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In the present paper the Natvig measures of component importance for repairable systems, and its extended
version are applied to an offshore oil and gas production system. According to the extended version of the
Natvig measure a component is important if both by failing it strongly reduces the expected system uptime
and by being repaired it strongly reduces the expected system downtime. The results include a study of how
different distributions affect the ranking of the components. All numerical results are computed using discrete
event simulation. In a companion paper (Huseby, Eide, Isaksen, Natvig, and Gåsemyr 2008) the advanced
simulation methods needed in these calculations are decribed.

1 BASIC IDEAS, CONCEPTS AND RESULTS
Intuitively it seems that components that by failing
strongly reduce the expected remaining system life-
time are very important. This is at least true during
the system development phase. This is the motiva-
tion for the (Natvig 1979) measure of component im-
portance in nonrepairable systems. In (Natvig 1982)
a stochastic representation of this measure was ob-
tained by considering the random variable:

Zi = Y 1
i − Y 0

i , (1)

where:

Y 0
i = The remaining system lifetime just after the

failure of the ith component.

Y 1
i = The remaining system lifetime just after the

failure of the ith component, which, how-
ever, immediately undergoes a minimal re-
pair; i.e., it is repaired to have the same dis-

tribution of remaining lifetime as it had just
before failing.

Thus, Zi can be interpreted as the increase in sys-
tem lifetime due to a minimal repair of the ith com-
ponent at failure. The Natvig measure of importance
of the ith component is then defined as:

I
(i)
N =

EZi∑n
j=1EZj

, (2)

tacitly assuming EZi <∞, i = 1, . . . , n. Obviously

0 ≤ I(i)
N ≤ 1,

n∑
i=1

I
(i)
N = 1. (3)

For repairable systems we consider a time interval
[0, t] and start by introducing some basic random vari-
ables (i = 1, . . . , n):

Tij = The time of the jth failure of the ith compo-
nent, j = 1,2, . . .,
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Sij = The time of the jth repair of the ith compo-
nent, j = 1,2, . . .,

where we define Si0 = 0. Let (i = 1, . . . , n and j =
1,2 . . .):

Uij = Tij−Sij−1 = The length of the jth lifetime
of the ith component.

Dij = Sij − Tij = The length of the jth repair
time of the ith component.

We assume that Uij has an absolutely continuous
distribution Fi(t) with density fi(t) letting F̄i(t)

d
=

1 − Fi(t). Furthermore, Dij is assumed to have an
absolutely continuous distribution Gi(t) with density
gi(t) letting Ḡi(t)

d
= 1−Gi(t). EUij = µi, EDij = νi

and all lifetimes and repair times are assumed inde-
pendent.

Parallel to the nonrepairable case we argue that
components that by failing strongly reduce the ex-
pected system uptime should be considered as very
important. In order to formalize this, we introduce
(i = 1, . . . , n and j = 1,2, . . .):

T ′ij = The fictive time of the jth failure of the ith
component after a fictive minimal repair of
the component at Tij .

Y 0
ij = System uptime in the interval

[min(Tij, t),min(T ′ij, t)] assuming that
the ith component is failed throughout this
interval.

Y 1
ij = System uptime in the interval

[min(Tij, t),min(T ′ij, t)] assuming that
the ith component is functioning throughout
this interval as a result of the fictive minimal
repair.

In order to arrive at a stochastic representation sim-
ilar to the nonrepairable case, see (1), we introduce
the following random variables (i = 1, . . . , n):

Zij = Y 1
ij − Y 0

ij , j = 1,2, . . . . (4)

Thus, Zij can be interpreted as the fictive increase in
system uptime in the interval [min(Tij, t),min(T ′ij, t)]
as a result of the ith component being functioning
instead of failed in this interval. Note that since the
minimal repair is fictive, we have chosen to calcu-
late the effect of this repair over the entire inter-
val [min(Tij, t),min(T ′ij, t)] even though this interval
may extend beyond the time of the real repair, Sij .

In order to summarize the effects of all the fic-
tive minimal repairs, we have chosen to simply
add up these contributions. Note that the fictive
minimal repair periods, i.e., the intervals of the

form [min(Tij, t),min(T ′ij, t)], may sometimes over-
lap. Thus, at a given point of time we may have con-
tributions from more than one fictive minimal repair.
This is efficiently dealt with by the simulation meth-
ods presented in (Huseby, Eide, Isaksen, Natvig, and
Gåsemyr 2008). Taking the expectation, we get:

E
[ ∞∑
j=1

I(Sij−1 ≤ t)Zij
]
d
=EYi(t), (5)

where I denotes the indicator function. The time de-
pendent Natvig measure of the importance of the ith
component in the time interval [0, t] in repairable sys-
tems can then be defined as:

I
(i)
N (t) =

EYi(t)∑n
j=1EYj(t)

. (6)

We now also take a dual term into account where
components that by being repaired strongly reduce the
expected system downtime are considered very im-
portant. Introduce (i = 1, . . . , n and j = 1,2, . . .):

S ′ij = The fictive time of the jth repair of the ith
component after a fictive minimal failure of
the component at Sij .

X0
ij = System downtime in the interval

[min(Sij, t),min(S ′ij, t)] assuming that
the ith component is functioning throughout
this interval.

X1
ij = System downtime in the interval

[min(Sij, t),min(S ′ij, t)] assuming that
the ith component is failed throughout this
interval as a result of the fictive minimal
failure.

We then introduce the following random variables
parallel to (4) (i = 1, . . . , n):

Wij = X1
ij −X0

ij, j = 1,2, . . . . (7)

In this case Wij can be interpreted as the fic-
tive increase in system downtime in the interval
[min(Sij, t),min(S ′ij, t)] as a result of the ith compo-
nent being failed instead of functioning in this inter-
val.

Now adding up the contributions from the repairs at
Sij , j = 1,2, . . ., and taking the expectation, we get:

E
[ ∞∑
j=1

I(Tij ≤ t)Wij

]
d
=EXi(t). (8)

The time dependent dual Natvig measure of the im-
portance of the ith component in the time interval
[0, t] in repairable systems can then be defined as:

I
(i)
N,D(t) =

EXi(t)∑n
j=1EXj(t)

. (9)
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An extended version of (6) is given by:

Ī
(i)
N (t) =

EYi(t) +EXi(t)∑n
j=1[EYj(t) +EXj(t)]

. (10)

In (Natvig 1985) it is shown that:

P (T ′ij − Sij−1 > t) (11)

= F̄i(t) +

∫ t

0

fi(t− u)
F̄i(t)

F̄i(t− u)
du

= F̄i(t)[1− ln F̄i(t)].

Hence, applying (11) we get:∫ ∞

0

F̄i(t)(− ln F̄i(t))dt (12)

=

∫ ∞

0

F̄i(t)[1− ln F̄i(t)]dt−
∫ ∞

0

F̄i(t)dt

= E(T ′ij − Sij−1)−E(Tij − Sij−1)

= E(T ′ij − Tij)
d
= µpi .

Accordingly, this integral equals the expected pro-
longed lifetime of the ith component due to a minimal
repair. Completely parallel we have:∫ ∞

0

Ḡi(t)(− ln Ḡi(t))dt = E(S ′ij − Sij)
d
= νpi . (13)

LetAi(t) be the availability of the ith component at
time t, i.e., the probability that the component is func-
tioning at time t. The corresponding stationary avail-
abilities are given by:

Ai = lim
t→∞

Ai(t) =
µi

µi + νi
, i = 1, . . . , n. (14)

Introduce A(t) = (A1(t), . . . ,An(t)) and A =
(A1, . . . ,An). Now the availability of the system at
time t is given by h(A(t)), where h is the system’s
reliability function.

The (Birnbaum 1969) measure at time t is given by:

I
(i)
B (t) = h(1i,A(t))− h(0i,A(t)), (15)

which is the probability that the ith component is crit-
ical for system functioning at time t. The correspond-
ing stationary measure is given by:

I
(i)
B = lim

t→∞
I

(i)
B (t) = h(1i,A)− h(0i,A). (16)

In (Natvig and Gåsemyr 2008) the following sta-
tionary versions of (6) and (10) are arrived at:

I
(i)
N = lim

t→∞
I

(i)
N (t) =

[I
(i)
B /(µi + νi)]µ

p
i∑n

j=1[I
(j)
B /(µj + νj)]µ

p
j

. (17)

Ī
(i)
N = lim

t→∞
Ī

(i)
N (t) (18)

=
[I

(i)
B /(µi + νi)](µ

p
i + νpi )∑n

j=1[I
(j)
B /(µj + νj)](µ

p
j + νpj )

.

Now consider the special case where the lifetime
and repair time distributions are Weibull distributed;
i.e.,

F̄i(t) = e−(λit)
αi , λi > 0, αi > 0,

Ḡi(t) = e−(γit)
βi , γi > 0, βi > 0.

We then have:∫ ∞

0

F̄i(t)(− ln F̄i(t))dt

=
1

αi

1

λi

∫ ∞

0

u1/αi+1−1e−udu

=
1

αi

1

λi
Γ(

1

αi
+ 1) =

µi
αi
.

Hence, (18) simplifies to:

Ī
(i)
N =

[I
(i)
B /(µi + νi)](µi/αi + νi/βi)∑n

j=1[I
(j)
B /(µj + νj)](µj/αj + νj/βj)

. (19)

Now assume that αi is increasing and λi changing
in such a way that µi is constant. Hence, according to
(14) the availability Ai is unchanged. Then Ī(i)

N is de-
creasing in αi. This is natural since a large αi > 1 cor-
responds to a strongly increasing failure rate and the
effect of a minimal repair is small. Hence, according
to Ī(i)

N the ith component is of less importance. If on
the other hand αi < 1 is small, we have a strongly de-
creasing failure rate and the effect of a minimal repair
is large. Hence, according to Ī(i)

N the ith component is
of higher importance. A completely parallel argument
is valid for βi.

In the present paper the Natvig measures of compo-
nent importance for repairable systems, given by (6),
(9) and (10) are applied to an offshore oil and gas pro-
duction system. In a companion paper (Huseby, Eide,
Isaksen, Natvig, and Gåsemyr 2008) the advanced
simulation methods needed in the calculations are de-
cribed. In (Natvig and Gåsemyr 2008) a more thor-
ough theoretical presentation of the Natvig measures
for repairable systems and their stationary versions is
given.
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2 DESCRIPTION OF THE SYSTEM
We will now look at a West-African production site
for oil and gas based on a memo (Signoret and Clave
2007). For this real life example we need to do some
simplifications. Originally this is a multi-state system,
which means that it has several functioning levels. In
this paper, however, we are only considering binary
systems. Thus a simplified definition of the system
will be used. There are several different possible def-
initions, but we will use the following:

The oil and gas production site is said to be func-
tioning if it can produce some amount of both oil and
gas. Otherwise the system is failed.

Oil and gas are pumped up from one production
well along with water. These substances are separated
in a separation unit. We will assume this unit to func-
tion perfectly.

After being separated the oil is run through an
oil treatment unit, which is also assumed to function
perfectly. Then the treated oil is exported through a
pumping unit.

The gas is sent through two compressors which
compress the gas. When both compressors are func-
tioning, we get the maximum amount of gas. How-
ever, to obtain at least some gas production, it is suffi-
cient that at least one of the compressors is function-
ing. If this is the case, the uncompressed gas is burned
in a flare, which is assumed to function perfectly. The
compressed gas is run through a unit where it is de-
hydrated. This is called a TEG (Tri-Ethylene Glycol)
unit. After being dehydrated, the gas is ready to be
exported. Some of the gas is used as fuel for the com-
pressors.

The water is first run through a water treatment
unit. This unit cleanses the water so that it legally can
be pumped back into the wells to maintain the pres-
sure, or back into the sea. If the water treatment unit
fails, the whole production stops.

1 2

3

4

5

6

7 8

Figure 1: Model of oil and gas production site.

The components in the system also need electricity
which comes from two generators. At least one gen-
erator must function in order to produce some oil and
gas. If both generators are failed, the whole system
is failed. The generators are powered by compressed
and dehydrated gas.

Thus, the simplified production site considered in
the present paper, consists of the following 8 relevant
components, which are assumed to operate indepen-
dently:

1. Well: A production well where the oil and gas
come from.

2. Water cleanser: A component which cleanses the
water which is pumped up from the production
well along with the oil and gas.

3. Generator 1: Generator providing electricity to
the system.

4. Generator 2: The same as Generator 1.

5. Compressor 1: A compressor which compresses
the gas.

6. Compressor 2: The same as Compressor 1.

7. TEG: A component where the gas is dehydrated.

8. Oil export pump: An oil export pump.

The structure of the system is shown in Figure 1.
The components 1, 2, 7 and 8 are all in series with the
rest of the system, while the two generators, 3 and 4,
operate in parallel with each other. Similarly the two
compressors, 5 and 6, operate in parallel with each
other.

Table 1: Failure rates, mean repair times and mean life-
times of the components in the oil and gas production site

Component Failure rate νi µi
1 2.736 · 10−4 7.000 3654.97
2 8.208 · 10−3 0.167 121.83

3 & 4 1.776 · 10−2 1.167 56.31
5 & 6 1.882 · 10−2 1.083 53.11

7 1.368 · 10−3 0.125 730.99
8 5.496 · 10−4 0.125 1819.51

Table 1 shows the given failure rates, mean repair
times and mean lifetimes of the components in the
system. The time unit is days. The mean lifetimes are
considerably larger than the mean repair times. For
some components (the well, the TEG unit and the oil
export pump) the mean lifetimes are actually several
years.

3 EXPONENTIALLY DISTRIBUTED LIFE-
AND REPAIR TIMES

In this section we assume that the components have
exponentially distributed life- and repair times. The
failure rates in the lifetime distributions are the in-
verses of the mean lifetimes, while the repair rates are
the inverses of the mean repair times. Thus, all the
parameters needed in the simulations can be derived
from Table 1. The time horizon t is set to 100000 days.

In Table 2 we see that I(i)
N (t) is equal to its extended

version Ī(i)
N (t). This is because E[Yi(t)] is very large
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compared to E[Xi(t)] for all components. Hence, the
contributions of the latter terms in (10) are too small
to make any difference.

The reason for this is that the repair times of the
components are much shorter than the corresponding
lifetimes. Hence, the fictive prolonged repair times
of the components due to the fictive minimal failures
are much shorter than the fictive prolonged lifetimes
due the fictive minimal repairs. Especially, the fictive
prolonged repair times will, due to the much longer
lifetimes, mostly end long before the next real re-
pair. Hence, it is very unlikely that the fictive mini-
mal failure periods will overlap. As a conclusion it is
very sensible for this case study that I(i)

N (t) is equal to
Ī

(i)
N (t).

We also observe from Table 2 that for the two equal
measures the components 1, 2, 7 and 8 that are in se-
ries with the rest of the system have approximately
the same importance. This can be seen by the follow-
ing argument. Since t= 100000 days we have reached
stationarity. Furthermore, for the exponential lifetime
distribution µpi = µi. If components i and j both are
in series with the rest of the system, by conditioning
on the state of component j and applying (14), the nu-
merator of (17) equals h(1i,1j,A)AiAj . By a parallel
argument this is also the numerator of I(j)

N .
Note also that the remaining components that are

parts of parallel modules are much less important than
the ones in series with the rest of the system. This is
due to the very small unavailability (1−Ai) that ap-
pears as a common factor when factoring the numer-
ator of (17). Indeed, in the exponential case we have,
if i = 3 or 4 and j = 5 or 6, or vice versa, that this
numerator equals

A1A2A7A8(1− (1−Aj)2)(1−Ai)Ai,

where all factors except (1−Ai) are close to 1. Fur-
thermore, from Table 1 we see that all components 3,
4, 5 and 6 have almost identical unavailabilities, ex-
plaining why these components have identical impor-
tances.

The ranks of the component importance for the
three versions of the Natvig measure are given in Ta-
ble 3. We suggest to apply the common ranking based
on the measures I(i)

N (t) and Ī(i)
N (t).

4 GAMMA DISTRIBUTED LIFE- AND REPAIR
TIMES

In this section we assume instead that the components
have gamma distributed life- and repair times. More
specifically, we assume that for i = 1, . . . ,8, the life-
times of the ith component have the densities:

fi(t) =
1

(βi)αiΓ(αi)
tαi−1 exp(−t/βi),

Table 2: Component importance using exponential distri-
butions.

Component I
(i)
N (t) I

(i)
N,D(t) Ī

(i)
N (t)

1 0.244 0.371 0.244
2 0.249 0.267 0.249

3 & 4 0.005 0.080 0.005
5 & 6 0.005 0.077 0.005

7 0.247 0.033 0.246
8 0.241 0.013 0.241

Table 3: The ranks of the component importance for the
three versions of the Natvig measure according to the re-
sults given in Table 2.

Measure Rank
I

(i)
N (t) 2 > 7 > 1 > 8 > 3 ≈ 4 ≈ 5 ≈ 6

I
(i)
N,D(t) 1 > 2 > 3 ≈ 4 > 5 ≈ 6 > 7 > 8

Ī
(i)
N (t) 2 > 7 > 1 > 8 > 3 ≈ 4 ≈ 5 ≈ 6

while the repair times of the ith component have the
densities:

gi(t) =
1

(β′i)
α′
iΓ(α′i)

tα
′
i−1 exp(−t/β′i).

Thus, for i = 1, . . . ,8 and j = 1,2, . . ., we have:

E[Uij] = µi = αiβi,

V ar[Uij] = αi(βi)
2,

E[Dij] = νi = α′iβ
′
i,

V ar[Dij] = α′i(β
′
i)

2,

where µ1, . . . , µ8 and ν1, . . . , ν8 are given in Table 1.
By choosing different values for the density param-

eters it is possible to alter the variances in the lifetime
distributions and still keep the expectations fixed. In
order to see the effect of this on the importance mea-
sures, we focus on component 1 where we consider
five different parameter combinations for the lifetime
distribution. For all these combinations, the expected
lifetime is 3654.97 days, but the variance varies be-
tween 1.827 · 103 and 1.170 · 106. Table 4 lists these
parameter combinations. For the remaining gamma
densities we use the parameters listed in Table 5 and
Table 6. All parameters are chosen such that the ex-
pectations in the life- and repair time distributions
match the corresponding values given in Table 1. We
also use the same time horizon t = 100000 days as in
the previous section.

Tables 7, 8, 9, 10 and 11 display the results ob-
tained from simulations using the parameters listed in
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Table 4: Parameter sets for the lifetime distribution of com-
ponent 1.

Set α1 β1 Variance
1 7309.940 0.500 1.827 · 103

2 550.033 6.645 2.429 · 104

3 101.493 36.012 1.316 · 105

4 45.687 80.000 2.924 · 105

5 11.422 319.994 1.170 · 106

Table 5: Parameters in the lifetime distributions of compo-
nents 2, . . . ,8.

Component αi βi Variance
2 30.000 4.062 4.950 · 102

3 & 4 30.000 1.877 1.057 · 102

5 & 6 10.000 5.311 2.821 · 102

7 179.958 4.062 2.969 · 103

8 218.219 8.338 1.517 · 104

Table 6: Parameters in the repair time distributions of com-
ponents 1, . . . ,8.

Component α′i β′i Variance
1 3.500 2.000 1.400 · 101

2 0.668 0.250 4.175 · 10−2

3 & 4 3.000 0.389 4.540 · 10−1

5 & 6 1.500 0.722 7.819 · 10−1

7 1.000 0.125 1.563 · 10−2

8 1.000 0.125 1.563 · 10−2

Tables 4, 5 and 6. As for the case with exponentially
distributed life- and repair times, I(i)

N is equal to its
extended version Ī(i)

N .
We now observe that for these two equal measures

the components 1, 2, 7 and 8 that are in series with the
rest of the system have different importances as op-
posed to the case with exponentially distributed life-
and repair times. However, the remaining components
that are parts of parallel modules are still much less
important.

Furthermore, we see that the extended component
importance of component 1 is increasing with increas-
ing variances, and decreasing shape parameters α1, all
greater than 1, in its lifetime distribution. Since we
have reached stationarity, this observation is in accor-
dance with the discussion following (19) concerning
the Weibull distribution.

Table 12 displays the ranks of the components ac-
cording to the extended measure. Along with the in-
creased importance, according to the extended mea-
sure, of component 1 as α1 decreases, we observe
from this table a corresponding improvement in its
rank. All the other components are ranked in the same
order for every value of α1. This is as expected from

Table 7: Component importance using gamma distribu-
tions. Variance of component 1 lifetimes: 1.827 · 103.

Component I
(i)
N (t) I

(i)
N,D(t) Ī

(i)
N (t)

1 0.031 0.246 0.034
2 0.521 0.419 0.520

3 & 4 0.010 0.059 0.011
5 & 6 0.018 0.081 0.019

7 0.202 0.043 0.200
8 0.188 0.017 0.186

Table 8: Component importance using gamma distribu-
tions. Variance of component 1 lifetimes: 2.429 · 104.

Component I
(i)
N (t) I

(i)
N,D(t) Ī

(i)
N (t)

1 0.107 0.244 0.109
2 0.477 0.415 0.476

3 & 4 0.009 0.059 0.010
5 & 6 0.017 0.082 0.017

7 0.194 0.043 0.193
8 0.169 0.018 0.168

Table 9: Component importance using gamma distribu-
tions. Variance of component 1 lifetimes: 1.316 · 105.

Component I
(i)
N (t) I

(i)
N,D(t) Ī

(i)
N (t)

1 0.213 0.248 0.213
2 0.420 0.415 0.420

3 & 4 0.008 0.058 0.009
5 & 6 0.015 0.081 0.015

7 0.166 0.042 0.164
8 0.156 0.017 0.155

Table 10: Component importance using gamma distribu-
tions. Variance of component 1 lifetimes: 2.924 · 105.

Component I
(i)
N (t) I

(i)
N,D(t) Ī

(i)
N (t)

1 0.301 0.248 0.300
2 0.375 0.414 0.376

3 & 4 0.007 0.058 0.008
5 & 6 0.013 0.081 0.014

7 0.149 0.049 0.148
8 0.134 0.018 0.133

(18) since the ordering is determined by its numera-
tor. For all components except component 1 the nu-
merator depends on the life- and repair time distri-
butions of this component only through A1, which is
kept fixed when varying α1. We also see that the com-
ponents that are in series with the rest of the system
are ranked according to the shape parameter αi, such
that components with smaller shape parameters are
more important.
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Table 11: Component importance using gamma distribu-
tions. Variance of component 1 lifetimes: 1.170 · 106.

Component I
(i)
N (t) I

(i)
N,D(t) Ī

(i)
N (t)

1 0.476 0.239 0.475
2 0.279 0.421 0.280

3 & 4 0.006 0.058 0.006
5 & 6 0.010 0.082 0.010

7 0.111 0.043 0.111
8 0.102 0.017 0.101

Table 12: The ranks of the extended component importance
according to the results given in Tables 7, 8, 9, 10 and 11.

Table Rank
7 2 > 7 > 8 > 1 > 5 ≈ 6 > 3 ≈ 4
8 2 > 7 > 8 > 1 > 5 ≈ 6 > 3 ≈ 4
9 2 > 1 > 7 > 8 > 5 ≈ 6 > 3 ≈ 4

10 2 > 1 > 7 > 8 > 5 ≈ 6 > 3 ≈ 4
11 1 > 2 > 7 > 8 > 5 ≈ 6 > 3 ≈ 4

5 CONCLUDING REMARKS
In the present paper first a review of basic ideas, con-
cepts and theoretical results, as treated in (Natvig and
Gåsemyr 2008), for the Natvig measures of compo-
nent importance for repairable systems, and its ex-
tended version, has been given. The theory was then
applied to an offshore oil and gas production system
which is said to be functioning if it can produce some
amount of both oil and gas. First life- and repair times
are assumed to be exponentially distributed and then
gamma distributed both in accordance with the data
given in the memo (Signoret and Clave 2007). The
time horizon is set at 100000 days so stationarity is
reached.

A finding from the simulations of this case study
is that the results for the original Natvig measure and
its extended version, also taking a dual term into ac-
count, are almost identical. This is perfectly sensible
since the dual term vanishes because the fictive pro-
longed repair times are much shorter than the fictive
prolonged lifetimes. The weaknesses of this system
are linked to the lifetimes and not the repair times.

Component 1 is the well being in series with the
rest of the system. For this component we see that the
extended component importance, in the gamma case
is increasing with increasing variances, and decreas-
ing shape parameters, all greater than 1, in the lifetime
distribution. This is in accordance with a theoretical
result for the Weibull distribution. Along with this in-
creased importance we also observe a corresponding
improvement in its ranking.

As a conclusion we feel that the presented Natvig
measures of component importance for repairable
systems on the one hand represent a theoretical nov-
elty. On the other hand the case study indicates a

great potential for applications, especially due to the
simulation methods developed, as presented in the
companion paper (Huseby, Eide, Isaksen, Natvig, and
Gåsemyr 2008).
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