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Discrete time optimization under uncertainty

We consider the oil production from a field consisting of n reservoirs
that share a processing facility with a constant process capacity K .
The production from each reservoir is described as a discrete time
process:

qik = The production from the i th reservoir in the k th period,
Qik = The cum. production from the i th reservoir after the k th period

=
k󰁛

j=1

qij

We also define Qi0 = 0.
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Discrete time optimization under uncertainty

The maximum amount of oil that can be produced from the i th
reservoir within the k th period given no other restrictions, is:

fi(Qi,k−1) = Di(Vi − Qi,k−1),

where Vi > 0 and Di ∈ [0, 1] are random variables and denote the
recoverable volume and decline rate of the i th reservoir.

xik = quota assigned to the i th reservoir during the k th period
xk = (x1k , . . . , xnk )

The actual production volumes are then given by:

qik = qik (xik ) = min{fi(Qi,k−1), xik},

where the quotas are chosen so that
󰁓n

i=1 xik = K .
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Discrete time optimization under uncertainty

If xik ≤ fi(Qi,k−1), it follows that qik = xik . If this holds for all reservoirs,
all quotas are fully utilized, and we get that:

n󰁛

i=1

qik =
n󰁛

i=1

xik = K .

If xjk > fj(Qj,k−1) for some j , the quota for this reservoir cannot be fully
utilized, i.e., qjk < xjk . Hence, in this case:

n󰁛

i=1

qik <

n󰁛

i=1

xik = K .

A good production strategy should aim at utilizing the quotas as much
as possible for all reservoirs.
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Short-term optimization under uncertainty

In order to formulate the optimization problem, we introduce:

Yk = Yk (xk ) =
n󰁛

j=1

qjk (xjk ) =
n󰁛

j=1

min{fj(Qj,k−1), xjk}, k = 1, 2, . . . .

Considering the k th time period, the objective is to choose xk so that
E [Yk (xk )] is maximized subject to the processing capacity constraint:

n󰁛

i=1

xik = K .

Note that by using this approach at each step, the focus is on the
upcoming time period only.
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Short-term optimization under uncertainty

In order to solve the short-term optimization problem, we introduce the
Lagrange function:

ΛS(xk ,λ) = ΦS(xk )− λΨ(xk ),

where λ denotes the Lagrange multiplier, and where:

ΦS(xk ) = E [Yk (xk )],

Ψ(xk ) =
n󰁛

i=1

xik − K .

A stationary point for the Lagrange function is then found by solving
the equation:

∇ΦS(xk ) = λ∇Ψ(xk ),

subject to the restriction that Ψ(xk ) = 0.
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Short-term optimization under uncertainty

It is easy to verify that ΦS is a concave function. Thus, the stationary
point will be a maximum point. Moreover, for i = 1, . . . , n, we get:

∂

∂xik
ΦS(xk ) =

∂

∂xik
E [Yk (xk )]

= E [
∂

∂xik

n󰁛

j=1

min{fj(Qj,k−1), xjk}]

= E [
∂

∂xik
min{fi(Qi,k−1), xik}]

= E [I(fi(Qi,k−1) > xik )]

= P(fi(Qi,k−1) > xik ).

where I(·) denotes the indicator function.
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Short-term optimization under uncertainty

Finally, we get:
∇Ψ(xk ) = (1, . . . , 1).

Combining all this, we get that the optimal solution must satisfy:

P(fi(Qi,k−1) > xik ) = λ, i = 1, . . . n,

for some value of λ, as well as the processing capacity constraint:

n󰁛

i=1

xik = K .

Note: The short-term strategy attempts to distribute the available
processing capacity between the reservoirs, and hence balance the
risk between these.
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Long-term optimization under uncertainty

In the deterministic case the optimal strategy is to make sure that the
reservoirs with lowest decline rates are produced first. As a result, the
tail-production will be dominated by the reservoirs with the highest
decline rates. As a result the remaining volumes will be produced as
fast as possible.

In order to improve the results for the stochastic case we introduce a
different approach where more focus is put on the tail-production. In
particular, we aim at finding a strategy where the tail-production can be
done as fast as possible.
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Long-term optimization under uncertainty

One way of evaluating the tail-production is by calculating its potential
center of mass. In order to define this concept, we start out by
considering the i th reservoir, and assume that we have completed
k − 1 periods of production.
Assuming that the reservoir is produced at maximum speed in all the
periods following the k th period, we get that:

qi,k+1 = Di(Vi − Qi,k−1 − qik ),

qi,k+2 = Di(Vi − Qi,k − qi,k+1) = Di(Vi − Qi,k−1 − qik − qi,k+1)

= Di((Vi − Qi,k−1 − qik )− Di(Vi − Qi,k−1 − qik ))

= Di(1 − Di)(Vi − Qi,k−1 − qik ),

...

qi,k+h = Di(Vi − Qi,k+h−2 − qi,k+h−1) = Di(1 − Di)
h−1(Vi − Qi,k−1 − qik ).
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Long-term optimization under uncertainty

The potential center of mass for the tail-production after the k th period
of the i th reservoir, expressed as a function of xik , and denoted by
Zik (xik ), can now be defined as:

Zik (xik ) =
∞󰁛

h=1

h · qi,k+h

=
∞󰁛

h=1

h · Di(1 − Di)
h−1(Vi − Qi,k−1 − qik (xik ))

= Di(Vi − Qi,k−1 − qik (xik ))
∞󰁛

h=1

h · (1 − Di)
h−1

= (Vi − Qi,k−1 − qik (xik )) · D−1
i .
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Long-term optimization under uncertainty

The potential center of mass for the tail-production after the k th period
of all reservoirs combined, is defined as:

Zk (xk ) =
n󰁛

j=1

Zjk (xjk ) =
n󰁛

j=1

(Vj − Qj,k−1 − qjk (xjk )) · D−1
j .

We seek a strategy where the expected potential center of mass is as
low as possible, since this implies that the remaining volumes can be
produced as fast as possible.
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Long-term optimization under uncertainty

In order to solve the long-term optimization problem, we again
introduce the Lagrange function:

ΛL(xk ,λ) = ΦL(xk ) + λΨ(xk ),

where λ in this case conveniently denotes the negative Lagrange
multiplier, and where:

ΦL(xk ) = E [Zk (xk )],

Ψ(xk ) =
n󰁛

i=1

xik − K .

A stationary point for the Lagrange function is then found by solving
the equation:

−∇ΦL(xk ) = λ∇Ψ(xk ),

subject to the restriction that Ψ(xk ) = 0.
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Long-term optimization under uncertainty

It is easy to verify that ΦL is a convex function. Thus, the stationary
point will be a minimum point. Moreover, for i = 1, . . . , n we get:

− ∂

∂xik
ΦL(xk ) = − ∂

∂xik
E [Zk (xk )]

= −E [
∂

∂xik
Zk (xk )]

= −E [
∂

∂xik

n󰁛

j=1

(Vj − Qj,k−1 − qjk (xjk )) · D−1
j ]

= E [
∂

∂xik
min{fi(Qi,k−1), xik} · D−1

i ]

= E [I(fi(Qi,k−1) > xik ) · D−1
i ].
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Long-term optimization under uncertainty

Finally, as in the previous case, we get:

∇Ψ(xk ) = (1, . . . , 1).

Combining all this, we get that the optimal solution must satisfy:

E [I(fi(Qi,k−1) > xik ) · D−1
i ] = λ, i = 1, . . . , n,

for some value of λ, as well as the processing capacity constraint:

n󰁛

i=1

xik = K .

Note: The long-term strategy tends to give priority to reservoirs with
smaller decline rates.
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Handling the uncertainty

By assessing distributions for the reservoir parameters, the
expected values needed in the calculations of the optimal
solutions can be computed.
As the production develops, more information about the
production parameters is gained. Hence, the uncertainty
distributions must be updated (using Bayes’ theorem).
As a result of the updating, Vi and Di typically become
stochastically dependent even when they are independent apriori.
The updated joint distributions of Vi and Di can be simulated using
a combination of rejection sampling and the Metropolis-Hastings
algorithm.

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Production optimization STK 4400 16 / 22



A numerical example

We consider a simple numerical example, where n = 2, and where V1
and V2 are lognormally distributed apriori, while D1 and D2 are
uniformly distributed apriori.

The reservoirs will be producing in 25 periods and processed on a
facility with a capacity of K = 1.2 million barrels of oil per period.

i E [Vi ] SD[Vi ] Vi Dmin
i Dmax

i Di
1 12.0 2.0 12.0 0.20 0.30 0.25
2 12.0 2.0 12.0 0.05 0.15 0.10

Table: Reservoir parameters.

Given the true values of the reservoir parameters, the optimal strategy
is a strict priority rule where the reservoir with the lowest decline rate,
i.e., Reservoir 2, is given top priority.
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Results

Total result Disc. result
Short-term strategy 22.15 20.26
Long-term strategy 22.93 20.92
Deterministic strategy 22.94 20.94

Table: Results of the simulations for the three strategies.
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Production profiles for the short-term strategy
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Figure: Production profiles using short-term strategy for Reservoir 1 (red
curve), Reservoir 2 (green curve), and Total production (blue curve)
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Production profiles for the long-term strategy
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Figure: Production profiles using long-term strategy for Reservoir 1 (red
curve), Reservoir 2 (green curve), and Total production (blue curve)
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Production profiles for the deterministic strategy
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Figure: Production profiles using the deterministic strategy for Reservoir 1
(red curve), Reservoir 2 (green curve), and Total production (blue curve)
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Conclusions

A framework for optimizing oil production from several reservoirs
sharing a common processing facility when the reservoir
parameters are not known is proposed
Both a short-term strategy and a long-term strategy have been
analysed
Both strategies are determined using step by step forward
optimization making the calculations simple and efficient
compared to full scale stochastic dynamic optimization
Numerical studies have shown that the long-term strategy is
performing better than the short-term strategy.
Future work:

Multiphase production (i.e., oil/gas/water)
More complex production models
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