all $t \geq 0$.

Lemma

Consider a field with n reservoirs. Then we have:

$$\partial(\partial(\mathcal{M}')) = \partial(\mathcal{A}) \cap \partial(\mathcal{M}).$$

Theorem

Consider a field with n reservoirs, and let \mathbf{b}^{π} be a priority strategy. Then $\mathbf{Q}(T_{\kappa}(\mathbf{b}^{\pi}), \mathbf{b}^{\pi}) \in \partial(\partial(\mathcal{M}'))$.

Theorem

Consider a field with n reservoirs with convex PPR-functions f_1, \ldots, f_n . Furthermore, let ϕ be a symmetric, monotone objective function.

Assume also that ϕ , interpreted as a function of \mathbf{Q} , can be extended to a non-decreasing, quasi-convex function defined on the set \mathcal{Q} . Finally assume that $\partial(\mathcal{M}')$ is contained in the convex hull of the points $\{\mathbf{Q}(T_K(\mathbf{b}),\mathbf{b}):\mathbf{b}\in\mathcal{B}^{PR}\}.$

Then an optimal production strategy can be found within the class \mathcal{B}^{PR} .

Consider a field with n reservoirs with PPR-functions f_1, \ldots, f_n , such that:

$$f_i(Q_i(t)) = D_i(V_i - Q_i(t)), \qquad i = 1, \ldots, n,$$

where V_1, \ldots, V_n denotes the recoverable volumes from the n reservoirs, and where we assume that the reservoirs have been indexed so that $0 < D_1 \le D_2 \le \cdots \le D_n$.

The factor D_i is referred to as the *decline factor* of the *i*th reservoir, i = 1, ..., n.

Consider the *i*th reservoir, and let $T \ge 0$. If this reservoir is produced without any choking, i.e., with a choking factor function $b_i(t) = 1$ for all $t \ge T$, we get:

$$q_i(t) = D_i(V_i - Q_i(T)) \exp(-D_i(t - T)), \qquad t \geq T.$$

Moreover, by integrating $q_i(t)$ from T to t we also get:

$$Q_i(t) = V_i(1 - e^{-D_i(t-T)}) + Q_i(T)e^{-D_i(t-T)}, \qquad t \geq T.$$

NOTE: $Q_i(t)$ is expressed as a convex combination of V_i and $Q_i(T)$. As t increases the weight associated with V_i increases and the weight associated with $Q_i(T)$ decreases.

A result on dominating sums

Lemma

Assume that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are such that:

$$\sum_{i=1}^k x_i \geq \sum_{i=1}^k y_i, \qquad k=1,\ldots,n.$$

Then for any $\mathbf{a} \in \mathbb{R}^n$ such that:

$$a_1 \geq a_2 \geq \ldots \geq a_n \geq 0$$
,

we also have:

$$\sum_{i=1}^k x_i a_i \ge \sum_{i=1}^k y_i a_i, \qquad k = 1, \dots, n.$$

Theorem

Consider a field with n reservoirs with linear PPR-functions f_1, \ldots, f_n with decline factors $0 < D_1 \le D_2 \le \cdots \le D_n$.

Then let \mathbf{b}^1 denote the priority strategy corresponding to the permutation $\pi = (1, 2, ..., n)$, and let \mathbf{b}^2 be any other valid production strategy.

Then $Q(t, \mathbf{b}^1) \geq Q(t, \mathbf{b}^2)$ for all $t \geq 0$.

Thus, \mathbf{b}^1 is optimal with respect to any monotone, symmetric objective function.

PROOF: We introduce the plateau lengths T_1, \ldots, T_n .

If the priority strategy b^1 is used, we get the following:

Reservoir 1 is produced at the rate K throughout the interval $[0, T_1]$ and will be produced without any choking for $t \geq T_1$.

Reservoirs 1 and 2 are produced at a total rate K throughout the interval $[0, T_2]$ and will be produced without any choking for $t \geq T_2$.

. . .

We shall now prove by induction that:

$$\sum_{j=1}^{i} Q_{j}(t, \boldsymbol{b}^{1}) \geq \sum_{j=1}^{i} Q_{j}(t, \boldsymbol{b}^{2}), \qquad t \geq 0, \ i = 1, \dots, n.$$

Thus, we start out by considering the case where i = 1, and assume that the priority strategy b^1 is used.

If $0 \le t \le T_1$, then obviously:

$$Q_1(t, \boldsymbol{b}^1) = Kt.$$

If $t > T_1$, we know that reservoir 1 is produced without any choking. Thus, we have:

$$Q_1(t, \boldsymbol{b}^1) = V_1(1 - e^{-D_1(t-T_1)}) + Q_1(T_1, \boldsymbol{b}^1)e^{-D_1(t-T_1)}.$$

We the consider the situation where b^2 is used instead.

If $0 < t < T_1$, then obviously:

$$Q_1(t, \mathbf{b}^2) \leq Kt = Q_1(t, \mathbf{b}^1).$$

If $t > T_1$, we have:

$$Q_1(t, \boldsymbol{b}^2) \leq V_1(1 - e^{-D_1(t - T_1)}) + Q_1(T_1, \boldsymbol{b}^2)e^{-D_1(t - T_1)}.$$

Thus, since $Q_1(T_1, \boldsymbol{b}^1) > Q_1(T_1, \boldsymbol{b}^2)$, it follows that:

$$Q_1(t, b^1) \ge Q_1(t, b^2)$$
 for all $t > T_1$.

Hence, we conclude that $Q_1(t, \mathbf{b}^1) > Q_1(t, \mathbf{b}^2)$ for all t > 0, i.e., the induction hypothesis is proved for i = 1.

We then assume that the induction hypothesis is proved for i = 1, ..., (k - 1), and consider the case where i = k.

If $0 \le t \le T_k$, we have:

$$\sum_{j=1}^k Q_j(t, \mathbf{b}^1) = Kt \ge \sum_{j=1}^k Q_j(t, \mathbf{b}^2).$$

We then consider the case where $t > T_k$.

If b^1 is used, the reservoirs $1, 2, \dots, k$ are produced without any choking, thus:

$$egin{aligned} \sum_{j=1}^k Q_j(t,m{b}^1) &= \sum_{j=1}^k V_j(1-e^{-D_j(t-T_k)}) \ &+ \sum_{j=1}^k Q_j(T_k,m{b}^1)e^{-D_j(t-T_k)}. \end{aligned}$$

If, on the other hand, b^2 is used, we get:

$$egin{aligned} \sum_{j=1}^k Q_j(t,m{b}^2) & \leq \sum_{j=1}^k V_j(1-e^{-D_j(t-T_k)}) \ & + \sum_{j=1}^k Q_j(T_k,m{b}^2)e^{-D_j(t-T_k)}. \end{aligned}$$

By the induction hypothesis we have that:

$$\sum_{j=1}^{i} Q_{j}(T_{k}, \boldsymbol{b}^{1}) \geq \sum_{j=1}^{i} Q_{j}(T_{k}, \boldsymbol{b}^{2}), \qquad i = 1, \dots, k.$$

Moreover, since $D_1 \leq D_2 \leq \cdots \leq D_k$, we have:

$$e^{-D_1(t-T_k)} \ge \cdots \ge e^{-D_k(t-T_k)}$$
, for all $t \ge T_k$.

Then it follows by the lemma on dominating sums that:

$$\sum_{j=1}^k Q_j(T_k, \boldsymbol{b}^1) e^{-D_j(t-T_k)} \geq \sum_{j=1}^k Q_j(T_k, \boldsymbol{b}^2) e^{-D_j(t-T_k)}$$

By combining all this, we get for $t \ge 0$:

$$\sum_{j=1}^k Q_j(t, \mathbf{b}^1) \ge \sum_{j=1}^k Q_j(t, \mathbf{b}^2).$$

Thus, the induction hypothesis is proved for i = k as well.

Hence, the result is proved by induction

