
New results on the Barlow-Proschan and Natvig measures
of component importance in nonrepairable and repairable
systems

Bent Natvig · Jørund G̊asemyr

Abstract In this paper dynamic and stationary measures of importance of a
component in a binary system are considered. To arrive at explicit results we
assume the performance processes of the components to be independent and the
system to be coherent. Especially, the Barlow-Proschan and the Natvig mea-
sures are treated in detail and a series of new results and approaches are given.
For the case of components not undergoing repair it is shown that both mea-
sures are sensible. Reasonable measures of component importance for repairable
systems represent a challenge. A basic idea here is also to take a so-called dual
term into account. According to the extended Barlow-Proschan measure a com-
ponent is important if there are high probabilities both that its failure is the
cause of system failure and that its repair is the cause of system repair. Even
with this extension results for the stationary Barlow-Proschan measure are not
satisfactory. According to the extended Natvig measure a component is impor-
tant if both by failing it strongly reduces the expected system uptime and by
being repaired it strongly reduces the expected system downtime. With this
extension the results for the stationary Natvig measure seem very sensible.
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1 Introduction

There seem to be two main reasons for coming up with a measure of importance
of system components. Reason 1: it permits the analyst to determine which
components merit the most additional research and development to improve
overall system reliability at minimum cost or effort. Reason 2: it may suggest
the most efficient way to diagnose system failure by generating a repair checklist
for an operator to follow.

It should be noted that no measure of importance can be expected to be
universally best irrespective of usage purpose. In this paper we will concentrate
on what could be considered as allround measures of component importance
focusing both on the contributions of the components to system failure and
survival or system downtime and uptime. In Natvig and G̊asemyr (2006) two
extensions of the Barlow-Proschan measure are considered focusing respectively
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on system failure and survival. Furthermore, in Huseby (2004) two Birnbaum
type measures for repairable systems are considered focusing respectively on
system downtime and uptime. In addition, we are not considering measures
admitting the extreme case of improvement to perfect functioning as for instance
the I(i)

N4
measure given in Natvig (1985). This is based on the expected increase

in system lifetime by replacing the ith component by a perfect one. Examples
of importance measure applications in probabilistic risk analysis are given in
Cheok et al. (1998) and Borgonovo and Apostolakis (2001). In the present
paper we consider importance measures for single components. Some simple
joint importance measures for two components in a nonrepairable system are
considered in Armstrong (1995) and Wu (2005).

Consider a system consisting of n components. Let (i = 1, . . . , n):

Xi(t) =

{
1 if the ith component functions at time t,
0 if the ith component is failed at time t.

Assume also that the stochastic processes {Xi(t), t ≥ 0}, i = 1, . . . , n, are
mutually independent. For the dynamic approach of the present paper this
is a necessary assumption in order to arrive at explicit results. For real life
systems modelling of component dependence and common cause failures is of
course important, see for instance G̊asemyr and Natvig (1995a, b, 1998, 2005).
Introduce X(t) = (X1(t), . . . , Xn(t)) and let:

ϕ(X(t)) =

{
1 if the system functions at time t,
0 if the system is failed at time t.

The following notation will be used:

(·i,x) = (x1, . . . , xi−1, ·, xi+1, . . . , xn).

We assume the structure function ϕ to be coherent. Hence, ϕ is nondecreasing
in each argument and each component is relevant, i.e. for each component i
there exists a combination of the states of the other components, (·i,x), such
that ϕ(1i,x) = 1 and ϕ(0i,x) = 0. For an excellent introduction to coherent
structure theory, we refer to Barlow and Proschan (1981).

The paper is organized as follows. In Section 2 the Birnbaum, Barlow-
Proschan and Natvig measures of component importance in nonrepairable sys-
tems are considered. The Barlow-Proschan and Natvig measures of component
importance in repairable systems, with their dual extensions, are respectively
treated in Sections 3 and 4. Finally, some concluding remarks are given in
Section 5.

2 Measures of component importance in nonrepairable sys-
tems

In this section we restrict our attention to the case where the components, and
hence the system, cannot be repaired. Let the ith component have an absolutely
continuous life distribution Fi(t) with density fi(t). Then the reliability of this
component at time t is given by:

P [Xi(t) = 1] = 1− Fi(t)
d= F̄i(t).

Introduce F̄(t) = (F̄1(t), . . . , F̄n(t)). Then the reliability of the system at time
t is given by:

P [ϕ(X(t)) = 1] = h(F̄(t)),
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where h is the system’s reliability function.

2.1 The Birnbaum measure

Birnbaum (1969) defines the importance of the ith component at time t by:

I
(i)
B (t) = P [ϕ(1i,X(t))− ϕ(0i,X(t)) = 1] = h(1i, F̄(t))− h(0i, F̄(t)), (1)

which is the probability that the system is in a state at time t in which the
functioning of the ith component is critical, i.e. the system functions if the ith
component functions and is failed otherwise. By pivot decomposition it follows
that:

I
(i)
B (t) =

∂h(F̄(t))
∂F̄i(t)

,

indicating that the Birnbaum measure reflects Reason 1. There are two main
objections to this measure. Firstly, it gives the importance at fixed points of
time leaving for the analyst at the system development phase to determine
which points are important. Secondly, the measure does not depend on the
reliability of the ith component, whether good or bad, although the ranking of
the importances of the components depends on all component reliabilities.

2.2 The Barlow-Proschan measure

These objections cannot be raised to the time-independent Barlow and Proschan
(1975) importance of the ith component:

I
(i)
B−P = P [The failure of the ith component coincides

with the failure of the system].

Now obviously:

I
(i)
B−P =

∞∫
0

I
(i)
B (t)fi(t)dt =

∞∫
0

[h(1i, F̄(t))− h(0i, F̄(t))]fi(t)dt. (2)

Hence, the Barlow-Proschan measure is a weighted average of the Birnbaum
measure, the weight at time t being fi(t). According to this measure a com-
ponent is more important the more likely it is to be the direct cause of system
failure, i.e. its failure coincides with the failure of the system, indicating that it
takes well care of both Reasons 1 and 2.

Since a system failure coincides with the failure of exactly one component,
we have:

n∑
i=1

I
(i)
B−P = 1. (3)

This is not true for the Birnbaum measure. The following theorem, with an
original proof, generalizing a theorem the proof of which is sketched in Barlow
and Proschan (1975), seems to indicate that this is a sensible measure:

Theorem 1. Let the ith component be in series (parallel) with the rest of the
system. Let for an arbitrary component j 6= i Fi(t) ≥ Fj(t) > 0 (F̄i(t) ≥ F̄j(t) >
0) for all t ≥ 0. Hence, Fi is less (greater) than Fj in the ordinary stochastic
order. Then:

I
(i)
B−P ≥ I

(j)
B−P +

∞∫
0

fj(t)
F̄j(t)

h(0j , F̄ (t))dt
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I(i)
B−P ≥ I

(j)
B−P +

∞∫
0

fj(t)
Fj(t)

(1− h(1j , F̄(t)))dt

 .

Proof: When the ith component is in series with the rest of the system, we
have noting that h(F̄ (t)) is nonincreasing in t:

I
(i)
B−P =

∞∫
0

fi(t)h(1i, F̄(t))dt =

∞∫
0

fi(t)
F̄i(t)

h(F̄(t))dt

=
[
− ln(F̄i(t))h(F̄(t))

]∞
0

+

∞∫
0

ln(F̄i(t))
d

dt
h(F̄(t))dt

=

∞∫
0

ln(F̄i(t))
d

dt
h(F̄(t))dt

≥
∞∫
0

ln(F̄j(t))
d

dt
h(F̄(t))dt =

∞∫
0

fj(t)
F̄j(t)

h(F̄(t))dt

=

∞∫
0

fj(t)
1

F̄j(t)
[F̄j(t)h(1j , F̄(t)) + (1− F̄j(t))h(0j , F̄(t))]dt

= I
(j)
B−P +

∞∫
0

fj(t)
F̄j(t)

h(0j , F̄(t))dt.

Similarly, when the ith component is in parallel with the rest of the system:

I
(i)
B−P =

∞∫
0

fi(t)[1− h(0i, F̄(t))]dt

=

∞∫
0

fi(t)
Fi(t)

[1− h(F̄(t))]dt =

∞∫
0

(lnFi(t))
d

dt
h(F̄(t))dt

≥
∞∫
0

(lnFj(t))
d

dt
h(F̄(t))dt

=

∞∫
0

fj(t)
1

Fj(t)
[1− (1− Fj(t))h(1j , F̄(t))− Fj(t)h(0j , F̄(t))]dt

= I
(j)
B−P +

∞∫
0

fj(t)
Fj(t)

(1− h(1j , F̄(t)))dt.

The result in Barlow and Proschan (1975) follows by noting that the second
terms on the right hand side of the inequalities in Theorem 1 are nonnegative.
Note that these terms are zero when the jth component is respectively in series
and in parallel with the rest of the system. This theorem gives lower bounds
for how much larger I(i)

B−P is than I
(j)
B−P , not just that it is larger. For a very

recent book on stochastic orders, we refer to Shaked and Shanthikumar (2007).

As an example consider a three component system where component 1 is in
series with a parallel subsystem of components 2 and 3 and where the lifetime of
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the kth component is exponentially distributed with failure rate λk, k = 1, 2, 3.
Letting i = 1 and j = 2 and assume λ1 ≥ λ2, the second term on the right
hand side of the first inequality in Theorem 1 equals λ2/(λ1 +λ3). If λ3 is large
compared to λ2, this term is close to 0. This is natural since then we actually
are close to having a series system of components 1 and 2. If on the other hand
λ3 is small compared to λ2, and λ1 is close to λ2, this term is close to 1. This
reflects that the importance of component 2 is close to 0 in this case.

2.3 The Natvig measure

Intuitively it seems that components that by failing strongly reduce the expected
remaining system lifetime are very important. This seems at least true during
the system development phase. This is the motivation for the Natvig (1979)
measure. In Natvig (1982) a stochastic representation of this measure was
obtained by considering the random variables (i = 1, . . . , n):

Zi = Y 1
i − Y 0

i , (4)

where:

Y 0
i = remaining system lifetime just after the failure of the ith component

Y 1
i = remaining system lifetime just after the failure of the ith component,

which, however, immediately undergoes a fictive minimal repair; i.e. it is
repaired to have the same distribution of remaining lifetime as it had just
before failing.

Thus, Zi can be interpreted as the increase in system lifetime due to a minimal
repair of the ith component at failure. Then the Natvig measure of importance
of the ith component is defined as:

I
(i)
N =

EZi∑n
j=1EZj

, (5)

tacitly assuming EZi <∞, i = 1, . . . , n. Obviously:

0 ≤ I(i)
N ≤ 1,

n∑
i=1

I
(i)
N = 1. (6)

In Natvig (1985) the following surprising relation was proved:

EZi =

∞∫
0

I
(i)
B (t)F̄i(t)(− ln F̄i(t))dt. (7)

Hence, as for the Barlow-Proschan measure EZi is a weighted average of the
Birnbaum measure. The weight at time t, F̄i(t)[− ln F̄i(t)], is the improvement
in the reliability of the ith component at time t due to the allowance of one
minimal repair at failure. The Natvig measure for dependent components is
considered in Norros (1986) using martingale notions and methods.

The following very similar theorem to Theorem 1 is an essential improvement
of a theorem in Natvig (1985):

Theorem 2. Let the ith component be in series (parallel) with the rest of the
system. Let for an arbitrary component j 6= i Fi(t) ≥ Fj(t) > 0 (F̄i(t) ≥ F̄j(t) >
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0) for all t ≥ 0. Hence, Fi is less (greater) than Fj in the ordinary stochastic
order. Then I

(i)
N ≥ I

(j)
N .

EZi ≥ EZj +
∫ ∞

0

(− ln F̄j(t))h(0j , F̄ (t))dt(
EZi ≥ EZj +

∫ ∞
0

[(− ln F̄j(t))F̄j(t)/Fj(t)](1− h(1j , F̄ (t)))dt
)
.

Proof: When the ith component is in series with the rest of the system we
have:

EZi =
∫ ∞

0

(− ln F̄i(t))F̄i(t)h(1i, F̄ (t))dt

=
∫ ∞

0

(− ln F̄i(t))h(F̄ (t))dt

≥
∫ ∞

0

(− ln F̄j(t))h(F̄ (t))dt

=
∫ ∞

0

(− ln F̄j(t))F̄j(t)[h(1j , F̄ (t))− h(0j , F̄ (t))]dt

+
∫ ∞

0

(− ln F̄j(t))h(0j , F̄ (t))dt

= EZj +
∫ ∞

0

(− ln F̄j(t)h(0j , F̄ (t))dt.

Similarly, when the ith component is in parallel with the rest of the system,
noting that g(x) = (− lnx)x/(1− x) is nondecreasing in [0, 1]:

EZi =

∞∫
0

(− ln F̄i(t))F̄i(t)(1− h(0i, F̄ (t))dt

=
∫ ∞

0

[(− ln F̄i(t))F̄i(t)/Fi(t)](1− h(F̄ (t)))dt

≥
∞∫
0

[(− ln F̄j(t))F̄j(t)/Fj(t)][1− F̄j(t)h(1j , F̄ (t))

− Fj(t)h(0j , F̄ (t)) + Fj(t)h(1j , F̄ (t))− Fj(t)h(1j , F̄ (t))]dt

= EZj +

∞∫
0

[(− ln F̄j(t))F̄j(t)/Fj(t)](1− h(1j , F̄ (t)))dt.

The first part of the theorem follows by noting that the second terms on the
right hand side of the inequalities are nonnegative.

Note again that these second terms are zero when the jth component is
respectively in series and in parallel with the rest of the system. This theorem
gives lower bounds for how much larger EZi is than EZj , not just that it is
larger.

Consider again the three component system with exponentially distributed
lifetimes. The second term on the right hand side of the first inequality in
Theorem 2 now equals λ2/(λ1 + λ3)2. Hence, a parallel discussion to the one
for the Barlow-Proschan measure can be carried through.

In a way the Natvig measure can be considered as a more complex cousin of
the Barlow-Proschan measure. Theorem 3.6 of Natvig (1979) gives an example
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of a 2 component series system with Weibull distributed lifetimes where the
ordering of component importance is different using the Barlow-Proschan and
the Natvig measures. A more thorough comparison of the two for different
lifetime distributions are given in Natvig (1985).

3 The Barlow-Proschan measure of component importance
in repairable systems and its dual extension

In this and the subsequent section we consider the case where the components,
and hence the system, can be repaired. Let the ith component have an abso-
lutely continuous repair time distribution with mean νi, and let the mean time
to failure of the ith component be µi, i = 1, . . . , n. It is assumed that all life-
times and repair times are independent. Let Ai(t) be the availability of the ith
component at time t, i.e. the probability that the component is functioning at
time t. The corresponding stationary availabilities are given by:

Ai = lim
t→∞

Ai(t) =
µi

µi + νi
, i = 1, . . . , n. (8)

Introduce A(t) = (A1(t), . . . , An(t)) and A = (A1, . . . , An). Now

P [ϕ(X(t)) = 1] = h(A(t)).

3.1 The Barlow-Proschan measure

Let (i = 1, . . . , n):

Ni(t) = the number of failures of the ith component in [0, t]

Ñi(t) = the number of system failures caused by the ith component in [0, t].

Finally, denote ENi(t) by Mi(t). In Barlow and Proschan (1975) the following
relation is proved somewhat heuristically (i = 1, . . . , n):

EÑi(t) =

t∫
0

I
(i)
B (u)dMi(u), (9)

where:
I
(i)
B (u) = h(1i,A(u))− h(0i,A(u)). (10)

However, a rigorous proof can be given. A time dependent Barlow-Proschan
measure of the importance of the ith component in the time interval [0, t] in
repairable systems is given by:

I
(i)
B−P (t) =

EÑi(t)∑n
j=1EÑj(t)

, (11)

although not explicitly mentioned in Barlow and Proschan (1975). By a renewal
theory argument they arrive at the corresponding stationary measure:

I
(i)
B−P = lim

t→∞
I
(i)
B−P (t) =

I
(i)
B /(µi + νi)∑n

j=1 I
(j)
B /(µj + νj)

, (12)

where:
I
(i)
B = lim

t→∞
I
(i)
B (t) = h(1i,A)− h(0i,A). (13)
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I
(i)
B−P is the stationary probability that the failure of the ith component is the

cause of system failure, given that system failure has occurred.
The following results given in Barlow and Proschan (1975) are straightfor-

ward from (12) and (13):

Theorem 3. For a series system we have:

I
(i)
B−P =

µ−1
i∑n

j=1 µ
−1
j

,

whereas for a parallel system we have the dual expression:

I
(i)
B−P =

ν−1
i∑n

j=1 ν
−1
j

.

As noted by the authors the former does not depend on component mean
repair times, whereas the latter does not depend on component mean times to
failure. We feel this is somewhat discomforting.

We have arrived at the following theorem parallel to Theorem 1:

Theorem 4. Let the ith component be in series (parallel) with the rest of the
system. Let for an arbitrary component j 6= i µi ≤ µj (νi ≤ νj). Then I

(i)
B−P ≥

I
(j)
B−P . Furthermore, for the numerator of the measure we have:

I
(i)
B

µi + νi
≥

I
(j)
B

µj + νj
+
h(0j ,A)

µi(
I
(i)
B

µi + νi
≥

I
(j)
B

µj + νj
+

1− h(1j ,A)
νi

)
.

Proof: When the ith component is in series with the rest of the system we
have:

I
(i)
B

µi + νi
=
h(1i,A)
µi + νi

=
h(A)
µi

=
1
µi

[
µj

µj + νj
(h(1j ,A)− h(0j ,A)) + h(0j ,A)]

≥
I
(j)
B

µj + νj
+
h(0j ,A)

µi
.

When the ith component is in parallel with the rest of the system we have:

I
(i)
B

µi + νi
=

1− h(0i,A)
µi + νi

=
1− h(A)

νi

=
1
νi

[
νj

µj + νj
(h(1j ,A)− h(0j ,A)) + 1− h(1j ,A)]

≥
I
(j)
B

µj + νj
+

1− h(1j ,A)
νi

.

It is still discomforting that the assumption in the first (second) inequality does
not depend on the component mean times to repair (failure).
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3.2 The dual extension of the Barlow-Proschan measure

As an attempt to improve the Barlow-Proschan measures (11) and (12) for
repairable systems it is suggested to take a dual term into account based on the
probability that the repair of the ith component is the cause of system repair,
given that system repair has occurred. Let (i = 1, . . . , n):

Vi(t) = the number of repairs of the ith component in [0, t]

Ṽi(t) = the number of system repairs caused by the ith component in [0, t].

Denote EVi(t) by Ri(t).
Note that:

Ai(t) = P [Vi(t)−Ni(t) = 0] = E[Vi(t)−Ni(t) + 1] = Ri(t)−Mi(t) + 1.

A more complex expression is given in Aven and Jensen (1999). Parallel to (9)
we get (i = 1, . . . , n):

EṼi(t) =

t∫
0

I
(i)
B (u)dRi(u). (14)

An extended version of (11) is given by:

Ī
(i)
B−P (t) =

EÑi(t) + EṼi(t)
n∑
j=1

[EÑj(t) + EṼj(t)]
=

t∫
0

I
(i)
B (u)d(Mi(u) +Ri(u))

n∑
j=1

t∫
0

I
(j)
B (u)d(Mj(u) +Rj(u))

. (15)

However, since from renewal theory:

lim
t→∞

Mi(t)
t

= lim
t→∞

Ri(t)
t

=
1

µi + νi
,

it turns out that for the corresponding stationary measure:

Ī
(i)
B−P = lim

t→∞
Ī
(i)
B−P (t) = I

(i)
B−P .

Hence, Theorems 3 and 4 are also valid for Ī(i)
B−P which is disappointing.

4 The Natvig measure of component importance in re-
pairable systems and its dual extension

We start by introducing some basic random variables (i = 1, . . . , n):

Tij = the time of the jth failure of the ith component, j = 1, 2, . . .

Sij = the time of the jth repair of the ith component, j = 0, 1, . . .,

where we define Si0 = 0. Let (i = 1, . . . , n and j = 1, 2 . . .):

Uij = Tij − Sij−1 = The length of the jth lifetime of the ith component.

Dij = Sij −Tij = The length of the jth repair time of the ith component.
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We assume that Uij has an absolutely continuous distribution Fi(t) with density

fi(t) letting F̄i(t)
d= 1−Fi(t). Furthermore, Dij is assumed to have an absolutely

continuous distribution Gi(t) with density gi(t) letting Ḡi(t)
d= 1−Gi(t). As for

the Barlow-Proschan measure in repairable systems EUij = µi, EDij = νi and
all lifetimes and repair times are assumed independent.

4.1 The Natvig measure

Parallel to the nonrepairable case we argue that components that by failing
strongly reduce the expected system uptime should be considered as very im-
portant. In order to formalize this, we introduce (i = 1, . . . , n and j = 1, 2, . . .):

T ′ij = the fictive time of the jth failure of the ith component after a fictive
minimal repair of the component at Tij .

As for the Barlow-Proschan measure we consider a time interval [0, t] and define:

Y 0
ij = system uptime in [min(Tij , t),min(T ′ij , t)] assuming that the ith com-

ponent is failed throughout this interval.

Y 1
ij = system uptime in [min(Tij , t),min(T ′ij , t)] assuming that the ith com-

ponent is functioning throughout this interval as a result of the fictive
minimal repair.

In order to arrive at a stochastic representation similar to the nonrepairable
case, see (4), we introduce the following random variables (i = 1, . . . , n):

Zij = Y 1
ij − Y 0

ij , j = 1, 2, . . . . (16)

Thus, Zij can be interpreted as the fictive increase in system uptime in the
interval [min(Tij , t),min(T ′ij , t)] as a result of the ith component being func-
tioning instead of failed in this interval. Note that since the minimal repair
is fictive, we have chosen to calculate the effect of this repair over the entire
interval [min(Tij , t),min(T ′ij , t)] even though this interval may extend beyond
the time of the real repair, Sij .

In order to summarize the effects of all the fictive minimal repairs, we have
chosen to simply add up these contributions. Note that the fictive minimal repair
periods, i.e., the intervals of the form [min(Tij , t),min(T ′ij , t)], may sometimes
overlap. Thus, at a given point of time we may have contributions from more
than one fictive minimal repair. This is efficiently dealt with by the simulation
methods presented in Huseby et al. (2008). Taking the expectation, we get:

E
[ ∞∑
j=1

I(Sij−1 ≤ t)Zij
]
d=EYi(t), (17)

where I denotes the indicator function. The time dependent Natvig measure
of the importance of the ith component in the time interval [0, t] in repairable
systems can then be defined as:

I
(i)
N (t) =

EYi(t)∑n
j=1EYj(t)

. (18)

We will now prove the following theorem:
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Theorem 5.

EYi(t) =
∫ t

0

I
(i)
B (w)F̄ (w)(− ln F̄i(w))dw

+
∫ t

0

∫ t

u

I
(i)
B (w)F̄i(w − u)(− ln F̄i(w − u))dw dRi(u).

To prove the theorem in a formal way we must first prove the following
lemma.

Lemma 1 Let W1,W2, . . . be an increasing sequence of positive random vari-
ables. Assume that Wj −Wj−1 are independent with an absolutely continuous

distribution Hj(u) and density hj(u), j = 1, 2, . . ., where W0
d= 0. Let ρ(u) be

the jump intensity for the process N(u) =
∞∑
j=1

I(Wj ≤ u), and let N = N(t).

For each j = 1, 2, . . . let Yj be a random variable which is independent of
W1, . . . ,Wj−1 given Wj, and suppose that E(Yj |Wj = u) does not depend on j.

Finally, let Y =
N∑
j=1

Yj. Then

EY =
∫ t

0

E(Yj |Wj = u)ρ(u)du.

Proof:

EY = E
[ ∞∑
j=1

I(Wj ≤ t)Yj
]

=
∞∑
j=1

E[E[I(Wj ≤ t)Yj |Wj ]]

=
∞∑
j=1

E[I(Wj ≤ t)E(Yj |Wj)]

=
∞∑
j=1

∫ t

0

E(Yj |Wj = u)(h1 ∗ h2 ∗ · · · ∗ hj(u))du,

where ∗ denotes convolution. Since E(Yj |Wj = u) does not depend on j, this
equals:

=
∫ t

0

E(Yj |Wj = u)
∞∑
j=1

(h1 ∗ h2 ∗ · · · ∗ hj(u))du

=
∫ t

0

E(Yj |Wj = u)ρ(u)du.

Proof of Theorem 5. We apply Lemma 1 with (j = 1, 2, . . .):

Wj = Sij , Yj = Zij+1, N = N(t) =
∞∑
j=1

I(Sij ≤ t).

11



It will be shown that E(Zij+1|Sij = u) does not depend on j. Hence from (17),
noting that Si0 = 0:

EYi(t) = EZi1 + E
[ ∞∑
j=1

I(Sij ≤ t)Zij+1

]

= EZi1 +
N∑
j=1

EYj = EZi1 + EY

= E(Zi1|Si0 = 0) +
∫ t

0

E(Zij+1|Sij = u)dRi(u).

Let Xu be the uptime in [0, u] for a system with availability A(t). From Theo-
rem 3.6 of Aven and Jensen (1999) we have:

EXu =
∫ u

0

A(t)dt.

Applying this, we get from (16) for i = 1, . . . , n and j = 1, 2, . . .:

E(Zij+1|Sij = u) = E(Y 1
ij+1|Sij = u)− E(Y 0

ij+1|Sij = u)

=
∫ t−u

0

∫ t−u−z

0

[
h
(

(F̄i(z + v)/F̄i(z))i, A(u+ z + v)
)

− h(0i,A(u+ z + v))
]
dv fi(z)dz.

By pivot decomposition this reduces to:∫ t−u

0

∫ t−u−z

0

F̄i(z + v)
F̄i(z)

I
(i)
B (u+ z + v)dv fi(z)dz

=
∫ t−u

0

∫ t−u−v

0

F̄i(z + v)
F̄i(z)

I
(i)
B (u+ z + v)fi(z)dz dv

=
∫ t

u

I
(i)
B (w)F̄i(w − u)

∫ w−u

0

fi(z)
F̄i(z)

dz dw

=
∫ t

u

I
(i)
B (w)F̄i(w − u)(− ln F̄i(w − u))dw.

Inserting this into the expression for EYi(t) completes the proof.

In Natvig (1985) it is shown that:

P (T ′ij − Sij−1 > t) (19)

= F̄i(t) +
∫ t

0

fi(t− u)
F̄i(t)

F̄i(t− u)
du

= F̄i(t)[1− ln F̄i(t)].

Hence, applying (19) we get:∫ ∞
0

F̄i(t)(− ln F̄i(t))dt (20)

=
∫ ∞

0

F̄i(t)[1− ln F̄i(t)]dt−
∫ ∞

0

F̄i(t)dt

= E(T ′ij − Sij−1)− E(Tij − Sij−1)

12



= E(T ′ij − Tij)
d= µpi .

Accordingly, this integral equals the expected prolonged lifetime of the ith com-
ponent due to a minimal repair.

Now divide the expression for EYi(t) by t and let t → ∞. Assuming that
the first addend vanishes, applying a renewal theory argument as in Barlow and
Proschan (1975) we arrive at the following stationary measure corresponding to
(18):

I
(i)
N = lim

t→∞
I
(i)
N (t) =

[I(i)
B /(µi + νi)]µ

p
i∑n

j=1[I(j)
B /(µj + νj)]µ

p
j

. (21)

Parallel to Theorem 3 we arrive at:

Theorem 6. For a series system:

I
(i)
N =

µ−1
i µpi∑n

j=1 µ
−1
j µpj

,

whereas for a parallel system we have:

I
(i)
N =

ν−1
i µpi∑n

j=1 ν
−1
j µpj

.

Note that for a series system I
(i)
N does not depend on the repair time dis-

tributions, which is somewhat discomforting. However, for a parallel system as
opposed to I(i)

B−P , I
(i)
N does depend on both the lifetime and repair time distri-

butions.

4.2 The dual extension of the Natvig measure

As for the Barlow-Proschan measure we now also take a dual term into account
where components that by being repaired strongly reduce the expected system
downtime are considered very important. Introduce (i = 1, . . . , n and j =
1, 2, . . .):

S′ij = the fictive time of the jth repair of the ith component after a fictive
minimal failure of the component at Sij .

Moreover, let:

X0
ij = system downtime in [min(Sij , t),min(S′ij , t)] assuming that the ith com-

ponent is functioning throughout this interval.

X1
ij = system downtime in [min(Sij , t),min(S′ij , t)] assuming that the ith com-

ponent is failed throughout this interval as a result of the fictive minimal
failure.

We then introduce the following random variables parallel to (16) (i =
1, . . . , n):

Wij = X1
ij −X0

ij , j = 1, 2, . . . . (22)

In this case Wij can be interpreted as the fictive increase in system downtime
in the interval [min(Sij , t),min(S′ij , t)] as a result of the ith component being
failed instead of functioning in this interval.

13



Now adding up the contributions from the repairs at Sij , j = 1, 2, . . ., and
taking the expectation, we get:

E
[ ∞∑
j=1

I(Tij ≤ t)Wij

]
d=EXi(t). (23)

Parallel to Theorem 5, we arrive at:

Theorem 7.

EXi(t) =
∫ t

0

∫ t

u

I
(i)
B (w)Ḡi(w − u)(− ln Ḡi(w − u))dw dMi(u).

Note that compared to Theorem 5 the first addend vanishes. An extended
version of (18) is given by:

Ī
(i)
N (t) =

EYi(t) + EXi(t)∑n
j=1E[Yj(t) + EXj(t)]

.

Completely parallel to (20) we have:∫ ∞
0

Ḡi(t)(− ln Ḡi(t))dt = E(S′ij − Sij)
d= νpi . (24)

The corresponding stationary extended measure is now given by:

Ī
(i)
N = lim

t→∞
Ī
(i)
N (t)

=
[I(i)
B /(µi + νi)](µ

p
i + νpi )∑n

j=1[I(j)
B /(µj+νj)](µ

p
j + νpj )

. (25)

Parallel to Theorem 6 we arrive at:

Theorem 8. For a series system:

Ī
(i)
N (t) =

µ−1
i (µpi + νpi )∑n

j=1 µ
−1
j (µpj + νpj )

,

whereas for a parallel system we just get a dual result by replacing the mean
times to failure by the mean times to repair.

Note that now both for a series and parallel system Ī
(i)
N does depend on both

the lifetime and repair time distributions.
Now consider the special case where the lifetime and repair time distributions

are Weibull distributed; i.e.

F̄i(t) = e−(λit)
αi
, λi > 0, αi > 0

Ḡi(t) = e−(γit)
βi
, γi > 0, βi > 0 .

We then have from (20):

µpi =
∫ ∞

0

F̄i(w)(− ln F̄i(w))dw

=
1
αi

1
λi

∫ ∞
0

u1/αi+1−1e−udu =
1
αi

1
λi

Γ
( 1
αi

+ 1
)

=
µi
αi
,
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and similarly from (24) νpi = νi/βi. Hence, (25) simplifies to:

Ī
(i)
N =

[I(i)
B /(µi + νi)][µi/αi + νi/βi]∑n

j=1[I(j)
B /(µj + νj)][µj/αj + νj/βj ]

. (26)

Now assume that αi is increasing and λi changing in such a way that µi
is constant. Hence, according to (8) the availability Ai is unchanged. Then
Ī
(i)
N is decreasing in αi. This is natural since a large αi > 1 corresponds to

a strongly increasing failure rate and the effect of a minimal repair is small.
Hence, according to Ī

(i)
N the ith component is of less importance. If on the

other hand αi < 1 is small, we have a strongly decreasing failure rate and the
effect of a minimal repair is large. Hence, according to Ī(i)

N the ith component
is of higher importance. A completely parallel argument is valid for βi.

By specializing αj = βj , j = 1, . . . , n, we get:

Ī
(i)
N =

I
(i)
B /αi∑n

j=1 I
(j)
B /αj

.

By further specializing αj = βj = α, j = 1, . . . , n this reduces to the standard-
ized stationary Birnbaum measure:

Ī
(i)
N = Î

(i)
B =

I
(i)
B∑n

j=1 I
(j)
B

.

The following result is straightforward:

Theorem 9. For a series system we have

Î
(i)
B =

1 + νi/µi∑n
j=1(1 + νj/µj)

,

whereas for a parallel system we have the dual expression:

Î
(i)
B =

1 + µi/νi∑n
j=1(1 + µj/νj)

.

According to this measure the importance of a component in a series system
is increasing in mean time to repair and decreasing in mean time to failure,
i.e. the poorer the more important. For a parallel system it is the other way
round. This seems perfectly sensible. Furthermore, we have the following more
satisfactory theorem than Theorem 4:

Theorem 10. Let the ith component be in series (parallel) with the rest of the
system. Let for an arbitrary component j 6= i Ai ≤ Aj (Ai ≥ Aj). Then
Î
(i)
B ≥ Î

(j)
B . Furthermore, for the numerator of the measure we have

I
(i)
B ≥ I

(j)
B +

h(0j ,A)
Ai(

I
(i)
B ≥ I

(j)
B +

1− h(1j ,A)
1−Ai

)
.

The proof is parallel to the one of Theorem 4 and is left to the reader.
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5 Concluding remarks

In this paper we have first considered measures of component importance in
nonrepairable systems. In this case Theorems 1 and 2 respectively indicate
that the Barlow-Proschan and the Natvig measures are sensible. Reasonable
measures of component importance for repairable systems represent a challenge.
Theorems 3 and 4 covering the stationary Barlow-Proschan measure and its dual
extension in this case are not satisfactory.

Theorem 6 covering the stationary Natvig measure for repairable systems
is not completely satisfactory since for a series system the measure does not
depend on the repair time distributions. However, Theorem 8 covering its dual
extension seems very sensible. For Weibull distributed lifetime and repair time
distributions the latter measure is given by (26), which has a reasonable per-
formance as a function of the shape parameters. When all shape parameters
are equal this measure reduces to the standardized Birnbaum measure which
according to Theorems 9 and 10 seems to be sensible. In Natvig et al. (2008)
a thorough numerical analysis of the Natvig measures for repairable systems is
reported along with an application to an offshore oil and gas production system.
The analysis is based on advanced simulation methods presented in Huseby et
al. (2008).
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