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Potential production rates as functions of cumulative
production

Consider the oil production from a field consisting of n reservoirs that share a
processing facility with a constant process capacity K > 0.

Q(t) = (Q1(t), . . . ,Qn(t)) = Cumulative production functions
f (t) = (f1(t), . . . , fn(t)) = Pot. production rate (PPR) functions

We assume that the ultimately recoverable volumes from the n reservoirs are
respectively V1, . . . ,Vn, and that:

0 ≤ Qi (t) ≤ Vi , i = 1, . . .n.

Moreover, we assume that:

fi (t) = fi (Qi (t)), t ≥ 0, i = 1, . . .n.

Typically, fi will be a decreasing function of Qi , i = 1, . . . ,n.
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Actual production restricted by processing capacity

If the sum of the potential production rates exceeds the capacity K of
the processing facility, i.e.,

n∑
i=1

fi(t) > K

the production needs to be choked.

q(t) = (q1(t), . . . ,qn(t)) = Actual production rates after choking

q(t) =
n∑

i=1

qi(t) = Total production rate at time t

Q(t) =
n∑

i=1

Qi(t) = Total cumulative production at time t
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Production strategy

A production strategy is defined for all t ≥ 0:

b = b(t) = (b1(t), . . . ,bn(t)),

where bi(t) represents the choke factor, i.e., the fraction of the
potential production rate of the i th reservoir that is actually produced at
time t , i = 1, . . . ,n.

The actual production rates from the reservoirs after the production is
choked are given by:

qi(t) =
dQi(t)

dt
= bi(t)fi(Qi(t)), i = 1, . . . ,n.
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Valid production strategies

To satisfy the physical constraints of the reservoirs and the process
facility, we require that:

0 ≤ bi(t) ≤ 1, i = 1, . . . ,n, t ≥ 0.

n∑
i=1

bi(t)fi(Qi(t)) ≤ K .

B denotes the class of production strategies that satisfy these physical
constraints. We refer to production strategies b ∈ B as valid production
strategies.
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Valid production strategies (cont.)

Proposition

Consider a reservoir with PPR-function f (t) = f (Q(t)), and let b1 and
b2 be two choke factor functions such that:

0 ≤ b1(t) ≤ b2(t) ≤ 1 for all t ≥ 0.

Let Q1 and Q2 denote the resulting cumulative production functions,
and let:

q1(t) = b1(t)f (Q1(t))

q2(t) = b2(t)f (Q2(t))

be the corresponding actual production rates. We assume that
Q1(0) = Q2(0) = 0. Then Q1(t) ≤ Q2(t) for all t ≥ 0.
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Valid production strategies (cont.)

Proposition

Consider a reservoir with PPR-function f (t) = f (Q(t)), and let {bk}∞k=1
be a monotone (i.e., either nondecreasing or nonincreasing) sequence
of choke factor functions.

Moreover, let {Q(·,bk )}∞k=1 be the resulting sequence of cumulative
production functions, assuming the boundary condition Q(0,bk ) = 0
for all k.

Then {Q(·,bk )}∞k=1 converges pointwise to the cumulative production
function Q(·,b) for all t ≥ 0 where b = limk→∞ bk is the pointwise limit
of the choke factor functions.
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Admissible production strategies

An admissible production strategy is defined as a valid production
strategy b where the total production rate q(t) satisfies the following
constraint for all t ≥ 0:

q(t) =
n∑

i=1

bi(t)fi(Qi(t)) = min{K ,
n∑

i=1

fi(Qi(t))}.

B′ ⊆ B denotes the class of admissible strategies.

If b ∈ B′ and TK = sup{t ≥ 0 :
∑n

i=1 fi(Qi(t)) ≥ K} is the plateau
length, then:

q(t) = K , 0 ≤ t ≤ TK .

q(t) =
n∑

i=1

fi(Qi(t)), t > TK .

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Production optimization STK 4400 8 / 60



Objective functions

An objective function is a mapping φ : B → R such that if b1,b2 ∈ B,
we prefer b2 to b1 if φ(b2) ≥ φ(b1).

An optimal production strategy with respect to φ is a production
strategy bopt ∈ B such that φ(bopt ) ≥ φ(b) for all b ∈ B.
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Monotone objective functions

Definition
An objective function φ is said to be monotone if for any pair of
production strategies b1,b2 ∈ B such that Q(t ,b1) ≤ Q(t ,b2) for all
t ≥ 0 we have φ(b1) ≤ φ(b2).

Proposition

Let φ be a monotone objective function, and let b1,b2 ∈ B be such that
b1(t) ≤ b2(t) for all t ≥ 0. Then φ(b1) ≤ φ(b2).

Proposition
Let φ be a monotone objective function, and let b ∈ B. Then there
exists b′ ∈ B′ such that φ(b′) ≥ φ(b).
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Symmetric objective functions

Definition
An objective function φ is said to be symmetric if it depends on a
production strategy b only through the total production rate function
q(·,b) (or equivalently through Q(·,b)).

Proposition
Let φ be a symmetric objective function. Then φ is monotone if and
only if for any pair of production strategies, b1 and b2 such that
Q(t ,b1) ≤ Q(t ,b2) for all t ≥ 0, we have φ(b1) ≤ φ(b2).
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Symmetric objective functions (cont.)

Proposition

Let φ be a symmetric objective function, and let b ∈ B′. Then φ(b) is
uniquely determined by Q(TK (b)). Thus, we may write
φ(b) = φ(Q(TK (b))).

Since φ is assumed to be symmetric, it depends on b only through q.
Furthermore, since b ∈ B′, we know that q(t) = K whenever
0 ≤ t ≤ TK (b). This implies that:

Q(TK (b)) =
n∑

i=1

Qi(TK (b)) = KTK (b).

Hence, the plateau length TK (b) can be recovered from Q(TK (b)) as:

TK (b) = K−1
n∑

i=1

Qi(TK (b)).
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Symmetric objective functions (cont.)

If t > TK (b), it follows since b ∈ B′ that:

q(t) =
n∑

i=1

qi(t) =
n∑

i=1

fi(Qi(t))

By the Picard-Lindelöf’s theorem qi(t) is uniquely determined for all
t > TK (b) by its respective differential equation along with the
boundary condition given by the value Qi(TK (b)), i = 1, . . . ,n.

Thus, q(t) is uniquely determined by Q(TK (b)) for all t ≥ 0, and hence
so is φ �
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Symmetric objective functions (cont.)

As an example we consider the following objective function:

φ(b) =

∫ ∞
0

I{q(u) ≥ C}q(u)e−Rudu,

0 ≤ C ≤ K , R ≥ 0,

where R is a discount factor, and C is a threshold value reflecting the
minimum acceptable production rate. We refer to this objective
function as a truncated discounted production objective function.

This objective function is both monotone and symmetric. Hence, for
any admissible production strategy, b, φ(b) is uniquely determined by
Q(TK (b)).
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Optimizing production strategies

In order to study the optimization problem further we introduce the
following sets:

Q = [0,V1]× · · · × [0,Vn],

M = {Q ∈ Q :
n∑

i=1

fi(Qi) ≥ K},

M̄ = {Q ∈ Q :
n∑

i=1

fi(Qi) < K}.

Thus, Q is the set of possible cumulative production vectors,M is the
subset of Q where the oil can be produced at the maximum rate K ,
and M̄ is the subset of Q where the oil cannot be produced at the
maximum rate K .
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Optimizing production strategies

The sets Q,M and M̄:
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Optimizing production strategies

We shall see that the solution to the optimization problem depends on
the shape ofM and M̄:

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Production optimization STK 4400 17 / 60



Optimizing production strategies

Proposition
Consider a field with n reservoirs with PPR-functions f1, . . . , fn.

(i) If f1, . . . , fn are convex, the set M̄ is convex.

(ii) If f1, . . . , fn are concave, the setM is convex.

NOTE: If M̄ is convex, then M̄ ∪ ∂(M) is convex as well. Similarly, if
M is convex, thenM∪ ∂(M) is convex as well.

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Production optimization STK 4400 18 / 60



Optimizing production strategies

Assume first that the PPR-functions are convex, and let
Q1 = (Q1

1 , . . . ,Q
1
n) and Q2 = (Q2

1 , . . . ,Q
2
n) be two vectors in M̄. Thus,

we have:
n∑

i=1

fi(Q
j
i ) < K , j = 1,2.

Then let 0 ≤ α ≤ 1, and consider the vector
Q = (Q1, . . . ,Qn) = αQ1 + (1− α)Q2. Since the PPR-functions are
convex, we have:

n∑
i=1

fi(Qi) =
n∑

i=1

fi(αQ1
i + (1− α)Q2

i )

≤ α

n∑
i=1

fi(Q1
i ) + (1− α)

n∑
i=1

fi(Q2
i ) < K

Thus, we conclude that Q ∈ M̄ as well. Hence M̄ is convex.
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Optimizing production strategies

Assume then that the PPR-functions are concave, and let
Q1 = (Q1

1 , . . . ,Q
1
n) and Q2 = (Q2

1 , . . . ,Q
2
n) be two vectors inM. Thus,

we have:
n∑

i=1

fi(Q
j
i ) ≥ K , j = 1,2.

Then let 0 ≤ α ≤ 1, and consider the vector
Q = (Q1, . . . ,Qn) = αQ1 + (1− α)Q2. Since the PPR-functions are
concave, we have:

n∑
i=1

fi(Qi) =
n∑

i=1

fi(αQ1
i + (1− α)Q2

i )

≥ α

n∑
i=1

fi(Q1
i ) + (1− α)

n∑
i=1

fi(Q2
i ) ≥ K

Thus, we conclude that Q ∈M as well. HenceM is convex.
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Optimizing production strategies

Let b be any production strategy, and consider the points in Q
generated by Q(t) = Q(t ,b) as t increases. From the boundary
conditions we know that Q(0) = 0. Furthermore, Q(t) will move along
some path inM until the boundary ∂(M) is reached.
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Optimizing production strategies

We denote the path {Q(t ,b) : 0 ≤ t <∞} by P(b).

If b ∈ B, P(b) is said to be a valid path, while if b ∈ B′, P(b) is called
an admissible path.

In general only a subset ofM can be reached by admissible paths.
We denote this subset byM′.

Let ∂(M′) = ∂(M) ∩M′.

We assume that all points in ∂(∂(M′)) are reachable by admissible
paths.
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Optimizing production strategies
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Optimizing production strategies
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Optimizing production strategies

Algorithm

Let φ be a monotone, symmetric objective function. Then a production
strategy b which is optimal with respect to φ can be found as follows:

STEP 1. Find Qopt ∈ ∂(M′) such that φ(Qopt ) ≥ φ(Q) for all
Q ∈ ∂(M′).

STEP 2. Find a production strategy b ∈ B′ such that Q(TK (b)) = Qopt .
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Optimizing production strategies

WE RECALL THE FOLLOWING:
For an admissible path the total production rate equals K all the way
until the path reaches ∂(M′). Moreover, the plateau length TK (b) is
the point of time when the path reaches ∂(M′), implying that:

∂(M′) = {Q(TK (b)) : b ∈ B′}

Moreover, we know that φ(b) = φ(Q(TK (b))) given that b ∈ B′ and φ is
symmetric.
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Optimizing production strategies

To solve the optimization problem given in Step 1 of the algorithm, we
assume that it is possible to extend the definition of φ to all vectors
Q ∈ Q. Moreover, we assume that the extended version of φ is
non-decreasing in Q.

That is, if Q1,Q2 ∈ Q and Q1 ≤ Q2, then φ(Q1) ≤ φ(Q2).

Having extended φ in this way, the problem is now to maximize φ(Q)
subject to the constraint that Q ∈ ∂(M′).

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Production optimization STK 4400 27 / 60



Optimizing production strategies

Definition
Let S ⊆ Rn be a convex set. We say that a function g : S → R is
quasi-convex if for any pair of vectors x1,x2 ∈ S and λ ∈ [0,1] we
have:

g(λx1 + (1− λ)x2) ≤ max{g(x1),g(x2)}.

NOTE: A function which is convex is also quasi-convex.

However, a quasi-convex function is not necessarily convex.
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Optimizing production strategies

Proposition

Let S ⊆ Rn be a convex set, and let g : S → R be a quasi-convex
function. Moreover, let x1, . . . ,xn ∈ S, and let λ1, . . . , λn ∈ [0,1], be
such that

∑n
i=1 λi = 1. Then:

g(
n∑

i=1

λix i) ≤ max{g(x1), . . . ,g(xn)}.
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Optimizing production strategies

Proposition

Let S ⊆ Rn be a convex set, and let g : S → R. Then g is quasi-convex
if and only if the sets Ly = {x ∈ S : g(x) ≤ y} are convex for all y.
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Optimizing production strategies

A function which is quasi-convex but not convex.
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Optimizing production strategies

A function which is neither quasi-convex nor convex.
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Optimizing production strategies

Theorem
Consider a field with n reservoirs with convex PPR-functions f1, . . . , fn.
Furthermore, let φ be a symmetric, monotone objective function.

Assume also that φ, interpreted as a function of Q, can be extended to
a non-decreasing, quasi-convex function defined on the set Q.

Then an optimal vector, denoted Qopt , i.e., a vector maximizing φ(Q)
subject to Q ∈ ∂(M′), can always be found within the set ∂(∂(M′)).
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Optimizing production strategies

Let Q ∈ ∂(M′) be chosen arbitrarily. Then it can be shown that there
exists m vectors Q1, . . . ,Qm ∈ ∂(∂(M′)) and non-negative numbers
α1, . . . , αm such that

∑m
i=1 αi ≤ 1 and such that:

Q =
m∑

i=1

αiQi .

We then introduce Q′ = (
∑m

i=1 αi)
−1Q. Thus, Q′ is a convex

combination of Q1, . . . ,Qm. Moreover, since
∑m

i=1 αi ≤ 1, we have
Q ≤ Q′.
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Optimizing production strategies

Since f1, . . . , fn are convex, the set M̄ ∪ ∂(M) is convex, so Q′ must
belong to this set. Hence, since φ is assumed to be non-decreasing
and quasi-convex, it follows that:

φ(Q) ≤ φ(Q′) ≤ max{φ(Q1), . . . , φ(Qm)}.

Since Q was chosen arbitrarily, we conclude that for any Q ∈ ∂(M′),
there exists some boundary point Q∗ ∈ ∂(∂(M′)) such that
φ(Q) ≤ φ(Q∗).

Hence, an optimal vector, Qopt , can always be found within the set
∂(∂(M′)).
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Truncated discounted production

We again consider a truncated discounted production objective
function:

φ(b) =

∫ ∞
0

I{q(u) ≥ C}q(u)e−Rudu,

0 ≤ C ≤ K , R ≥ 0,

where R is a discount factor, and C is a threshold value reflecting the
minimum acceptable production rate.

We recall that this objective function is both monotone and symmetric.
Hence, for any admissible production strategy, b, φ(b) is uniquely
determined by Q(TK (b)).
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Truncated discounted production

In this case we consider the special case where C = K .

If b ∈ B′, we know that q(u) = K if and only if 0 ≤ u ≤ TK (b), so in this
case the objective function is reduced to:

φC,R(b) = φK ,R(b) = K
∫ TK (b)

0
e−Rudu = KR−1(1− e−RTK (b)),

when R > 0, while φC,0(b) = φK ,0(b) = KTK (b).

When b ∈ B′, we have q(u) = K for all 0 ≤ u ≤ TK (b), so:

KTK (b) =
n∑

i=1

Qi(TK (b)).
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Truncated discounted production

Hence, TK (b) = K−1 ∑n
i=1 Qi(TK (b)) = K−1`(Q), where:

`(Q) =
n∑

i=1

Qi .

From this it follows that φK ,R, interpreted as a function of Q, can be
extended to Q by letting:

φK ,R(Q) =

 R−1K [1− exp(−RK−1`(Q))] if R > 0,

`(Q) if R = 0,
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Truncated discounted production

It can be shown that φK ,R is quasi-linear, i.e., both quasi-convex and
quasi-concave (regardless of R).

Thus, if all the PPR-functions are convex, it follows that an optimal
vector, Qopt , i.e., a vector maximizing φK ,R(Q) subject to Q ∈ ∂(M′),
can always be found within the set ∂(∂(M′)).
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Truncated discounted production

Finding the optimal value of φK ,0(Q) = `(Q) in the convex and concave
cases.
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Priority strategies

Definition
Consider a field with n reservoirs with PPR-functions f1, . . . , fn, and let
π = (π1, . . . , πn) be a permutation vector representing the prioritization
order of the reservoirs.

The priority strategy relative to π is defined by letting the production
rates at time t, q1(t), . . . ,qn(t), be given by:

qπi (t) = min[fπi (Qπi (t)),K −
∑
j<i

qπj (t)], i = 1, . . . ,n.
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Priority strategies

We observe that when assigning the production rate qπi (t) to reservoir
πi , this is limited by K −

∑
j<i qπj (t), i.e., the remaining processing

capacity after assigning production rates to all the reservoirs with
higher priority.

– If fπi (Qπi (t)) ≤ K −
∑

j<i qπj (t), reservoir πi can be produced without
any choking, and the remaining processing capacity is passed on to
the reservoirs with lower priorities.

– If on the other hand fπi (Qπi (t)) > K −
∑

j<i qπj (t), the production at
reservoir πi is choked so that qπi (t) = K −

∑
j<i qπj (t). Thus, in this

case all the remaining processing capacity is used on this reservoir,
and nothing is passed on to the reservoirs with lower priorities.
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Priority strategies

We introduce the following quantities (i = 1, . . . ,n):

Ti = Ti(bπ) = inf{t ≥ 0 :
i∑

j=1

fπj (Qπj (t ,b
π)) < K}.

We also let T0 = 0, and note that we obviously have:
0 = T0 ≤ T1 ≤ · · · ≤ Tn = TK (bπ).

Thus, T1, . . . ,Tn defines an increasing sequence of subplateau sets,
[0,T1], . . . , [0,Tn], where the last one is equal to the plateau interval
[0,TK (bπ)].

T1, . . . ,Tn are called the subplateau lengths for the given priority
strategy.
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Priority strategies

We now let i ∈ {1, . . . ,n}, and assume that Ti−1 < t < Ti . Then the reservoirs
π1, . . . , πi−1 are produced without choking, i.e.:

qπj (t) = fπj (Qπj (t)), j = 1, . . . , i − 1.

Furthermore, the reservoir πi is produced with choking so that:

qπi (t) = K −
∑
j<i

qπj (t) = K −
∑
j<i

fπj (Qπj (t)).

Finally the reservoirs πi+1, . . . , πn are not produced at all.

NOTE: For t ≥ Ti we have:

fπi (Qπi (t)) ≤ K −
∑
j<i

qπj (t) = K −
∑
j<i

fπj (Qπj (t)).

Thus, from this point of time the reservoir πi can be produced without any
choking. Thus, for t ≥ Ti we have qπi (t) = fπi (Qπi (t)) .
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Priority strategies

Summarizing this we see that for i = 1, . . . ,n, the production rate,
qπi (t) is given by:

qπi (t) =


0 if t < Ti−1,

K −
∑

j<i fπj (Qπj (t)) if Ti−1 ≤ t < Ti ,

fπi (Qπi (t)) if t ≥ Ti .

If π is a permutation vector, the corresponding priority strategy is
denoted by bπ.
The class of all priority strategies is denoted by BPR.
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Priority strategies

Priority strategies generate admissible paths such that
Q(TK (bπ),bπ) ∈ ∂(∂(M′)).

We introduce the set A ⊆ Q consisting of the union of all admissible
paths. Thus, we have:

A = {Q(t ,b) : t ≥ 0,b ∈ B′}.

Lemma
Consider a field with n reservoirs with PPR-functions f1, . . . , fn.
Moreover, let π = (π1, . . . , πn) be a permutation vector, and let bπ be
the corresponding priority strategy. Then we have:

Q(t ,bπ) ∈ ∂(A) for all t ≥ 0.
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Priority strategies

Lemma
Consider a field with n reservoirs. Then we have:

∂(∂(M′)) = ∂(A) ∩ ∂(M).

Theorem

Consider a field with n reservoirs, and let bπ be a priority strategy.
Then Q(TK (bπ),bπ) ∈ ∂(∂(M′)).
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Priority strategies

Theorem
Consider a field with n reservoirs with convex PPR-functions f1, . . . , fn.
Furthermore, let φ be a symmetric, monotone objective function.

Assume also that φ, interpreted as a function of Q, can be extended to
a non-decreasing, quasi-convex function defined on the set Q. Finally
assume that ∂(M′) is contained in the convex hull of the points
{Q(TK (b),b) : b ∈ BPR}.

Then an optimal production strategy can be found within the class BPR.
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Optimization with linear PPR-functions

Consider a field with n reservoirs with PPR-functions f1, . . . , fn, such
that:

fi(Qi(t)) = Di(Vi −Qi(t)), i = 1, . . . ,n,

where V1, . . . ,Vn denotes the recoverable volumes from the n
reservoirs, and where we assume that the reservoirs have been
indexed so that 0 < D1 ≤ D2 ≤ · · · ≤ Dn.

The factor Di is referred to as the decline factor of the i th reservoir,
i = 1, . . . ,n.
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Optimization with linear PPR-functions

Consider the i th reservoir, and let T ≥ 0. If this reservoir is produced
without any choking, i.e., with a choking factor function bi(t) = 1 for all
t ≥ T , we get:

qi(t) = Di(Vi −Qi(T )) exp(−Di(t − T )), t ≥ T .

Moreover, by integrating qi(t) from T to t we also get:

Qi(t) = Vi(1− e−Di (t−T )) + Qi(T )e−Di (t−T ), t ≥ T .

NOTE: Qi(t) is expressed as a convex combination of Vi and Qi(T ).
As t increases the weight associated with Vi increases and the weight
associated with Qi(T ) decreases.
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A result on dominating sums

Lemma
Assume that x ,y ∈ Rn are such that:

k∑
i=1

xi ≥
k∑

i=1

yi , k = 1, . . . ,n.

Then for any a ∈ Rn such that:

a1 ≥ a2 ≥ . . . ≥ an ≥ 0,

we also have:

k∑
i=1

xiai ≥
k∑

i=1

yiai , k = 1, . . . ,n.
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Optimization with linear PPR-functions

Theorem
Consider a field with n reservoirs with linear PPR-functions f1, . . . , fn
with decline factors 0 < D1 ≤ D2 ≤ · · · ≤ Dn.

Then let b1 denote the priority strategy corresponding to the
permutation π = (1,2, . . . ,n), and let b2 be any other valid production
strategy.

Then Q(t ,b1) ≥ Q(t ,b2) for all t ≥ 0.

Thus, b1 is optimal with respect to any monotone, symmetric objective
function.
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Optimization with linear PPR-functions

PROOF: We introduce the plateau lengths T1, . . . ,Tn.

If the priority strategy b1 is used, we get the following:

Reservoir 1 is produced at the rate K throughout the interval [0,T1]
and will be produced without any choking for t ≥ T1.

Reservoirs 1 and 2 are produced at a total rate K throughout the
interval [0,T2] and will be produced without any choking for t ≥ T2.

· · ·
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Optimization with linear PPR-functions

We shall now prove by induction that:

i∑
j=1

Qj(t ,b1) ≥
i∑

j=1

Qj(t ,b2), t ≥ 0, i = 1, . . . ,n.

Thus, we start out by considering the case where i = 1, and assume
that the priority strategy b1 is used.

If 0 ≤ t ≤ T1, then obviously:

Q1(t ,b1) = Kt .

If t > T1, we know that reservoir 1 is produced without any choking.
Thus, we have:

Q1(t ,b1) = V1(1− e−D1(t−T1)) + Q1(T1,b1)e−D1(t−T1).
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Optimization with linear PPR-functions

We the consider the situation where b2 is used instead.

If 0 ≤ t ≤ T1, then obviously:

Q1(t ,b2) ≤ Kt = Q1(t ,b1).

If t > T1, we have:

Q1(t ,b2) ≤ V1(1− e−D1(t−T1)) + Q1(T1,b2)e−D1(t−T1).

Thus, since Q1(T1,b1) ≥ Q1(T1,b2), it follows that:

Q1(t ,b1) ≥ Q1(t ,b2) for all t > T1.

Hence, we conclude that Q1(t ,b1) ≥ Q1(t ,b2) for all t ≥ 0, i.e., the
induction hypothesis is proved for i = 1.
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Optimization with linear PPR-functions

We then assume that the induction hypothesis is proved for
i = 1, . . . , (k − 1), and consider the case where i = k .

If 0 ≤ t ≤ Tk , we have:

k∑
j=1

Qj(t ,b1) = Kt ≥
k∑

j=1

Qj(t ,b2).
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Optimization with linear PPR-functions

We then consider the case where t > Tk .

If b1 is used, the reservoirs 1,2, . . . , k are produced without any
choking, thus:

k∑
j=1

Qj(t ,b1) =
k∑

j=1

Vj(1− e−Dj (t−Tk ))

+
k∑

j=1

Qj(Tk ,b1)e−Dj (t−Tk ).
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Optimization with linear PPR-functions

If, on the other hand, b2 is used, we get:

k∑
j=1

Qj(t ,b2) ≤
k∑

j=1

Vj(1− e−Dj (t−Tk ))

+
k∑

j=1

Qj(Tk ,b2)e−Dj (t−Tk ).

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Production optimization STK 4400 58 / 60



Optimization with linear PPR-functions

By the induction hypothesis we have that:

i∑
j=1

Qj(Tk ,b1) ≥
i∑

j=1

Qj(Tk ,b2), i = 1, . . . , k .

Moreover, since D1 ≤ D2 ≤ · · · ≤ Dk , we have:

e−D1(t−Tk ) ≥ · · · ≥ e−Dk (t−Tk ), for all t ≥ Tk .

Then it follows by the lemma on dominating sums that:

k∑
j=1

Qj(Tk ,b1)e−Dj (t−Tk ) ≥
k∑

j=1

Qj(Tk ,b2)e−Dj (t−Tk )
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Optimization with linear PPR-functions

By combining all this, we get for t ≥ 0:

k∑
j=1

Qj(t ,b1) ≥
k∑

j=1

Qj(t ,b2).

Thus, the induction hypothesis is proved for i = k as well.

Hence, the result is proved by induction
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