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Abstract. The domination function has played an important part in reliability the-
ory. While most of the work in this field has been restricted to various types of net-
work system models, many of the results can be generalized to much wider families
of systems associated with matroids. Previous papers have explored the relation
between undirected network systems and matroids. In this paper the main focus is
on directed network systems and oriented matroids. Classical results for directed
network systems include the fact that the signed domination is either +1 or −1 if
the network is acyclic, and zero otherwise. It turns out that these results can be gen-
eralized to systems derived from oriented matroids. Several classes of such systems
will be discussed.
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Introduction

The domination function has played an important part in reliability theory. Classical
references on this topic are [11], and [12]. More recent work in this area related to the
present paper includes [4] and [5]. Most of the work in the field has been restricted to
various types of network system models. However, many of the results can be generalized
to much wider families of systems associated with matroids. Previous papers, e.g., [6],
[7], [8], and [10] have explored the relation between undirected network systems and
matroids. In this paper we focus on directed network systems and oriented matroids.

1. Basic Concepts

We start out by reviewing the basic concepts of reliability theory (see [1]). A binary
monotone system is an ordered pair (E, φ) where E = {1, . . . , n} is a nonempty fi-
nite set, and φ is a binary nondecreasing function defined for all binary vectors X =
(X1, . . . , Xn). The elements of E are interpreted as components of some technological
system. Each component can be either functioning or failed. The vector X is referred
to as the component state vector. That is, for all i ∈ E, Xi = 1 if the ith component
is functioning and zero otherwise. The function φ is called the structure function of the

1Corresponding Author: Dept. of Mathematics, University of Oslo, P.O.Box 1053 Blindern, N-0316 Oslo,
Norway; E-mail: arne@math.uio.no.



system and represents the system state as a function of the component states. That is,
φ = φ(X) = 1 if the system is functioning and zero otherwise. A minimal path set of a
binary monotone system (E, φ), is a minimal subset P ⊆ E such that if Xi = 1 for all
i ∈ P , and zero otherwise, then φ(X) = 1.

It is well-known (see [1]) that the structure function of a binary monotone system is
always multilinear. That is, it can be written in the following form:

φ(X) =
∑
A⊆E

δ(A)
∏
i∈A

Xi

The function δ, defined for all subsets A ⊆ E, is called the signed domination func-
tion of the system. The system reliability can also be expressed in terms of the signed
domination function as:

Pr(φ(X) = 1) = E[φ(X)] =
∑
A⊆E

δ(A)E[
∏
i∈A

Xi] (1)

Thus, we see that both the structure function and the system reliability is uniquely deter-
mined by the signed domination function. Since the number of terms in the right-hand
sum in (1) is 2n, this formula may be very slow to compute. Fortunately, however, many
systems have signed domination functions where δ(A) is zero for a large number of sets.
This may simplify the calculations considerably.

The formula (1) is of particular interest in the study of directed network systems.
Such a system is illustrated in Figure 1. The components of the system are the edges,
labeled 1, 2, . . . , 7. The system is said to be functioning if there exists a directed path
of functioning edges from the source s to the terminal t. If (E, φ) is a directed network

Figure 1. An acyclic directed network

system, andA ⊆ E, then v(A) denotes the number of nodes being adjacent to at least one
edge in A. A key result for directed network systems is the following classical theorem
(see [11]):

Theorem 1 If (E, φ) is a directed network system, then the signed domination function
satisfies the following:

δ(A) = (−1)|A|−v(A)+1,

if A is an acyclic union of minimal path sets (i.e., a union of minimal path sets which
does not contain any directed circuit of the network). Otherwise δ(A) = 0.



The main purpose of this paper is to explore the possibility of generalizing the results
for directed network systems. It turns out that this can be done within the framework of
oriented matroids.

2. Oriented Matroid Systems

A signed set is a set M along with a mapping σM : M → {+,−}, called the sign
mapping of the set. With a slight abuse of notation, M refers both to the signed set
itself as well as the underlying unsigned set of elements. The sign mapping σM defines
a partition of M into two subsets, M+ = {e ∈ M : σM (e) = +} and M− = {e ∈
M : σM (e) = −}. M+ and M− are referred to as the positive and negative elements of
M respectively. If M is a signed set with M+ = {e1, . . . , ei} and M− = {f1, . . . , fj},
we indicate this by writing M as {e1, . . . , ei, f̄1, . . . , f̄j}. If M = M+, M is called a
positive set, while if M = M−, M is called a negative set. −M denotes the signed set
obtained from M by reversing the signs of all the elements, i.e., σ−M (e) = −σM (e) for
all e ∈M . IfM is a family of signed sets, the family of sign mappings, {σM : M ∈M},
is called the sign signature ofM.

Signed sets can be used to describe paths in directed networks by letting the positive
elements represent edges directed the same way as the path, while negative elements
represent edges directed the opposite way of the path. As an example consider once again
the directed network system shown in Figure 1. The signed minimal path sets from the
source s to the terminal t are:

P1 = {1, 4, 6}, P2 = {1, 4, 5̄, 7}, P3 = {1, 3, 5, 6},

P4 = {1, 3, 7}, P5 = {2, 5, 6}, P6 = {2, 3̄, 4, 6}, P7 = {2, 7},

while the positive minimal path sets between s an t are P1, P3, P4, P5, P7. We now pro-
ceed by adding an “artificial” edge x from t to s, and thus turning all the paths into
circuits. See Figure 2. Let M denote the family of all signed circuits in the extended
network. We also introduce the following families of sets:

P̄ = {(M \ x) : M ∈M, x ∈M+},

P = {(M \ x) : M ∈M, x ∈M+ and (M \ x)− = ∅}.

It is easy to see that P̄ is the family of all signed minimal path sets from the source s to
the terminal t, while P is the family of the positive such sets. Given the element x, P̄ and
P can be derived fromM without any knowledge of the node structure of the network.
Thus, all relevant information about the system is stored withinM.

The family of signed circuits of a directed graph satisfies certain properties which
can be formalized within the theory of oriented matroids. An oriented matroid is defined
as follows (see [3]):

Definition 2 An oriented matroid is an ordered pair (F,M) where F is a nonempty
finite set, andM is a family of signed subsets of F , called signed circuits satisfying the
following properties:

(O1) ∅ is not a signed circuit.



x

Figure 2. A 2-terminal directed network system with an artificial edge, x

(O2) If M is a signed circuit, then so is −M .
(O3) For all M1,M2 ∈ M such that M1 ⊆ M2, we either have M1 = M2 or M1 =

−M2.
(O4) If M1 and M2 are signed circuits such that M1 6= −M2, and e ∈ M+

1 ∩M
−
2 ,

then there exists a third signed circuit M3 with M+
3 ⊆ (M+

1 ∪ M
+
2 ) \ e and

M−3 ⊆ (M−1 ∪M
−
2 ) \ e.

If (F,M) is an oriented matroid, the elements of F may sometimes be interpreted as
vectors in a linear space, in which case the circuits correspond to minimal linearly de-
pendent sets. An independent set of an oriented matroid is defined as a set which does
not contain any circuit. If (F,M) is an oriented matroid, the rank function of the ma-
troid, denoted ρ(A), is defined for allA ⊆ E as the cardinality of the largest independent
subset of A.

Definition 3 Let (E∪x,M) be an oriented matroid, and let (E, φ) be a binary monotone
system with minimal path set family P given by:

P = {(M \ x) : M ∈M, x ∈M+ and (M \ x)− = ∅} (2)

We then say that (E, φ) is the oriented matroid system derived from the oriented matroid
(E ∪x,M) with respect to x, and write this as (E ∪x,M)→ (E, φ). If (E ∪x,M)→
(E, φ), a subset A ⊆ E is said to be cyclic if there exists a positive circuit M ∈M such
that M ⊆ A. If no such circuit exists, A is said to be acyclic. In particular the system
(E, φ) is said to be cyclic (acyclic) if E is cyclic (acyclic).

The class of oriented matroid systems generalizes the class of 2-terminal directed
network systems. Moreover, Theorem 1 can be generalized to the class of oriented ma-
troid systems:

Theorem 4 If (E ∪ x,M)→ (E, φ), then:

δ(A) = (−1)|A|−ρ(A∪x),

if A is an acyclic union of minimal path sets (i.e., a union of minimal path sets which
does not contain any positive circuit ofM). Otherwise δ(A) = 0.

Proof: See [9] �



3. Oriented Matrix Systems

In order to introduce the class of oriented matrix systems, we start out by letting (E, φ)
be a binary monotone system where E = {1, . . . , n}. If the component state vector is
X , we introduce the set A = A(X) = {i : Xi = 1}. For each i ∈ E we associate a
vector denoted vi belonging to some vector space over an ordered field, say e.g., R. We
also introduce a “target” vector u belonging to the same vector space. We then define
φ(X) to be 1 if there exists {λi ≥ 0 : i ∈ A(X)} so that:∑

i∈A
λivi = u, (3)

and zero otherwise. Thus, the system is functioning if and only if the convex cone
spanned by the vectors {vi : i ∈ A} contains the target vector. We refer to such a system
as an oriented matrix system. It can be shown that such a system is in fact a special case
of an oriented matroid system. We denote the corresponding matroid by (E ∪ x,M).
To the artificial component x we associate the vector vx = −u. The family of signed
circuitsM consists of the sets M ⊆ (E ∪ x) such that {vi : i ∈ M} is a minimal lin-
early dependent set of vectors. Thus, if M ∈M, there exists a set of non-zero constants
{λi : i ∈M} such that: ∑

i∈M
λivi = 0. (4)

Moreover, given {λi : i ∈M}, the sign map ofM is defined so thatM+ = {i : λi > 0},
while M− = {i : λi < 0}.

Finally, the rank function of (E ∪ x,M), denoted ρ, reduces to “ordinary” matrix
rank. That is, if A ⊆ (E ∪ x), then ρ(A) is equal to the rank of the matrix with columns
{vi : i ∈ A}.

We observe that if M ∈M, x ∈M+ and (M \ x)− = ∅, we have:

∑
i∈M\x

λi
λx

vi = −vx = u. (5)

Thus, (M \ x) is indeed a minimal path set of (E, φ).
Since (E, φ) is an oriented matroid system, it follows by Theorem 4 that δ(A) =

(−1)|A|−ρ(A∪x) if A is an acyclic union of minimal path sets and zero otherwise.
The class of oriented matrix systems can be viewed as a generalization of the class

of 2-terminal directed network systems. In particular, if (E, φ) is a 2-terminal directed
network system, the associated vectors correspond to the columns of the node-arc inci-
dence matrix of the network graph, including the artificial edge x from the terminal back
to the source. (See Figure 2).

We recall that for an oriented matroid system (E, φ) a subset A ⊆ E is acyclic if
A does not contain any positive circuits. Thus, in an oriented matrix system (E, φ) with
associated vectors {vi : i ∈ E}, A ⊆ E is is cyclic if there exists a set of nonnegative
numbers {λi : i ∈ A} where λj > 0 for at least one j ∈ A, and such that:



∑
i∈A

λivi = 0. (6)

Note that if (6) holds for the set of nonnegative numbers {λi : i ∈ A} and c > 0, then (6)
also holds for {cλi : i ∈ A}. Thus, since not all the λis are zero, we may scale them so
they add up to 1, in which case the left-hand side of (6) becomes a convex combination of
the vis. Hence,A is cyclic if and only if 0 is contained in the convex hull of {vi : i ∈ A}.
If not, A is acyclic.

4. Oriented k-out-of-n systems

Let (E, φ) be a binary montone system where |E| = n, and assume that φ(X) = 1 if
|A(X)| ≥ k and zero otherwise. Then the system is said to be a k-out-of-n system. That
is, the system is functioning if and only if at least k of the n components are functioning.
Thus, the minimal path sets of a k-out-of-n system are all sets P ⊆ E such that |P | = k.
The class of k-out-of-n systems has been studied extensively in the reliability litterature.
See e.g., [1]. An efficient algorithm for calculating the reliability of k-out-of-n systems
is given in [2].

In [6] it is shown that k-out-of-n systems can be associated with matroids in the same
way as undirected network systems. It turns out that it is possible to derive oriented ma-
troid systems from the class of k-out-of-n systems as well. Thus, we let E = {1, . . . , n}
be a set of components and let k be an integer such that 1 ≤ k ≤ n. We then consider
what is known as a “uniform” oriented matroid (E ∪ x,M) with rank k. See [3]. That
is,M is given as.

M = {M ⊆ (E ∪ x) : |M | = k + 1}, (7)

and equipped with a suitable sign signature. Note that since all the circuits of (E∪x,M)
contains k + 1 elements, it follows that the largest independent subsets of E ∪ x contain
k elements. Thus, by definition of the rank we indeed have that ρ(E ∪ x) = k.

Then let (E, φ̄) be the binary monotone system with minimal path sets P̄ = {(M \
x) : x ∈ M+}. Hence, P̄ consists of all subsets of E with cardinality k, so (E, φ̄) is a
k-out-of-n system.

Now, consider instead the system (E, φ) with minimal path sets P = {P ∈ P̄ :
P− = ∅}. Thus, only the positive sets of P̄ are included in P . By definition (E, φ) is
an oriented matroid system, and we then refer to this system as an oriented k-out-of-n
system. Note that the exact form of (E, φ) depends on the sign signature of (E ∪x,M).
Thus, in general there will be many different types of oriented k-out-of-n systems. Some
of these are acyclic, while others are cyclic. In the case where (E, φ) is acyclic, i.e.,
where E does not contain any positive circuits, it follows by Theorem 4 that:

δ(E) = (−1)|E|−ρ(E∪x) = (−1)n−k, (8)

while in the cyclic case δ(E) = 0.

Example 5 Let (E, φ) be an oriented matrix system whereE = {1, . . . , 5}. Assume that
the associated vectors v1, . . . ,v5 all have the same length and are located in the first



v1

u
v2v5

v3v4

Figure 3. Vectors in R3 forming a regular pentagon, and projected into a plane orthogonal to the center point

octant of R3 forming a regular pentagon. Furthermore, assume that the target vector u
is located at the center of this pentagon. The system is illustrated Figure 3, where we
have projected all the points into a plane orthogonal to the center point of the pentagon.
As usual we denote the corresponding matroid by (E ∪ x,M), and let vx = −u.

By the choice of v1, . . . ,v5,vx it is clear that any set of three of these vectors forms
a basis for R3. Since M by definition consists of the sets M ⊆ (E ∪ x) such that
{vi : i ∈ M} is a minimal linearly dependent set of vectors, it follows that we in this
case haveM = {M ⊆ (E ∪ x) : |M | = 4}. Thus, (E ∪ x,M) is a uniform oriented
matroid, and we have:

ρ(E ∪ x) = rank[v1, . . . ,v5,vx] = 3. (9)

Hence, by the definition of oriented k-out-of-n systems it is evident that (E, φ) is an
oriented 3-out-of-5 system. On the other hand (E, φ) is by definition also an oriented
matrix system. Thus, if A(X) ⊆ E is the set of functioning components, it follows that
φ(X) = 1 if and only if the target vector u is contained in the convex cone spanned by
the vectors {vi : i ∈ A(X)}. Considering the projection in Figure 3 this is equivalent
to the projection of u being contained in the polygon spanned by the projections of the
vectors {vi : i ∈ A(X)}. For this to hold we must have |A(X)| ≥ 3. Moreover, if
|A(X)| = 3, the projections cannot be consecutive points in the pentagon. Thus, e.g.,
the triangle corresponding to the set {1, 2, 4} contains the projection of the target, so
φ(1, 1, 0, 1, 0) = 1. On the other hand the triangle corresponding to the set {1, 2, 3}
does not contain the projection of the target, so φ(1, 1, 1, 0, 0) = 0. From this we get
that the minimal path sets of the system are P = {P1, . . . , P5} where P1 = {1, 2, 4},
P2 = {2, 3, 5}, P3 = {1, 3, 4}, P4 = {2, 4, 5}, and P5 = {1, 3, 5}.

Since all the associated vectors are located in the first octant of R3, the convex hull
of these vectors cannot contain 0. Thus, (E, φ) is acyclic. Hence, by Theorem 4 it follows
that δ(E) = (−1)|E|−ρ(E∪x) = (−1)5−3 = 1.

5. Discussion

In the present paper we have introduced the class of oriented matroid systems, and shown
how the classical domination results for directed network systems can be extended to this



class. Since 2-terminal directed network systems are special cases of oriented matroid
systems, the domination results for such network systems are covered completely by our
results. In [6] and [7] it was shown that multi-terminal undirected network systems can be
handled in a unified way using matroid theory. Thus, a natural conjecture would be that
similar unifying results can be obtained in the directed case. Preliminary investigations
of this, however, indicates that the problem is much more difficult than in the undirected
case, and that certain restrictions will apply.
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