Advanced discrete event simulation methods with application to importance
measure estimation

Arne B. Huseby
University of Oslo, Norway

Kristina A. Eide
FFI, Kjeller, Norway

Stefan L. Isaksen
DNV Energy, Hpvik, Norway

Bent Natvig
University of Oslo, Norway

Jgrund Gasemyr
University of Oslo, Norway

In the present paper we use discrete event simulation in order to analyze a binary monotone system of repairable
components. Asymptotic statistical properties of such a system, e.g., the asymptotic system availability and
component criticality, can easily be estimated by running a single discrete event simulation on the system over
a sufficiently long time horizon, or by working directly on the stationary availabilities. Sometimes, however,
one needs to estimate how the statistical properties of the system evolve over time. In such cases it is necessary
to run many simulations to obtain a stable curve estimate. At the same time one needs to store much more
information from each simulation. A crude approach to this problem is to sample the system state at fixed
points of time, and then use the mean values of the states at these points as estimates of the curve. Using
a sufficiently high sampling rate a satisfactory estimate of the curve can be obtained. Still, all information
about the process between the sampling points is thrown away. To handle this issue, we propose an alternative
sampling procedure where we utilize process data between the sampling points as well. This simulation method
is particularly useful when estimating various kinds of component importance measures for repairable systems.
As explained in (Natvig and Gasemyr 2008) such measures can often be expressed as weighted integrals of the
time-dependent Birnbaum measure of importance. By using the proposed simulation methods, stable estimates
of the Birnbaum measure as a function of time are obtained and combined with the appropriate weight function,
and thus producing the importance measure of interest.

1 INTRODUCTION evolves, only the points of time where events happen
need to be considered. For an extensive formal intro-
duction to discrete event models see (Glasserman and

Yao 1994).

Discrete event models are typically used in simulation
studies to model and analyze pure jump processes.
A discrete event model can be viewed as a system

consisting of a collection of elementary pure jump
processes evolving asynchronously and interacting at
random points of time. The interactions are modelled
as a sequence of events typically affecting the state of
some or all the elementary processes. Between these
events, however, the states are considered to be con-
stant. Hence, in order to describe how the system

Stationary statistical properties of a system, can
easily be estimated by running a single discrete event
simulation on the system over a sufficiently long
time horizon, or by working directly on the station-
ary availabilities. Sometimes, however, one needs to
estimate how the statistical properties of the system
evolve over time. In such cases it is necessary to run

many simulations to obtain stable results. Moreover,
one must store much more information from each
simulation. A crude approach to this problem is to
sample the system state at fixed intervals of time, and
then use the mean values of the states at these points
as estimates of the corresponding statistical proper-
ties. Using a sufficiently high sampling rate, i.e., short
intervals between sampling points, a satisfactory esti-
mate of the full curve can be obtained. Still, all in-
formation about the process between the sampling
points is thrown away. Thus, we propose an alterna-
tive sampling procedure where we utilize process data
between the sampling points as well.

In order to illustrate the main ideas we use discrete
events in order to analyze a multicomponent binary
monotone system of repairable components. In a com-
panion paper (Natvig, Eide, Gdsemyr, Huseby, and
Isaksen 2008) the simulation technology developed in
the present paper, is used to estimate the Natvig mea-
sures of component importance in an offshore oil and
gas production system.

2 BASIC RELIABILITY THEORY

We start out by briefly reviewing basic concepts of
reliability theory. See (Barlow and Proschan 1981).
A binary monotone system is an ordered pair (C, ¢)
where C' = {1,...,n} is a nonempty finite set, and
¢ is a binary function. The elements of C are in-
terpreted as components of some technological sys-
tem. Each component, as well as the system itself
can be either functioning or failed. We denote the
state of component i at time ¢ > 0 by X;(¢), where
X;(t) = 1if ¢ is functioning at time ¢, and zero other-
wise, 2 = 1,...,n. We also introduce the component
state vector X (t) = (X;(t),..., X,(t)). The function
¢ is called the structure function of the system, and
expresses the state of the system as a function of the
component state vector, and is assumed to be non-
decreasing in each argument. Thus, ¢ = ¢(X (1)) =1
if the system is functioning at time ¢ and zero other-
wise.

In the present paper we consider systems with re-
pairable components. Thus, for: =1,...,n and 7 =
1,2,... let:

Ui; = The jth lifetime of the «th component.

D;; = The jth repair time of the :th component.

We assume that U;; has an absolutely continuous
distribution with mean value p; < oo, while Dj;
has an absolutely continuous distribution with mean
value v; < o0, 1 =1,...,n, 7 = 1,2,.... All life-
times and repair times are assumed to be indepen-
dent. Thus, in particular the component processes
{X:1(t)},...,{X,(t)} are independent of each other.

Let A;(t) be the availability of the ith component
at time ¢, i.e., the probability that the component is
functioning at time ¢. Thatis, for: =1, ..., n we have:

At) = Pr(Xi(t) = 1) = B[X,(1)]

The corresponding stationary availabilities are given
by:

. i .
Al:l Azt == y :1,..., . 1

Introduce A(t) = (Ai(t),...,A,(t)) and A =
(A1,...,A,). The system availability at time ¢ is
given by:

Ay(t) = Pr(p(X (1)) = 1) = E[p(X(1))] = h(A(1)),

where h is the system’s reliability function. The cor-
responding stationary availability is given by:

Ay = lim Ay(t) = h(A) @

The component ¢ is said to be critical at time t if
Vi(X (1) = o(1;, X (1)) — ¢(0;, X (7)) = 1. We will
refer to ¢;(X (t)) as the criticality state of component
¢ at time ¢. The Birnbaum measure of importance of
component ¢ at time ¢, is defined as the probability that

component 7 is critical at time ¢, and denoted I](gi)(t).
See (Birnbaum 1969). Thus,

I3 (1) = Pr(u(X (1)) = 1) = EW(X ()] (3)
= h(1;, A(t)) — h(0;, A()).
The corresponding stationary measure is given by:
10— tlir?o]g)@) = h(1;, A) — h(0;, A). (4)

3 DISCRETE EVENT SIMULATION

Since the component state processes of a binary
monotone system are pure jump processes with events
corresponding to the failures and repairs of the com-
ponents, they are well suited to be described as a
discrete event model. Thus, let (C,¢) be a binary
monotone system with component state processes
{Xi()}, ..., {Xn(t)}. Fori=1,...,n we denote the
events affecting the process {X;(t)} by Ei, Ei,
Moreover, let T}1, T}, . . . be the corresponding points
of time for these events. Note that since we assumed
that all lifetimes and repair times have absolutely con-
tinuous distributions, all the events happen at distinct
points of time almost surely. That is, all the 7;;s are
distinct numbers. We assume that the events are sorted
with respect to their respective points of time, so that
Th <Tpp<---.

At the system level the event set is the union of

all the component event sets. Let £, E®?) . de-
note the system events sorted with respect to their re-
spective points of time, and let 7" < 7(2) - be

the corresponding points of time. Thus, each system
event corresponds to a unique component event.

In order to keep track of the events, they are usu-
ally organized in a dynamic queue sorted with respect
to the points of time of the events. The component
processes place their upcoming events into the queue
where they stay until they are processed. More specif-
ically, at time zero each component typically starts out
by being functioning, and places its first failure event
into the queue. As soon as all these failure events have
been placed into the queue, the first event in the queue
is processed. That is, the system time is set to the time
of the first event, and the event is taken out of the
queue and passed on to the component owning this
event. The component then updates its state, gener-
ates a new event, in this case a repair event, which is
placed into queue, and notifies the system about its
new state so that the system state can be updated as
well. Then the next event in the queue is processed
in the same fashion, and so forth until the system
time reaches a certain predefined point of time. Note
that since the component events are generated as part
of the event processing, the number of events in the
queue stays constant.

3.1 Sampling events

Although the system state and component states stay
constant between events, it may still be of interest to
log the state values at predefined points of time. In or-
der to facilitate this, we introduce yet another type of
event, called a sampling event. Such sampling events
will typically be spread out evenly on the timeline.
Thus, if eq,eq,... denote the sampling events, and
11 <ty < --- are the corresponding points of time,
we would typically have ¢; = j - A for some suitable
number A > 0.

The sampling events will be placed into the queue
in the same way as for the ordinary events. As a sam-
pling event is processed, the next sampling event will
be placed into the queue. Thus, at any time only one
sampling event needs to be in the queue.

3.2 Updating system and criticality states

In principle one must update the system state every
time there is a change in the component states. For
large complex systems, these updates may slow down
the simulations considerably. Thus, whenever pos-
sible one should avoid computing the system state.
Fortunately, since the structure function of a binary
monotone system is non-decreasing in each argument,
it is possible to reduce the updating to a minimum. To
explain this in detail, we consider the event E;; affect-

ing component ¢. Let 7;; be the corresponding point
of time, and let X (7};) denote the value of the com-
ponent state vector immediately before £j; occurs.

If F;; is a failure event of component i, i.e.,
Xi(T;;) = 1 and X;(T;;) = 0, then the event cannot
change the system state if the system is already failed,
ie., p(X(T;;)) = 0. Similarly, if Ej; is a repair event
of component i, i.e., X;(T;;) = 0 and X;(Tj;) = 1,
this event cannot change the system state if the system
is already functioning, i.e., (X (T};)) = 1. Thus, we
see that we only need to recalculate the system state

whenever:

»(X(T;;)) # Xi(T35). (5)
Hence, the number of times we need to recalculate the
system state is drastically reduced.

In cases where we keep track of the criticality state
of each of the components, we can simplify the cal-
culations even further by noting that the system state
is changed as a result of the event E;; if and only if
component ¢ is critical at the time of the event. More-
over, if ¢ is critical, and Fj; is a failure event, it fol-
lows that the system fails as a result of this event,
i.e., o(X(T;;)) = 0. If on the other hand ¢ is criti-
cal, and F; is a repair event, it follows that the sys-
tem become functioning as a result of this event, i.e.,
#(X (T;;)) = 1. Thus, we see that in this setup all the
calculations we need to carry out, are related to the
updating of the criticality states.

A similar technique can be used when updating the
criticality states of the components. Thus, we con-
sider the event F;; affecting the state of component
1. We first note that the criticality state function of
component i, vi(X (1)) = (1, X (1)) — 6(0:, X (1))
does not depend on the state of component 7. Thus,
the event E;; does not have any impact on the critical-
ity state of 7. However, F;; may still change the crit-
icality state of other components in the system even
when the system state remains unchanged. Thus, let
k # i be another component, and consider its critical-
ity state function (X (7};)).

If Xi(T;;) =1 and ¢(X (T};)) = 0, it follows that
o(1g, X (T35)) = ¢(0, X (T;;)) = 0. Thus, in this case
we must have ¢, (X (7};)) = 0. On the other hand,
if X, (T;;) = 0 and ¢(X (T;;)) = 1, it follows that
¢(1k, X(T35)) = ¢(0y, X (T};)) = 1. Thus, we must
have wk(X(T,-j)) = 0 in this case as well. Hence, we
see that a necessary condition for component £ to be
critical at time 7;; is that:

(X (T35)) = Xi(Tiy)- (6)

Utilizing these observations reduces the need to recal-
culate the criticality states.

3.3 Estimating availability and importance

Stationary availability and importance measures are
typically easy to derive. If the system under consider-

ation is not too complex, these quantities can be cal-
culated analytically using (1), (2) and (4). For larger
complex systems one may estimate the availability
and importance using Monte Carlo simulations. A fast
simulation algorithm for this is provided in (Huseby
and Naustdal 2003). Alternatively, estimates can be
obtained by running a single discrete event simulation
on the system over a sufficiently long time horizon
Here, however, we focus on the problem of esti-
mating the system availability A(¢) and the compo-

nent importance measures Ig) t),...,I ,(5,") (t) as func-
tions of ¢. Ideally we would like to estimate these
quantities for any ¢ > 0. For practical purposes, how-
ever, we have to limit the estimation to a finite set of
points. More specifically, we will estimate A(t¢) for
t € {ty,...,tn}, i.e., the set of the N first sampling
points. For the points of time between the sampling
points, we just use linear interpolation to obtain the
curve estimate.

A simple approach to this problem is to run M sim-
ulations on the system, where each simulation covers
the time interval [0,¢y]. In each simulation we sam-
ple the values of ¢ and v, ...,, at each sampling
point y,...,ty. We denote the sth simulated result
of the component state vector process by { X (t)},

s =1,..., M, and obtain the following estimates for
j=1,...,N:
TR
= 27 2_ (X)), ™
s=1
M
1) = 22 DX (1) ®)
s=1

We will refer to these estimates as pointwise esti-
mates. It is easy to see that for j = 1,..., N, A(t;)

and [(i)(t;) are unbiased and strongly consistent esti-
mates of A(¢;) and I 2 (t,) respectively. In order to es-

timate A(t) and [)(t) between the sampling points,
one may use interpolation. Using a sufficiently high
sampling rate, i.e., a small value of A, a satisfactory
estimate of the full curve can be obtained. Still, all
information about the process between the sampling
points is thrown away.

We now present an alternative approach where we
utilize process data between the sampling points as
well. As above we assume that the system is sim-
ulated M times with ¢q,...,ty as sampling points,
and let { X ,(¢)} denote the sth simulated result of the
component state vector process, s = 1,..., M. Then

let Eﬁl), . ,E§LS) denote the events in the interval
[0,¢y] in the sth simulation, including the sampling
) . < T be the correspond-

events, and let Ts(1 <
ing points of time, s = 1,..., M. In particular we as-

sume that the sampling events in the sth simulation
are E(k“) ..,EékNS). Thus, T = t; =7 A, for
j=1,. N and s =1,..., M. It is also convenient
to let 7O —to=kos=0,5=1,..., M.

The idea now is to use average simulated avail-
ability and criticalities from each interval (¢;_1,%,],
7 =1,..., N as respective estimates for the availabil-
ity and criticalities at the midpoints of these intervals.
To simplify the formulas slightly, we introduce wait-

ing times between the events. Thus, fork =1,..., L,
s=1,...,M let:
W = (109 70-0)

We then obtain the following estimates for j =
1,...,N:

i0)= g3 3 o

T(k)Ws(k+1),

s=1 k= k(J 1)s
9)
7() (¥ 1 wRAE (k) (k+1)
I3 (%) =—Z X (TO)WE,
MA =1 k=k(;_1),
(10)

where we have introduced the interval midpoints ¢; =
(tji—1 +1;)/2, j =1,...,N. We will refer to these
estimates as inferval estimates. It is easy to see that
for j =1,...,N, A(t;) and Ig)(fj) are unbiased
and strongly consistent estimates of the correspond-
ing average availability and criticality in the inter-
vals (t;_1,t;] respectively. By choosing A so that
the avallablhtles and criticalities are relatively stable
within each interval, the interval estimates are approx-

imately unbiased estimates for A(¢;) and Ig) (t;) as
well. In fact the resulting interval estimates tend to
stabilize much faster than the pointwise estimates. In

order to estimate A(¢) and [](31) (t) between the inter-
val midpoints, one may again use interpolation. Note
that since all process information is used in the es-
timates, satisfactory curve estimates can be obtained
for a much higher value of A than the one needed for
the pointwise estimates. In the next section we will
demonstrate this on some examples.

4 NUMERICAL RESULTS

In order to illustrate the methods presented in Sec-
tion 3 we consider a simple bridge structure shown
in Figure 1. The components of this system are the
five edges in the graph, labeled 1,...,5. The system
is functioning if the source node s can communicate
with the terminal node ¢ through the graph. All the
components in the system have exponential lifetime

and repair time distributions with mean values 1 time
unit. The objective of the simulation is to estimate

A(t) and 15 (1), ..., I¥(¢) for t € [0,1000].

Figure 1: A bridge system.

All the simulations were carried out using a pro-
gram called Eventcue' This program has an intuitive
graphical user interface, and can be used to estimate
availability and criticality of any undirected network
system.

Since all the lifetimes and repair times are exponen-
tially distributed with the same mean, it is easy to de-
rive explicit analytical expressions for the component
availabilities. To see this, we consider the ith compo-
nent at a given point of time ¢ and introduce N;(t) as
the number of failure and repair events affecting com-
ponent 7 in [0,¢]. With times between events being in-
dependent and exponentially distributed with mean 1
it follows that N;(¢) has a Poisson distribution with
mean ¢t. Moreover, component ¢ is functioning at time
t if and only if V;(t) is even. Thus, the ith component
availability at time ¢ is given by:

A1) = S Pr(Ni(t) = 26) = S <;k>!et. (11)

Using (11) one can verify numerically that all the
component availabilities converge very fast towards
their common stationary value, 0.5. As a result of this
the system availability, A(¢), converges very fast to-
wards its stationary value, 0.5, as well. In fact, for ¢ >
20, numerical calculations show that |A(t) — 0.5 <
10~%5. Similarly, the Birnbaum measures of impor-
tance converges so that for ¢ > 20, [g) (t) —0.375] <
10715, 4 = 1,2,4,5, while [12(¢) — 0.125 < 10715,
Thus, for ¢ > 20 the true values of all the curves are
approximately constant. This makes it easy to eval-
uate and compare the quality of the different Monte
Carlo estimates in this particular case.

'Eventcue is a java program developed at the Department of
Mathematics, University of Oslo. The program is freely available
at http://www.riscue.org/eventcue/.

0.55

"l
QAT

0.49

0 200 400 600 800 1,000

Figure 2: Availability curve estimates

0.43
0.41
0.39
0.37

/J W\ f\//\\/\« N \//\;\p A /W\N,Am/\/\j\\ NW% A

0.35

0.33
0 200 400 600 800 1,000

Figure 3: Importance curve estimates

Figure 2 and Figure 3 show respectively the avail-
ability curve and the criticality curve of component 1.
The black curves are obtained using the interval esti-
mates, while the gray curves show the corresponding
pointwise estimate curves. In all cases we have used
M = 1000 simulations and N = 100 sample points.

The plots clearly show the difference between the
two methods. The black interval estimate curves are
much more stable, and thus much closer to the true
curve values, compared to the gray pointwise esti-
mates.

One may think that increasing the number of sam-
pling points would make the pointwise curve esti-
mate better as more information is sampled. How-
ever, it turns out that the main effect of this is that
the curve jumps more and more up and down. In fact
with shorter intervals between sampling points the in-
terval estimate becomes more unstable as well, and
in the limit where the interval lengths go to zero, the
two methods become equivalent. The only effective
way of stabilizing the results for the pointwise curve
estimate is to increase the number of simulations, i.e.,
M.

In Table 1 we have listed estimated standard devi-

Table 1: Standard deviations for the pointwise curve esti-
mates

M 2000
St.dev. | 0.0121

4000 6000 8000
0.0076 0.0062 0.0054

ations for pointwise curve estimates for different val-
ues of M. We see that the standard deviation shows
a steady decline as M increases. The corresponding
numbers for M = 1000 are 0.0055 for the interval
curve estimate and 0.0148 for the pointwise estimate.
Thus, in this particular case we see that to obtain a
pointwise curve estimate with a comparable stability
to the interval curve estimate, one needs about eight
times as many simulations.

For the interval curve estimate it is possible to ob-
tain an even smoother curve simply by increasing A.
Still, in general A should not be made too large, as
this could produce a curve where important effects
are obscured. Thus, in order to obtain optimal results,
one should try out different values for A, and balance
smoothness against the need of capturing significant
oscillation properties of the curve.

Now, if smoothness is important, it is of course pos-
sible to apply some standard smoothing technique,
such as moving averages or exponential smoothing,
to the pointwise curve estimate. While such post-
smoothing would clearly make the curve smoother,
this technique does not add any new information to
the estimate. The main advantage with the interval
curve estimates is that such estimates actually use in-
formation about all events. Especially in cases where
events occur at a very high rate, this turns out to be a
great advantage.

5 APPLICATIONS TO IMPORTANCE MEA-
SURE ESTIMATION

In this section we shall explain how the sampling
methods developed in Section 3 can be used to esti-
mate more advanced importance measures like e.g.,
those introduced in (Natvig and Gasemyr 2008) and
applied in (Natvig, Eide, Gasemyr, Huseby, and Isak-
sen 2008). In the context of the present paper the
general idea can be explained as follows. As before
we consider a binary monotone system (C, ¢). More-
over, let © € C' be a component in the system, and
let F;1, Eys, ... be the events affecting this compo-
nent occurring respectively at T;; < T}s,- - -. For each
of these events we then introduce new fictive events
s Ely, ... occurring respectively at 7}, < T}, < ---
We assume that the fictive events always occur af-
ter their respective real events. That is, T;; < T7,
J =1,2,.... The fictive events could be some sort
of action altering the state of the component through-
out the interval between the real event and the corre-

sponding fictive event. If £;; is a failure event, then

Egj could e.g., be a fictive failure event occurring as
a result of the component being minimally repaired at
T;; and then functioning until 77;. Similarly, if E;; is
a repalr event, one may consider actions, such as e.g.,
a fictive minimal failure at 7;; that extends the repair
interval until 77;. The effect on the system of such ac-
tions typically says something about the importance
of the component. In any case, however, unless the
component is critical at some point during the inter-
val [T};,T7;], the system will not be affected by the
action. This motivates the definition of the following

random variable (z = 1,...,n):
ty X
Zi= [IoNT << T (X @), (12)
o 4

where I(-) denotes the indicator function. The expec-
tation of this variable can then serve as a basis for
an importance measure. In particular, it can be shown
that the importance measures introduced in (Natvig
and Gasemyr 2008) can be obtained in this way.

Since the variable Z; involves both real and fictive
events, estimating its expectation using standard dis-
crete event simulation can be a very complex task.
While the real events represent a single possible se-
quence of changes in the states of the system and its
components, each of the fictive events introduces an
alternative sequence of state changes. Note in partic—
ular that it may happen that a fictive event, E{],
curs after the next real event, £;;, 1, in which case the
intervals [T};,T};] and [T};41,T;;,,] overlap. Hence,
keeping track of all the different parallel sequences of
events is indeed a challenge. Armed with the methods
introduced in the present paper, however, the problem
can easily be solved. In order to explain this we first
note that since the component processes are assumed
to be independent of each other we have:

/ ZPrT <t < TP ()dt (13)

tn)
- [e
0

where we have introduced the weight function:
=D P(T;<t<T)). (14

Now, by running a separate discrete event simulation
for each of the component it turns out that the weight
functions, wy,...,w,, can easily be estimated using
similar techniques as the ones discussed in the previ-
ous sections. In particular, one may use both point-
wise curve estimates as well as interval estimates, de-

noted respectively by w; and @;. Combining these es-
timates with the respective estimates for]g) we get

the following estimates for £[Z;],i=1,...,n:
- tn o
E[Z] = / Gt (b, (15)
0
- tN i
E[Z)] = / ()19 (t)dt, (16)
0

where the integrals are easily calculated numerically.
Note that one should generally not mix pointwise
curve estimates and interval curve estimates. The rea-
son for this is that the pointwise curve estimates pro-
vide unbiased estimates for the curve values at the
sampling points, while interval estimates provide un-
biased estimates for the average curve values over the
corresponding intervals. Thus, by mixing the two, the
result may not be unbiased. In the stationary phase,
this issue is negligible. However, in the initial phase,
the error resulting from this may be significant.

In cases where several different importance mea-
sures are used, each with its own weight function, the
above technique allows us to reuse the curve estimate

for 1};) when calculating each of the measures. This
makes it easier and faster to compare the different
measures.

For specific examples of the use of this technique
see the companion paper (Natvig, Eide, Gasemyr,
Huseby, and Isaksen 2008).

6 CONCLUSIONS

In the present paper we have discussed two differ-
ent approaches to curve estimation in discrete event
simulations. In particular, we have indicated that us-
ing interval estimates may produce more stable curve
estimates compared to pointwise estimates. The pro-
posed methods are particularly useful in relation to
importance measure estimation, especially when sev-
eral different importance measures are calculated and
compared.

An important parameter used in the curve estimates
is the distance between the sampling points, i.e., A.
Finding a suitable value for this parameter, may be
challenging as it depends on how fast the underlying
processes converge to a stationary state. Note, how-
ever, that it is not necessary to use the same distance
between the sampling points throughout the sampling
period. Instead it is possible to use shorter distances
between the sampling points in the early stage, where
the processes have not converged, and then use longer
distances as soon as all the processes have entered an
approximate stationary state. By studying this issue
further, we think that the proposed methods can be
improved considerably.

ARNE BANG HUSEBY

Department of Mathematics, University of Oslo
P.O. Box 1053 Blindern, N 0316 Oslo, Norway
Phone: +47 22 85 58 60, Fax: +47 22 85 43 49
Email: arne@math.uio.no

KRISTINA AALVIK EIDE

FFI, P.O. Box 25, N 2027 Kjeller, Norway
Phone: +47 63 80 75 86, Fax: +47 63 80 74 49
Email: Kristina-Aalvik.Eide @ffi.no

STEFAN LANDSVERK ISAKSEN

DNV Energy, Veritasveien 1, N 1322 Hgvik, Norway
Phone: +47 67 57 93 71, Fax: +47 67 5799 11
Email: Stefan.Isaksen @ dnv.com

BENT NATVIG

Department of Mathematics, University of Oslo
P.O. Box 1053 Blindern, N 0316 Oslo, Norway
Phone: +47 22 85 58 72, Fax: +47 22 85 43 49
Email: bent@math.uio.no

JBRUND GASEMYR

Department of Mathematics, University of Oslo
P.O. Box 1053 Blindern, N 0316 Oslo, Norway
Phone: +47 22 85 59 60, Fax: +47 22 85 43 49
Email: gaasemyr@math.uio.no

REFERENCES

Barlow, R. E. and F. Proschan (1981). Statistical
Theory of Reliability and Life Testing. To Begin
With — Silver Spring MD.

Birnbaum, Z. W. (1969). On the importance of dif-
ferent components in a multicomponent sys-
tem. In P. R. Krishnaia (Ed.), Multivariate
Analysis - II, pp. 581-592. Academic Press,
New York.

Glasserman, P. and D. D. Yao (1994). Monotone
Structure in Discrete-event Systems. John Wi-
ley and Sons, Inc.

Huseby, A. B. and M. Naustdal (2003). Improved
simulation methods for system reliability eval-
uation. In Mathematical and Statistical Meth-
ods in Reliability, pp. 105-121. World Scien-
tific Publishing Co. Pte. Ltd.

Natvig, B., K. A. Eide, J. Gasemyr, A. B. Huseby,
and S. L. Isaksen (2008). The Natvig measures
of component importance in repairable systems
applied to an offshore oil and gas production
system. To be presented at ESREL 2008.

Natvig, B. and J. Gasemyr (2008). New results
on the Barlow-Proschan and Natvig measures
of component importance in nonrepairable and
repairable systems. Submitted.

