
BAYESIAN DECISION THEORY AND MONTE CARLO
METHODS

ARNE BANG HUSEBY

Abstract. In this note we show how Monte Carlo methods can be used ef-
ficiently to find Bayes decision rules when the set of possible actions consists
of only two possible actions. The method is demonstrated on an offshore de-
velopment project. The Monte Carlo methods can also be used in sequential
decision problems. As an example we consider the problem of pricing Ameri-
can options. An American option is an option which can be exercised at any
point of time within a given interval [0, τ ]. Before demonstrating the Monte
Carlo methods on this problem, we study under which conditions one can gain
anything by exercising the option before the expiration time τ .

1. Introduction

Bayesian decision theory provides a natural framework for solving the fundamen-
tal problems of option pricing. To see this we start out by considering the following
standard setup. Let θ denote some uncertain parameter which is known to belong
to some set Θ, and let π(θ) denote the prior distribution of θ. Information about θ
is available in terms of data denoted by X with a conditional distribution given θ
denoted by f(x|θ) defined for all x ∈ X . Based on the data X we want to make a
decision, that is we want to select an action a from some space of possible actions
A. The consequence of this decision depends on both the chosen action a and the
uncertain variable θ, and is described in terms of a utility function U = U(θ, a), a
real valued function defined for all a ∈ A and θ ∈ Θ. A decision rule, δ = δ(x), is a
function defined from X into A, representing the decision made if the data X = x
is observed.

The expected utility (prior to observing X) given that a decision rule δ is used,
can be written as:

(1.1) E[U ; δ] =
∫

Θ

[
∫

X
U(θ, δ(x))f(x|θ)dx]π(θ)dθ.

The inner integral of (1.1) is often referred to as the risk function of the chosen
decision rule, denoted by R(θ; δ):

(1.2) R(θ; δ) =
∫

X
U(θ, δ(x))f(x|θ)dx.

In non-bayesian decision theory decision rules are compared by considering their
respective risk functions. This is difficult as one in general cannot find a uniformly
best decision rule, i.e., a rule, δ∗ such that R(θ; δ∗) ≥ R(θ; δ) for all θ ∈ Θ and for
all other decision rule δ. In bayesian decision theory, however, the decision rules
are compared by considering their respective expected utilities. A decision rule, δB

is said to be a Bayes rule if E[U ; δB ] ≥ E[U ; δ] for all other decision rule δ. In
many cases this leads to an essentially unique solution of the decision problem.
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In order to find the Bayes rule, one usually rewrites (1.1) using Fubini’s theorem
as:

(1.3) E[U ; δ] =
∫

X
[
∫

Θ

U(θ, δ(x))π(θ|x)dθ]f(x)dx,

where π(θ|x) denotes the posterior distribution of θ given X = x, and f(x) denotes
the unconditional distribution of X. The inner integral of (1.3) is referred to as the
posterior expected utility given that X = x and that the decision rule δ is used:

(1.4) E[U |X = x; δ] =
∫

Θ

U(θ, δ(x))π(θ|x)dθ.

The Bayes rule, δB , is then found by letting δB(x) be the action that for each x
maximizes the posterior expected utility given that X = x.

2. Decision Problems with Binary Action Space

In this paper we will focus on decision problems where the action spaceA consists
of just to possible actions, i.e., A = {a0, a1}. In this case the optimal decision for
a given x is found by comparing:

E[U |X = x; a0] =
∫

Θ

U(θ, a0)π(θ|x)dθ,(2.1)

E[U |X = x; a1] =
∫

Θ

U(θ, a1)π(θ|x)dθ,

and choosing the action with the highest expected utility. Thus, the Bayes rule, δB

takes the following form:

(2.2) δB(x) = { a0 if E[U |X = x; a0] ≥ E[U |X = x; a1]
a1 if E[U |X = x; a0] < E[U |X = x; a1]

.

If the expected utilities needed in (2.2) can be calculated analytically, it is easy
to find an explicit form of the Bayes rule. In other cases, however, one may need
to estimate the expectations by using Monte Carlo simulation. For a given value of
x, this involves sampling from the posterior distribution of θ given x. Sometimes,
however, one may wish to derive the complete decision rule. That is, one may want
to determine δ = δ(x) by using Monte Carlo simulation. More specifically, since the
action space, A consists of only two elements, one wants to determine the following
sets:

X0 = {x ∈ X : E[U |X = x; a0] ≥ E[U |X = x; a1]},(2.3)
X1 = {x ∈ X : E[U |X = x; a0] < E[U |X = x; a1]}.

In general the data X may be a vector of observations. In such cases it may be
difficult to determine the sets X0 and X1 by using Monte Carlo simulation. Often,
however, it is possible to reduce the dimension of the data by using the concept of
sufficiency. If S = S(X) is some sufficient statistic, then by definition the posterior
distribution of θ given X depends on X only through S. Thus, we may express
the decision rule as δ = δ(S(X)), or simply δ = δ(S). Since the dimension of S
can be significantly smaller than the dimension of X, this leads to a much simpler
problem. In the following we avoid introducing a new quantity S by assuming that
X is itself a sufficient statistic with the smallest possible dimension.
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We then introduce the following two functions:

ψ0(x) = E[U |X = x; a0],(2.4)
ψ1(x) = E[U |X = x; a1].

In order to determine the sets X0 and X1, we would like to estimate ψ0 and ψ1

by using Monte Carlo simulation. The naive approach to this would be to choose
a suitable large but finite set of x-values, say XMC = {x1, . . . , xn} ⊆ X . Then
for each xi ∈ XMC we estimate ψ0(xi) and ψ1(xi) by sampling from the posterior
distribution of θ given X = xi. From this we obtain the following partition of the
set XMC :

XMC,0 = {xi : ψ̂0(xi) ≥ ψ̂1(xi)},(2.5)

XMC,1 = {xi : ψ̂0(xi) < ψ̂1(xi)},
where ψ̂0 and ψ̂1 are the Monte Carlo estimates of ψ0 and ψ1. From the sets XMC,0

and XMC,1 we try to get estimates for the “true” sets X0 and X1, e.g., by considering
convex closures or similar techniques. The problem with this approach, however, is
that due to sampling errors we may not get a nice and sharp border between the
sets XMC,0 and XMC,1. That is, for xi-values close to the border between X0 and
X1, where ψ0(xi) and ψ1(xi) typically are close to each other, which one of ψ̂0 and
ψ̂1 which is the larger one, may fluctuate a lot.

A better approach, yielding more stable results, is to use what is known as the
common random number (or CRN) method. (See e.g., Glasserman and Yao [1].)
To explain this method, we start out by considering the problem of sampling θ
from the posterior distribution π(θ|x). Generally this is done by generating a suit-
able number of uniformly distributed random variables (using some sort of random
number generator), and then transform these variables to variables having the cor-
rect distribution. Note that depending on the distribution and the algorithm being
used we may need more than one uniformly distributed variable per θ. Assume
e.g., that we want to generate θ1, . . . , θN from π(θ|x), and let Ri denote the vector
of uniformly distributed random numbers needed to produce θi, i = 1, . . . , N . The
values θ1, . . . , θN are then obtained by applying the appropriate transformation,
say:

(2.6) θi = G(Ri, x), i = 1, . . . , N.

Note that since θ depends on X the value of X is typically included in the transfor-
mation as indicated above. In general the number of uniformly distributed random
numbers needed, i.e., the dimension of Ri, may depend on the value of X. This
may happen if e.g., a rejection sampling method is used, where the rejection crite-
rion may depend on the value of X. In this setting, however, we ignore this minor
technical difficulty.

Having generated θ1, . . . , θN , ψ0 and ψ1 are estimated by:

ψ̂0(x) =
1
N

N∑

i=1

U(θi, a0) =
1
N

N∑

i=1

U(G(Ri, x), a0)(2.7)

ψ̂1(x) =
1
N

N∑

i=1

U(θi, a1) =
1
N

N∑

i=1

U(G(Ri, x), a1)
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Now, the crucial idea is to use the same random numbers R1, . . . , RN for all
values of X. Thus, ψ̂0 and ψ̂1 can be evaluated for any value of X by entering this
value into (2.7). The border between the sets X0 and X1 can then be estimated by
finding the roots of the equation:

(2.8)
N∑

i=1

U(G(Ri, x), a0) =
N∑

i=1

U(G(Ri, x), a1).

If N is large, the calculations can be slow. However, if the dimension of X is small,
it is possible to find satisfactory results.

We close this section by considering a simple example where we use the above
simulation method. Assume that we are considering an offshore field development
project. One of the main uncertainties in the project is the recoverable oil volume.
We denote this volume by θ. Before we make the final development decision, we
have the option of drilling a test well. The relevant data from the test well is
summarized in a sufficient one-dimensional statistic X. The posterior distribution
of θ (in mill.Sm3) given X is a lognormal distribution with mean value X and
standard deviation 2.5.

Given that the results of the test well are satisfactory, the field is developed. The
present value of the total cost of a full field development (in mill.NOK), including
operational costs and the cost of the test well, is denoted C1. We assume that
E[C1] = 2900. The present value of the resulting sales (in mill.NOK) is denoted
S. This quantity can be a very complex function involving θ as well as many other
uncertain quantities. Thus, to estimate E[S], it is typically necessary to use Monte
Carlo simulation. In order to demonstrate the ideas, however, we use the following
very simple model:

(2.9) S = θ ·D,

where E[D] = 350.
If the results of the test well are unsatisfactory, all further development is

stopped. In this case the only cost is the cost of the test well (in mill.NOK)
which we denote C0. We assume that E[C0] = 250.

The two possible actions after the value of X is observed, are “No further devel-
opment”, and “Full development”, denoted by a0 and a1 respectively. For simplicity
we assume a linear utility function, denoted by U . If a0 is chosen, U = −C0, while
is a1 is chosen, U = S − C1.

With these assumptions it is easy to see that:

ψ0(x) = E[U |X = x; a0] = −250,(2.10)
ψ1(x) = E[U |X = x; a1] = 350 · x− 2900.

From this it follows that the Bayes rule δB is given by:

(2.11) δB(x) = { a0 if x ≤ 7.57
a1 if x > 7.57 .

The same result can also be found by using Monte Carlo simulation to estimate
ψ0(x) and ψ1(x). In Figure 1 we have plotted the estimated functions ψ̂0(x) (the
curve marked with triangles) and ψ̂1(x) (the curve marked with squares). In the
simulations we used x-values 5, 6, . . . , 10. By interpolating between these values, we
find that the two curves intersect when x is approximately 7.5 which is close to the
optimal value. When x is above this value, ψ̂1(x) > ψ̂0(x), so for such x-values a1
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Figure 1. Estimated expected utilities as functions of x.

should be chosen. On the other hand, when x is below this value, ψ̂1(x) < ψ̂0(x),
implying that a0 is the best choice.

In Figure 1 we have plotted the estimated the cumulative distribution functions
for the project utility given that the optimal decision rule is applied (the curve
marked with triangles) versus the corresponding curve if a1 is chosen regardless of
the value of x (the curve marked with squares). By comparing these two curves we
see how optimal use of the data from the test well improves the situation.

We observe that by using the optimal decision rule, the potential downside of
the project is reduced considerably. The reason for this is that by utilizing the test
well results we are able to stop the project when the results are unsatisfactory, and
thus avoid disasters. Note, however, that by using the optimal rule, we also lose
some of the potential upside, since we sometimes stop the project when we should
have proceeded. Still this effect is weaker than the reduction in potential downside,
so the expected utility is higher when using the optimal rule.

3. Sequential Decision Problems

One of the nice properties with the Monte Carlo method is that it can be ex-
tended to sequential decision problems. Such problems are typically very difficult
to solve analytically. In order to illustrate the sequential method we consider an
asset value process S(t) and an American option whose pay-off function, h, depends
on this process. The option can be exercised at any point of time within a given



6 ARNE BANG HUSEBY

Figure 2. Estimated Cumulative Utility Distributions.

interval [0, τ ]. If the option is exercised at time t, the cash value of the pay-off is
h(S(t)).

In order to avoid arbitrage we assume that all expectations are calculated with
respect to a given risk neutral probability measure. This implies that:

(3.1) E[exp−r(t2−t1) S(t2)|S(u), 0 ≤ u ≤ t1] = S(t1),

for all 0 ≤ t1 ≤ t2 ≤ τ where r denotes the risk free interest rate.
We assume that we have purchased one such option at time 0, and then consider

a point of time t such that t < τ . At this point of time we may choose to exercise
the option or wait. If we exercise the option, the value of the option will have a
present value relative to time t, denoted V0(t) which is equal to the cash value of
the pay-off. That is,

(3.2) V0(t) = h(S(t)).

If on the other hand, we wait until time τ , the expected present value of the option
relative to time t, denoted V1(t) will be:

(3.3) V1(t) = E[exp−r(τ−t) h(S(τ))|S(u), 0 ≤ u ≤ t].

Obviously, we would exercise the option at time t if and only if V0(t) > V1(t). If
there is a positive probability that V0(t) > V1(t) at some point of time t, then the
value of such an option would be greater than a European option with fixed exercise
time τ . On the other hand if V0(t) ≤ V1(t) for all t almost surely, then the value of
the American option is equal to the corresponding European option.
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The optimal decision at time t depends on the shape of the pay-off function. In
the following we assume that the pay-off function h is convex. Under this assump-
tion we can use the well-known Jensen’s inequality, and obtain the following:

V1(t) = E[exp−r(τ−t) h(S(τ))|S(u), 0 ≤ u ≤ t](3.4)

≥ exp−r(τ−t) h(E[S(τ)|S(u), 0 ≤ u ≤ t])

Since h is convex we also get that:

(3.5) (1− α)h(0) + αh(x) ≥ h((1− α)0 + αx) = h(αx),

for all 0 ≤ α ≤ 1. Hence, by replacing α by exp−r(τ−t), and inserting (3.5) into
(3.4), we get that:

V1(t) ≥ h(exp−r(τ−t) E[S(τ)|S(u), 0 ≤ u ≤ t])− (1− α)h(0)(3.6)

= h(E[exp−r(τ−t) S(τ)|S(u), 0 ≤ u ≤ t])− (1− α)h(0)
= h(S(t))− (1− α)h(0)
= V0(t)− (1− α)h(0),

where we also have used that the probability measure is assumed to be risk neutral,
i.e., (3.1).

From (3.6) the following result is immediate:

Theorem 3.1. Assume that the pay-off function, h, of an American option is
convex and that h(0) = 0. Then the option is equivalent to an European option.
That is, it is always optimal to exercise the option at the expiration time.

As an example we consider an American call option with pay-off function:

(3.7) h(s) = (s−K)+ = max(s−K, 0),

where K > 0 denotes the strike price. It is easy to see that h is convex and
that h(0) = 0. Thus, it follows by Theorem 3.1 that this option is equivalent to a
European option. That is, one should never exercise an American call option before
its expiration time. This result is actually very well-known. See e.g., Ross [3].

Considering (3.4) once again we see that if the risk free interest rate r is zero,
the lower bound on V1(t) can be written as:

(3.8) V1(t) ≥ h(E[S(τ)|S(u), 0 ≤ u ≤ t]).

Moreover, in this case the risk neutral probability measure satisfies:

(3.9) E[S(t2)|S(u), 0 ≤ u ≤ t1] = S(t1),

Hence, by combining (3.8) and (3.9) we get that:

(3.10) V1(t) ≥ h(S(t)) = V0(t).

Hence we have shown the following result:

Theorem 3.2. Assume that the pay-off function, h, of an American option is
convex and that the risk free interest rate is zero. Then the option is equivalent
to an European option. That is, it is always optimal to exercise the option at the
expiration time.

As an example we consider an American put option with pay-off function:

(3.11) h(s) = (K − s)+ = max(K − s, 0),
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where K > 0 denotes the strike price. Again it is easy to see that h is convex.
Thus, if the risk free interest rate is zero, it follows by Theorem 3.2 that this option
is equivalent to a European option. That is, one should never exercise an American
put option before its expiration time when the risk free interest rate is zero.

Note, however, that if the risk free interest rate is positive, it may sometimes
be advantageous to exercise an American put option before its expiration time. In
Figure 3 we have plotted expected pay-off as functions of current asset price. The
strike price is 5, while the risk free interest rate is 4%. The curve marked by squares
represents the pay-off if the option is exercised immediately, while the curve marked
by triangles represents the pay-off if the option is exercised at its expiration time.
We see that the two curves intersect when the current asset price is approximately
3.4. If the current price is below this number, it is better to exercise the option
immediately, while if the current price is above this number, it is better to exercise
the option at its expiration time.

Figure 3. Estimated mean pay-off as functions of current asset
price.
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