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Abstract

When a large oil or gas field is produced, several reservoirs often share the same pro-
cessing facility. This facility is typically capable of processing only a limited amount of
commodities per unit of time. In order to satisfy these processing limitations, the pro-
duction needs to be choked, i.e., scaled down by a suitable choke factor. A production
strategy is defined as a vector valued function defined for all points of time representing
the choke factors applied to reservoirs at any given time. In the present paper we con-
sider the problem of optimizing such production strategies with respect to various types
of objective functions. A general framework for handling this problem is developed. A
crucial assumption in our approach is that the potential production rate from a reservoir
can be expressed as a function of the remaining producible volume. The solution to the
optimization problem depends on certain key properties, e.g., convexity or concavity, of the
objective function and of the potential production rate functions. Using these properties
several important special cases can be solved. An admissible production strategy is a strat-
egy where the total processing capacity is fully utilized throughout a plateau phase. This
phase lasts until the total potential production rate falls below the processing capacity, and
after this all the reservoirs are produced without any choking. Under mild restrictions on
the objective function the performance of an admissible strategy is uniquely characterized
by the state of the reservoirs at the end of the plateau phase. Thus, finding an optimal
admissible production strategy, is essentially equivalent to finding the optimal state at the
end of the plateau phase. Given the optimal state a backtracking algorithm can then used
to derive an optimal production strategy. We will demonstrate this on a specific example.

1 Introduction

Optimization is an important element in the management of large offshore Exploration & Pro-
duction (E&P) assets, since many investment decisions are irreversible and finance is committed
long-term. van den Heever et al. (2001) classify decisions made in reservoir management in two
main categories, design decisions and operational decisions. Design decisions comprise selecting
the type of platform, the staging of compression and assessing the number of wells to be drilled
in a reservoir. These decisions are discrete in nature. In operational decisions production rates
from individual reservoirs and wells are assessed. In contrast to design decisions, operational
decisions are continuous in nature.

Neiro & Pinto (2004) propose a framework for modelling the entire petroleum supply chain.
Ivyer & Grossmann (1998) present a multi-period mixed-integer linear programming formula-
tion for the planning and scheduling of investment and operation in offshore oilfields. In other
approaches a case and scenario analysis system is constructed for evaluating uncertainties in
the E&P value chain, see Narayanan et al. (2003) for details. In Floris & Peersmann (2000) a
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decision scenario analysis framework is presented. Here, scenario and probabilistic analysis is
combined with Monte Carlo simulation. Optimization can also be performed using a simula-
tor, where real-time decisions are made subject to production constraints. Davidson & Beckner
(2003) and Wang et al. (2002) use this technique. Their decision variables include binary on/off
conditions and continuous variables. Uncertainty was not considered in these works.

Many of the contributions listed above focus on the problem of modelling the entire hy-
drocarbon value chain, where the purpose is to make models for scheduling and planning of
hydrocarbon field infrastructures with complex objectives. Since the entire value chain is very
complex, many aspects of it needs to be simplified to be able to construct such a comprehensive
model. The purpose of the present paper is to focus on the problem of optimizing production
in an oil or gas field consisting of many reservoirs, which constitutes an important component
in the hydrocarbon value chain. By focusing on only one important component we are able to
develop a framework that provides insight into how a large oil or gas field should be produced.
The optimization methods developed here can thus be used in the broader context of a total
value chain analysis.

To obtain reliable and valid results, having realistic production models is very important.
Key properties of the reservoirs are typically assessed by geologists, geophysicists, petroleum
engineers and other specialists. This knowledge is then assembled and quantified into a reser-
voir model. Our analysis starts at the stage where a full-scale reservoir simulation has been
performed, and the output from this simulation is given. Simplified production models can
then be constructed based on this output. See Haavardsson & Huseby (2007b) for details about
this. The present paper will utilize such production models.

We consider a situation where several reservoirs share the same processing facility. Oil,
water and gas flow from each reservoir to this facility. The processing facility is only capable of
handling limited amounts of the commodities per unit of time. In order to satisfy the resulting
constraints, the production needs to be choked. In this setting we focus on optimizing the oil
production and leave the simultaneous analysis of oil, gas and water production for future work.
To avoid issues of dependence between the production profiles of the reservoirs, the production
from any reservoir is assumed to be independent of the production from the other reservoirs.

A fundamental model assumption is that the potential production rate from a reservoir, can
be expressed as a function of the remaining producible volume, or equivalently as a function
of the volume produced. Thus, if Q(t) denotes the cumulative production at time t ≥ 0,
and f(t) denotes the potential production rate at the same point of time, we assume that
f(t) = f(Q(t)). This assumption implies that the potential production rate at a given point of
time only depends on the volume produced at that time (or equivalently on the volume left in
the reservoir). Thus, if we delay the production from a reservoir, we can still produce the same
volume at a later time. We refer to the function f as the potential production rate function
or PPR-function of the reservoir. If a reservoir is produced without any production constraint
from time t = 0, the cumulative production function will satisfy the following autonomous
differential equation:

dQ(t)
dt

= f(Q(t)), (1.1)

with the boundary condition Q(0) = 0. The function f would typically be a non-increasing
function. In order to ensure a unique solution to (1.1), we will also assume that f is Lipschitz
continuous. If Q = Q(t) is the solution to (1.1), we assume that:

lim
t→∞

Q(t) =
∫ ∞

0
f(Q(u))du = V <∞. (1.2)
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That is, the recoverable volume from the reservoir, denoted V , is assumed to be finite. Note
that since f is continuous, (1.2) implies that:

lim
t→∞

f(Q(t)) = f(V ) = 0, (1.3)

since otherwise the integral in (1.2) would be divergent.
Due to various kinds of restrictions, including possible time-dependent constraints, the actual

production rate will typically be less than or equal to f(t). Still it turns out that the PPR-
functions play an important part in the analysis.

The present paper presents the following contributions:

• Section 2 introduces basic concepts and results, including a discussion of objective func-
tions and some mild restrictions we impose on them.

• In Section 3 we turn to the problem of finding the best production strategy. An algorithm
for finding the best production strategy and two main results are presented. The first
result deals with the solution to the optimization problem if the PPR-functions are convex
and the extended version of objective function φ is quasi-convex1, while the second result
analogously treats the situation when the PPR-functions are concave and the extended
version of objective function φ is quasi-concave. A specific type of objective function and
an important class of production strategies are presented.

• In Section 4 we consider the case where all the PPR-functions are linear. In this case a
specific production strategy is proven to be optimal for a wide class of objective functions.
The framework is illustrated on a specific example.

• Section 5 is devoted to generate optimal production strategies using backtracking. Since
the performance of an admissible strategy is uniquely characterized by the state of the
reservoirs at the end of the plateau phase, the backtracking is initiated using the optimal
state at the end of the plateau phase. Given the optimal state a backtracking algorithm
can then be used to derive an optimal production strategy.

2 Basic concepts and results

We consider the oil production from n reservoirs that share a processing facility with a constant
process capacity K > 0, expressed in some suitable unit, e.g., kSm3 per day. Let Q(t) =
(Q1(t), . . . , Qn(t)) denote the vector of cumulative production functions for the n reservoirs,
and let f(t) = (f1(t), . . . , fn(t)) be the corresponding vector of PPR functions. We assume
that the PPR functions can be written as:

fi(t) = fi(Qi(t)), t ≥ 0, i = 1, . . . n.

Note that this assumption implies that the potential production rate of one reservoir does
not depend on the volumes produced from the other reservoirs. We will also assume for i =
1, . . . n that fi is non-negative and non-increasing as a function of Qi(t) for all t, and that
limt→∞Qi(t) = Vi < ∞. As already stated, this implies that limt→∞ fi(Qi(t)) = fi(Vi) = 0.
These assumptions reflect the natural properties that the production rate cannot be negative,
that reservoir pressure typically decreases towards zero as more and more oil is produced, and

1For a definition of quasi-convex and quasi-concave functions see Appendix A.2
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that the recoverable volume is finite. Finally, to ensure uniqueness of potential production
profiles we will also assume that fi is Lipschitz continuous in Qi, i = 1, . . . , n.

A production strategy is defined as a vector valued function b = b(t) = (b1(t), . . . , bn(t)),
defined for all t ≥ 0, where bi(t) represents the choke factor applied to the ith reservoir at
time t, i = 1, . . . , n. We refer to the individual bi-functions as the choke factor functions of the
production strategy. The actual production rates from the reservoirs, after the production is
choked is given by:

q(t) = (q1(t), . . . , qn(t)),

where:
qi(t) =

dQ(t)
dt

= bi(t)fi(Qi(t)), i = 1, . . . , n.

We also introduce the total production rate function q(t) =
∑n

i=1 qi(t) and the total cumulative
production function Q(t) =

∑n
i=1Qi(t). To reflect that q, q, Q, and Q depend on the chosen

production strategy b, we sometimes indicate this by writing q(t) = q(t, b), q(t) = q(t, b),
Q(t) = Q(t, b), and Q(t) = Q(t, b).

To satisfy the physical constraints of the reservoirs and the process facility, we require that:

0 ≤ qi(t) ≤ fi(Qi(t)), i = 1, . . . n, t ≥ 0, (2.1)

and that

q(t) =
n∑
i=1

qi(t) ≤ K, t ≥ 0. (2.2)

Expressed in terms of the production strategy b, this implies that:

0 ≤ bi(t) ≤ 1, i = 1, . . . n, t ≥ 0, (2.3)

and that
n∑
i=1

bi(t)fi(Qi(t), t) ≤ K, t ≥ 0. (2.4)

The constraint (2.3) implies that the actual production rate cannot be increased beyond the
potential production rate at any given point in time, while the constraint (2.4) states that the
actual, total production rate cannot exceed the capacity of the processing facility. Let B denote
the class of production strategies that satisfy the physical constraints (2.3) and (2.4). We refer
to production strategies b ∈ B as valid production strategies.

Intuitively, choosing lower values for the choke factors has the effect that the volumes are
produced more slowly. The following fundamental result formalizes this.

Proposition 2.1 Consider a reservoir with PPR-function f(t) = f(Q(t)), and let b1 and b2

be two choke factor functions such that 0 ≤ b1(t) ≤ b2(t) ≤ 1 for all t ≥ 0. Let Q1 and Q2

denote the resulting cumulative production functions, and let q1(t) = b1(t)f(Q1(t)) and q2(t) =
b2(t)f(Q2(t)) be the corresponding actual production rates. We assume that Q1(0) = Q2(0) = 0.
Then Q1(t) ≤ Q2(t) for all t ≥ 0.

Proof: The result is essentially a variant of a well-known theorem by Chaplygin (see Dzielinski
(2005)). To prove the result we assume for a contradiction that there exists a t1 > 0 such that
Q1(t1) > Q2(t1). We also introduce t0 = sup{0 ≤ t ≤ t1 : Q1(t) ≤ Q2(t)}. Since obviously Q1

and Q2 are continuous functions, it follows that 0 ≤ t0 < t1, and that Q1(t0) = Q2(t0) while
Q1(t) > Q2(t) for all t ∈ (t0, t1]. However, since we have assumed that f is non-increasing
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and since b1(t) ≤ b2(t), this implies that q1(t) = b1(t)f(Q1(t)) ≤ b2(t)f(Q2(t)) = q2(t) for all
t ∈ (t0, t1]. This contradicts the assumption that Q1(t1) > Q2(t1). Thus, we conclude that
Q1(t) ≤ Q2(t) for all t ≥ 0 �

As a consequence of the above result, we also obtain the following:

Proposition 2.2 Consider a reservoir with PPR-function f(t) = f(Q(t)), and let {bk}∞k=1 be
a monotone (i.e., either nondecreasing or nonincreasing) sequence of choke factor functions.
Moreover, let {Q(·, bk)}∞k=1 be the resulting sequence of cumulative production functions, as-
suming the boundary condition Q(0, bk) = 0 for all k. Then {Q(·, bk)}∞k=1 converges pointwise
to the cumulative production function Q(·, b) for all t ≥ 0 where b = limk→∞ b

k is the pointwise
limit of the choke factor functions.

Proof: We first note that since all choke factor functions are bounded, the sequence {bk}∞k=1

must converge pointwise for all t ≥ 0. We then let t ≥ 0 be arbitrary, and consider the sequence
{Q(t, bk)}∞k=1. By Proposition 2.1 it follows that this sequence is monotone. Moreover, the
sequence is obviously bounded, and hence convergent as well. Let Q∗ = limk→∞Q(·, bk) denote
the pointwise limit of the cumulative production functions. Thus, it follows that:

Q∗(t) = lim
k→∞

∫ t

0
bk(u)f(Q(u, bk))du,

where the integrand is bounded by the constant f(0). Hence, by Lebesgue’s dominated conver-
gence theorem we may interchange the limit and the integral. Moreover, since f is continuous
we get that:

Q∗(t) =
∫ t

0
b(u)f(Q∗(u))du.

Since f is Lipschitz continuous it follows by the Picard-Lindelöf’s theorem that this integral
equation has a unique solution with given boundary condition. Thus, we must have Q∗ = Q(·, b)
as stated �

2.1 Objective functions

To evaluate production strategies we introduce an objective function, i.e., a mapping φ : B → R
representing some sort of a performance measure. If b1, b2 ∈ B, we prefer b2 to b1 if φ(b2) ≥
φ(b1). Moreover, an optimal production strategy with respect to φ is a production strategy
bopt ∈ B such that φ(bopt) ≥ φ(b) for all b ∈ B.

If b1, b2 ∈ B are two production strategies such that Q(t, b1) ≤ Q(t, b2) for all t ≥ 0, one
would most likely prefer b2 to b1. Thus, a sensible objective function should have the property
that φ(b1) ≤ φ(b2) whenever Q(t, b1) ≤ Q(t, b2) for all t ≥ 0. Objective functions satisfying
this property will be referred to as monotone objective functions. The following result states
that monotone objective functions also satisfies a monotonicity with respect to the production
strategy.

Proposition 2.3 Let φ be a monotone objective function, and let b1, b2 ∈ B be such that
b1(t) ≤ b2(t) for all t ≥ 0. Then φ(b1) ≤ φ(b2).

Proof: The result follows directly from Proposition 2.1.

Monotone objective functions will encourage production strategies where the total produc-
tion rate is sustained at the plateau level K as long as possible. Furthermore, when the plateau
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level cannot be sustained, all the reservoirs should be produced without choking. More specif-
ically, if

∑n
i=1 fi(Qi(t)) ≥ K, one would typically choose b(t) so that

∑n
i=1 bi(t)fi(Qi(t)) = K,

while if
∑n

i=1 fi(Qi(t)) < K, the obvious choice is to let b(t) = 1. Production strategies sat-
isfying these conditions are said to be admissible production strategies. We let B′ ⊆ B denote
the class of such strategies.

To study this further we introduce the plateau set :

ΠK = ΠK(b) = {t ≥ 0 :
n∑
i=1

fi(Qi(t, b)) ≥ K}. (2.5)

Thus, ΠK is the set of points of time where the total production rate can be sustained at the
plateau level given that the production strategy b is used. We also introduce:

TK = TK(b) = inf{t ≥ 0 :
n∑
i=1

fi(Qi(t, b)) ≤ K}. (2.6)

The quantity TK(b) will be referred to as the plateau length for the production strategy b.
If

∑n
i=1 fi(Qi(0)) ≤ K, it follows that TK = 0. In this case the optimization problem is

trivial since no choking is necessary, and the obvious optimal solution is letting b(t) = 1 for all t.
To avoid this trivial case we henceforth assume that

∑n
i=1 fi(Qi(0)) =

∑n
i=1 fi(0) > K. It then

follows by the continuity and monotonicity of the PPR-functions that ΠK is the non-empty
interval [0, TK ]. Moreover, in this case TK can alternatively be expressed as:

TK = TK(b) = sup{t ≥ 0 :
n∑
i=1

fi(Qi(t, b)) ≥ K}. (2.7)

It follows that the production rates of an admissible production strategy satisfy the following
constraints:

q(t) =
n∑
i=1

qi(t) = K, 0 ≤ t ≤ TK , (2.8)

and
qi(t) = fi(Qi(t)), t > TK , i = 1, . . . n. (2.9)

The following results states that if the objective function is monotone, an optimal production
strategy can always be found within the class of admissible production strategies. Thus, when
searching for optimal strategies we can restrict the search to the class B′.

Proposition 2.4 Let φ be a monotone objective function, and let b ∈ B. Then there exists
b′ ∈ B′ such that φ(b′) ≥ φ(b).

Proof: If b ∈ B′ the result is obvious, so we assume that b ∈ B \ B′. We can then construct
a nondecreasing sequence {bk}∞k=1 of valid production strategies as follows. We start out by
defining b1 = b. Thus, b1 ∈ B by assumption. We then assume that we have defined b1, . . . , bk

so that bj ∈ B for j = 1, . . . , k, and define bk+1 by:

bk+1(t) = αk(t)1 + (1− αk(t))bk(t), t ≥ 0, k = 1, 2, . . . , (2.10)

where αk(t) is defined for all t ≥ 0 and k = 1, 2, . . . as the largest number in [0, 1] so that:
n∑
i=1

[αk(t) + (1− αk(t))bki (t)]fi(Qi(t, bk)) ≤ K.
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Note that if bk(t) = 1, we may define αk(t) arbitrarily.
We observe that since bk ∈ B, αk(t) is well-defined, and that 0 ≤ bk+1

i (t) ≤ 1 for all t ≥ 0
and i = 1, . . . , n. Moreover, if t ≤ TK(bk) we have:

n∑
i=1

bk+1
i (t)fi(Qi(t, bk)) = K, (2.11)

while if t > TK(bk), bk+1
i (t) = 1, i = 1, . . . , n.

Since we obviously have that bk+1(t) ≥ bk(t) for all t ≥ 0, it follows by Proposition 2.1
that Qi(t, bk+1) ≥ Qi(t, bk) for all t ≥ 0 and i = 1, . . . , n. Hence, since the PPR-functions are
decreasing, we get for all t ≥ 0 that:

n∑
i=1

bk+1
i (t)fi(Qi(t, bk+1)) ≤

n∑
i=1

bk+1
i (t)fi(Qi(t, bk)) ≤ K.

Hence, bk+1 ∈ B as well. Thus, it follows by induction that all the production strategies in the
sequence are valid.

Since the sequence {bk}∞k=1 is nondecreasing and bounded, it will converge pointwise for
each t ≥ 0, and we let b′ denote the limiting production strategy. It is easy to see that b′ ∈ B
as well. Furthermore, using Proposition 2.2 and that the PPR-functions are continuous, it
follows that:

lim
k→∞

fi(Qi(t, bk)) = fi(Qi(t, b′)), for all t ≥ 0, and i = 1, . . . , n. (2.12)

Using once again Proposition 2.1 and that the PPR-functions are decreasing, it is easy to see
that {TK(bk)}∞k=1 is a nonincreasing and hence convergent sequence. Moreover, by (2.12), we
get that:

lim
k→∞

TK(bk) = TK(b′). (2.13)

If t ≤ TK(b′), we know that t ≤ TK(bk) for all k as well. Hence, for such t (2.11) holds for
all k. By taking the limit in (2.11) we obtain:

K = lim
k→∞

n∑
i=1

bk+1
i (t)fi(Qi(t, bk))

=
n∑
i=1

b′i(t)fi(Qi(t, b
′)),

where the last equality follows by (2.12).
If t > TK(b′), it follows by (2.13) that there must exist a k0 such that t > TK(bk) for all

k ≥ k0. Hence, bki (t) = 1 for i = 1, . . . , n and for all k ≥ k0, implying that b′i(t) = 1 for
i = 1, . . . , n as well.

Thus, we conclude that b′ ∈ B′, i.e., b′ is an admissible production strategy. Since obviously
b′(t) ≥ b(t) for all t ≥ 0, it follows by Proposition 2.3 that φ(b′) ≥ φ(b), and thus the proof is
completed �

In general the revenue generated by the production may vary between the reservoirs. This
may occur if e.g., the quality of the oil, or the average production cost per unit are different from
reservoir to reservoir. Such differences should then be reflected in the chosen objective function.
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On the other hand, if all the reservoirs are similar, we could restrict ourselves to considering
objective functions depending on the production strategy b only through the total production
rate function q(·, b) (or equivalently through Q(·, b)). We refer to such objective functions as
symmetric. Within the class of symmetric objective functions the concept of monotonicity can
be simplified as follows:

Proposition 2.5 Let φ be a symmetric objective function. Then φ is monotone if and only if
for any pair of production strategies, b1 and b2 such that Q(t, b1) ≤ Q(t, b2) for all t ≥ 0, we
have φ(b1) ≤ φ(b2).

Proof: Assume first that φ is monotone, and let b1 and b2 be two production strategies such
that Q(t, b1) ≤ Q(t, b2) for all t ≥ 0. Then we can find a third (possibly invalid) production
strategy b3 such that Q(t, b1) ≤ Q(t, b3) for all t ≥ 0, and such that Q(t, b2) = Q(t, b3) for all
t ≥ 0. Since φ is monotone, we have φ(b1) ≤ φ(b3). Moreover, since φ is symmetric, we have
φ(b3) = φ(b2). Combining this we get that φ(b1) ≤ φ(b2) as claimed.

Assume then conversely that φ is such that for any pair of production strategies, b1 and
b2 such that Q(t, b1) ≤ Q(t, b2) for all t ≥ 0, we have φ(b1) ≤ φ(b2). Then let b1 and b2

be two production strategies such that Q(t, b1) ≤ Q(t, b2) for all t ≥ 0. Then obviously
Q(t, b1) ≤ Q(t, b2) for all t ≥ 0 as well, implying that φ(b1) ≤ φ(b2). That is, φ is monotone
as claimed �

Within the class of admissible production strategies any symmetric objective function can
be expressed in terms of the system state at the end of the plateau phase. The following result
formalizes this:

Proposition 2.6 Let φ be a symmetric objective function, and let b ∈ B′. Then φ(b) is
uniquely determined by Q(TK(b)). Thus, we may write φ(b) = φ(Q(TK(b))).

Proof: Since φ is assumed to be symmetric, it depends on b only through q. Furthermore,
since b ∈ B′, we know that q(t) = K whenever 0 ≤ t ≤ TK(b). This implies that:

Q(TK(b)) =
n∑
i=1

Qi(TK(b)) = KTK(b).

Hence, the plateau length TK(b) can be recovered from Q(TK(b)) as:

TK(b) = K−1
n∑
i=1

Qi(TK(b)).

If t > TK(b), it follows since b ∈ B′ that:

q(t) =
n∑
i=1

qi(t) =
n∑
i=1

fi(Qi(t))

By the Picard-Lindelöf’s theorem qi(t) is uniquely determined for all t > TK(b) by its respective
differential equation along with the boundary condition given by the value Qi(TK(b)), i =
1, . . . , n. Thus, q(t) is uniquely determined by Q(TK(b)) for all t ≥ 0, and hence so is φ �
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3 Optimizing production strategies

We now turn to the problem of finding the best production strategy, i.e., the one that maximizes
the value of the objective function, φ. To simplify this problem, only monotone, symmetric
objective functions will be discussed. As we shall see, Proposition 2.6 plays a key role when
searching for optimal production strategies. In order to explain this, we consider the set of all
possible cumulative production vectors for the given field, denoted by Q:

Q = [0, V1]× · · · × [0, Vn], (3.1)

where V1, . . . , Vn are the recoverable volumes from the n reservoirs. We then introduce the
subsetsM,M̄ ⊆ Q given respectively by:

M = {Q ∈ Q :
n∑
i=1

fi(Qi) ≥ K}, (3.2)

M̄ = {Q ∈ Q :
n∑
i=1

fi(Qi) < K}. (3.3)

We also need the set of boundary points of M separating M from M̄, which we denote by
∂(M). Thus, Q ∈ ∂(M) if and only if every neighborhood of Q intersects bothM and M̄.

Since we have assumed that
∑n

i=1 fi(0) > K > 0 and
∑n

i=1 fi(Vi) = 0, bothM and M̄ are
non-empty. Moreover, since the PPR-functions are assumed to be continuous, it is easy to see
that:

∂(M) ⊆ {Q ∈ Q :
n∑
i=1

fi(Qi) = K}, (3.4)

where equality holds if the PPR-functions are strictly decreasing.
The following key result shows how the shapes of the setsM and M̄ depend on the shapes

of the PPR-functions.

Proposition 3.1 Consider a field with n reservoirs with PPR-functions f1, . . . , fn.
(i) If f1, . . . , fn are convex, the set M̄ is convex.
(ii) If f1, . . . , fn are concave, the setM is convex.

Proof: Assume first that the PPR-functions are convex, and let Q1 = (Q1
1, . . . , Q

1
n) and

Q2 = (Q2
1, . . . , Q

2
n) be two vectors in M̄. Thus, we have:

n∑
i=1

fi(Q
j
i ) < K, j = 1, 2. (3.5)

Then let 0 ≤ α ≤ 1, and consider the vector Q = (Q1, . . . , Qn) = αQ1 + (1− α)Q2. Since the
PPR-functions are convex, we have:

n∑
i=1

fi(Qi) =
n∑
i=1

fi(αQ1
i + (1− α)Q2

i )

≤ α

n∑
i=1

fi(Q1
i ) + (1− α)

n∑
i=1

fi(Q2
i ) < K

9



Thus, we conclude thatQ ∈ M̄ as well. Hence M̄ is convex. The second part of the proposition
is proved in a similar way �

Note that since convexity is preserved under set closure, we also have the following corollary

Corollary 3.2 Consider a field with n reservoirs with convex PPR-functions f1, . . . , fn. Then
the set M̄ ∪ ∂(M) is convex.

Proof: The result follows by realizing that the closure of M̄ is M̄ ∪ ∂(M) �

By combining (3.3) and (3.4) we get that:

M̄ ∪ ∂(M) ⊆ {Q ∈ Q :
n∑
i=1

fi(Qi) ≤ K}, (3.6)

where equality holds if the PPR-functions are strictly decreasing.

The setM has the property that the total production rate can be sustained at plateau level
as long as Q(t) ∈ M. More specifically, let b be any production strategy, and consider the
points in Q generated by Q(t) = Q(t, b) as t increases. From the boundary conditions we know
that Q(0) = 0. By the continuity of the PPR-functions, Q(t) will move along some path inM
until the boundary ∂(M) is reached.

If b ∈ B, the resulting path is said to be a valid path, while if b ∈ B′, the path is called
an admissible path. In general only a subset of M can be reached by admissible paths. We
denote this subset byM′. Moreover, we let ∂(M′) = ∂(M)∩M′. We now make the mild but
important assumption that ∂(M′) is a (n− 1)-manifold with boundary denoted by ∂(∂(M′)).
In particular we assume that all points in ∂(∂(M′)) can be reachable by admissible paths.

For an admissible path the total production rate equals K all the way until the path reaches
∂(M′). Moreover, the plateau length TK(b) is the point of time when the path reaches ∂(M′),
implying that:

∂(M′) = {Q(TK(b)) : b ∈ B′} (3.7)

By Proposition 2.6 we know that φ(b) = φ(Q(TK(b))) given that b ∈ B′ and φ is symmetric.
Hence, the best production strategy can, at least in principle, be found using the following
two-stage process:

Algorithm 3.3 Let φ be a monotone, symmetric objective function. Then a production strategy
b which is optimal with respect to φ can be found as follows:
Step 1. Find Qopt ∈ ∂(M′) such that φ(Qopt) ≥ φ(Q) for all Q ∈ ∂(M′).
Step 2. Find a production strategy b ∈ B′ such that Q(TK(b)) = Qopt.

We observe that in the first step of Algorithm 3.3 the objective function φ is interpreted
simply as a function of the vector Q, while in the second step we look for a production strategy
b ∈ B′ generating an admissible path inM from the origin to the optimal vector Qopt.

To solve the optimization problem given in Step 1 of Algorithm 3.3, we assume that it is
possible to extend the definition of φ to all vectors Q ∈ Q. Moreover, we assume that the
extended version of φ is non-decreasing in Q. That is, if Q1,Q2 ∈ Q and Q1 ≤ Q2, then
φ(Q1) ≤ φ(Q2). Having extended φ in this way, the problem is now to maximize φ(Q) subject
to the constraint that Q ∈ ∂(M′).

Note that since the PPR-functions are assumed to be non-decreasing, it follows that for any
Q ∈ M, we can always find another vector Q′ ∈ ∂(M) such that Q ≤ Q′. Thus, since φ is
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assumed to be non-decreasing as well, we have φ(Q) ≤ φ(Q′). In particular, if Q∗ ∈ ∂(M)
maximizes φ over ∂(M), it follows that φ(Q∗) ≥ φ(Q) for all Q ∈ M. We also introduce the
set N :

N = {Q ∈ Q : φ(Q) > φ(Q∗)}. (3.8)

Since φ(Q∗) ≥ φ(Q) for all Q ∈M, it follows thatM∩N = ∅.
If Q∗ ∈ ∂(M′) as well, then obviously Q∗ is a solution to the optimization problem in Step

1 of Algorithm 3.3. Hence, we may let Qopt = Q∗. In many cases, however, it may happen
that Q∗ /∈ ∂(M′). In such cases the optimal vector Qopt ∈ ∂(M′) can typically be found at
the boundary, ∂(∂(M′)).

Using results from Appendix A we are now ready to prove the two main results of this
section.

Theorem 3.4 Consider a field with n reservoirs with convex PPR-functions f1, . . . , fn. Fur-
thermore, let φ be a symmetric, monotone objective function. Assume also that φ, interpreted
as a function of Q, can be extended to a non-decreasing, quasi-convex2 function defined on
the set Q. Then an optimal vector, denoted Qopt, i.e., a vector maximizing φ(Q) subject to
Q ∈ ∂(M′), can always be found within the set ∂(∂(M′)).

Proof: Let Q ∈ ∂(M′) be chosen arbitrarily. Then by Theorem A.4 there exists m vectors
Q1, . . . ,Qm ∈ ∂(∂(M′)) and non-negative numbers α1, . . . , αm such that

∑m
i=1 αi ≤ 1 and such

that:

Q =
m∑
i=1

αiQi.

We then introduce Q′ = (
∑m

i=1 αi)
−1Q. Thus, Q′ is a convex combination of Q1, . . . ,Qm.

Moreover, since
∑m

i=1 αi ≤ 1, we have Q ≤ Q′.
By Corollary 3.2 we know that the set M̄ ∪ ∂(M) is convex, so Q′ must belong to this set.

Hence, since φ is assumed to be non-decreasing and quasi-convex, it follows that:

φ(Q) ≤ φ(Q′) ≤ max{φ(Q1), . . . , φ(Qm)}. (3.9)

SinceQ was chosen arbitrarily, we conclude that for anyQ ∈ ∂(M′), there exists some boundary
point Q∗ ∈ ∂(∂(M′)) such that φ(Q) ≤ φ(Q∗). Hence, an optimal vector, Qopt, can always be
found within the set ∂(∂(M′)) �

Note that in the proof of Theorem 3.4 will hold even if the definition of φ is extended only
to the set M̄ ∪ ∂(M), i.e., not to the entire set Q.

Theorem 3.5 Consider a field with n reservoirs with concave PPR-functions f1, . . . , fn. Fur-
thermore, let φ be a symmetric, monotone objective function. Assume also that φ, interpreted
as a function of Q, can be extended to a non-decreasing quasi-concave3 function defined on the
set Q. Furthermore, assume that the vector, Q∗, maximizes φ(Q) subject to Q ∈ ∂(M), and
that the set N defined relative to Q∗ as in (3.8), is non-empty. Then there exists a hyperplane
H = {Q : `(Q) = c} separatingM and N . Moreover, if φ is strictly increasing at Q∗, then H
supportsM at Q∗. Finally, if Q∗ ∈ ∂(M′) as well, we may let Qopt = Q∗.

2For a definition of quasi-convex functions see Appendix A.2
3For a definition of quasi-concave functions see Appendix A.2
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Proof: We first note that since the PPR-functions are assumed to be concave, it follows by
Proposition 3.1 thatM is convex. Moreover, since φ interpreted as a function of Q, is assumed
to be quasi-concave, it follows by Proposition A.9 that N is convex. As already pointed out we
obviously have thatM∩N = ∅. Hence, it follows by Theorem A.1 there exists a hyperplane
H separatingM and N .

If φ is strictly increasing at Q∗, it follows that any neighborhood of Q∗ must contain a
vector Q such that φ(Q) > φ(Q∗). Thus, by the definition of N any such neighborhood must
intersect N . Hence, by Proposition A.3 H supports M at Q∗. The final statement that if
Q∗ ∈ ∂(M′) as well, we may let Qopt = Q∗ is obvious from the previous discussion �

The two above results indicate how to solve the optimization problem given in Step 1 of
Algorithm 3.3 in two important cases. If the PPR-functions are convex and the extended version
of objective function φ is quasi-convex, the optimal Qopt can be found within the set ∂(∂(M′)).
The extreme points of this set correspond to a certain class of admissible production strategies
called priority strategies which will be discussed in the next subsection. In certain cases it can
be shown that the optimal solution can be found within this class. Since there are only a finite
number of priority rules, finding the optimal one is easy, at least in principle. Moreover, given
an optimal priority strategy, Step 2 of Algorithm 3.3 is trivial, as the corresponding production
strategy b ∈ B′ is essentially uniquely defined by this rule. We will discuss this further in
Section 3.2.

If the PPR-functions are concave and the extended version of objective function φ is quasi-
concave, Step 1 of Algorithm 3.3 typically involves finding the hyperplane separatingM and N ,
and thus identify the point Q∗ where the hyperplane supportsM. Assuming that Q∗ ∈ ∂(M′)
as well, Step 1 is completed by letting Qopt = Q∗. Note, however, that verifying that Q∗ ∈
∂(M′) may in general be a difficult task. Often the easiest way to do this, is by proceeding
directly to Step 2, using the Q∗ found in Step 1. If we are able to successfully complete Step
2 as well, this implies that Q∗ ∈ ∂(M′).

If the PPR-functions and the extended φ-function are differentiable, the standard approach
to finding Q∗ is by using Lagrange multipliers. An example where this method is used, is given
in Section 5.

If the extended φ-function is a quasi-linear function of the form φ(Q) = h(`(Q)), where h
is an increasing function and ` is a non-zero linear form, it follows that finding the optimal Q∗

is equivalent to maximizing `(Q) subject to Q ∈ ∂(M′). If the PPR-functions are piecewise
linear and concave, then finding the optimal Q∗ can be formulated as a linear programming
problem. We will return to this in a future paper.

When Qopt lies in the interior of ∂(M′), there is typically no unique solution to Step 2
of Algorithm 3.3. Typically there will be many admissible paths through M from 0 to Qopt.
When searching for such a path it turns out to be easier to solve the problem backwards,
i.e., by starting at Qopt and finding an admissible path back to the origin. The reason for
this is that the constraints (2.8) and (2.9) are much easier to satisfy close to the origin where
f1(Q1), . . . , fn(Qn) are large than at the boundary of M where f1(Q1), . . . , fn(Qn) are small.
Thus, in order to carry out Step 2 of Algorithm 3.3, we will use a certain backtracking algorithm
which will be described in Section 5.

3.1 Truncated discounted production

In order to exemplify the results given in the previous subsection, we now consider a more
specific type of symmetric monotone objective function, referred to as truncated discounted
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production, and given by the following expression:

φC,R(b) =
∫ ∞

0
I{q(u) ≥ C}q(u)e−Rudu, 0 ≤ C ≤ K, R ≥ 0. (3.10)

The parameter R is interpreted as a discount rate, while C defines the level of truncation,
typically reflecting the minimal acceptable production rate, e.g., the lowest production rate
resulting in a non-negative cash-flow.

Since φC,R only depends on the production strategy through the total production rate q,
it follows that φC,R is symmetric. Moreover, the truncation factor I{q(u) ≥ C} and the
discounting factor e−Ru ensure that it is monotone as well.

Different choices of C and R yield different types of objective functions. If we e.g., let C = 0
and R > 0, the integrand of the objective function is not truncated at any level, so we simply
get the total discounted production.

On the other hand if we let C = K, the production is truncated as soon as it leaves the
plateau level. In this case the integrand is positive only when q(u) = K. In particular if b ∈ B′,
we know that q(u) = K if and only if 0 ≤ u ≤ TK(b), so in this case (3.10) is reduced to:

φC,R(b) = φK,R(b) = K

∫ TK(b)

0
e−Rudu = KR−1(1− e−RTK(b)), (3.11)

when R > 0, while φC,0(b) = φK,0(b) = KTK(b). Moreover, when b ∈ B′, we have q(u) = K
for all 0 ≤ u ≤ TK(b), so:

KTK(b) =
n∑
i=1

Qi(TK(b)).

From this it follows that φK,R, interpreted as a function of Q, can be extended to Q by letting:

φK,R(Q) =

{
KR−1[1− exp(−K−1R`(Q))] if R > 0,

`(Q) if R = 0,
(3.12)

where we have introduced `(Q) =
∑n

i=1Qi. Thus, it follows by Proposition A.10 that φK,R is
quasi-linear. Moreover, Q∗ can be found by maximizing `(Q) subject to Q ∈ ∂(M).

Maximizing the plateau production `(Q) or equivalently the plateau length TK is often
easier than maximizing a general objective function of the form φC,R. Still the special case
where C = K and R = 0 and the general case are closely related, and an optimal solution to
one of them will often be at least a good approximation to an optimal solution of the others.
In Section 4 we shall prove that this in fact holds exactly when the PPR-functions are linear.

3.2 Priority strategies

In this subsection we introduce a specific class of production strategies referred to as priority
strategies. A priority strategy is characterized by prioritizing the reservoirs according to some
suitable criterion. More specifically, we define a priority strategy as follows:

Definition 3.6 Consider a field with n reservoirs with PPR-functions f1, . . . , fn, and let π =
(π1, . . . , πn) be a permutation vector representing the prioritization order of the reservoirs.
Then the priority strategy relative to π is defined by letting the production rates at time t,
q1(t), . . . , qn(t), be given by:

qπi(t) = min[fπi(Qπi(t)),K −
∑
j<i

qπj (t)], i = 1, . . . , n. (3.13)
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We observe that when assigning the production rate qπi(t) to reservoir πi, this is limited
by K −

∑
j<i qπj (t), i.e., the remaining processing capacity after assigning production rates

to all the reservoirs with higher priority. If fπi(Qπi(t)) ≤ K −
∑

j<i qπj (t), reservoir πi can
be produced without any choking, and the remaining processing capacity is passed on to the
reservoirs with lower priorities. If on the other hand fπi(Qπi(t)) > K −

∑
j<i qπj (t), the

production at reservoir πi is choked so that qπi(t) = K −
∑

j<i qπj (t). Thus, all the remaining
processing capacity is used on this reservoir, and nothing is passed on to the reservoirs with
lower priorities.

The priority strategy can also be expressed in terms of the choke factors at time t, i.e.,
b1(t), . . . , bn(t). Recalling that qi(t) = bi(t)fi(Qi(t)), the choke factors are obtained from (3.13)
by dividing both sides of the equation by fi(Qi(t)). Assuming that fπi(Qπi(t)) > 0, we get
that:

bπi(t) = min[1,
K −

∑
j<i qπj (t)

fi(Qi(t))
], i = 1, . . . , n. (3.14)

If fπi(Qπi(t)) = 0, the choke factor bπi(t) can be defined arbitrarily, so as a simple convention
we let bπi(t) = 1 in this case. In any case we see that the resulting production strategy b
is essentially uniquely defined for any priority strategy. In particular, the production strategy
corresponding to the priority strategy relative to the permutation π is denoted by bπ. Moreover,
the class of all priority strategies is denoted by BPR.

To further explore the properties of priority strategies, we introduce:

Ti = Ti(bπ) = inf{t ≥ 0 :
i∑

j=1

fπj (Qπj (t, b
π)) ≤ K}, i = 1, . . . , n. (3.15)

We also let T0 = 0, and note that we obviously have: 0 = T0 ≤ T1 ≤ · · · ≤ Tn = TK(bπ). Thus,
T1, . . . , Tn defines an increasing sequence of subplateau sets, [0, T1], . . . , [0, Tn], where the last
one is equal to the plateau set ΠK . We will refer to T1, . . . , Tn as the subplateau lengths for the
given priority strategy.

We now let i ∈ {1, . . . , n}, and assume that Ti−1 < t < Ti. Then the reservoirs π1, . . . , πi−1

are produced without choking, i.e.:

qπj (t) = fπj (Qπj (t)), j = 1, . . . , i− 1. (3.16)

Furthermore, the reservoir πi is produced with choking so that:

qπi(t) = K −
∑
j<i

qπj (t) = K −
∑
j<i

fπj (Qπj (t)). (3.17)

Finally the reservoirs πi+1, . . . , πn are not produced at all. Note also that t = Ti is the smallest
t where:

fπi(Qπi(t)) ≤ K −
∑
j<i

qπj (t) = K −
∑
j<i

fπj (Qπj (t)). (3.18)

Thus, from this point of time the reservoir πi can be produced without any choking.
Summarizing this we see that for i = 1, . . . , n, the production rate, qi(t) is given by:

qi(t) =


0 if t < Ti−1,

K −
∑

j<i fπj (Qπj (t)) if Ti−1 ≤ t < Ti,

fπi(Qπi(t)) if t ≥ Ti.

(3.19)
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The priority strategies have the important property that they generate admissible paths
throughM′ such that Q(TK(bπ), bπ) ∈ ∂(∂(M′)). In order to study this further we introduce
the set A ⊆ Q consisting of the union of all admissible paths. Thus, we have:

A = {Q(t, b) : t ≥ 0, b ∈ B′}.

The following lemma shows that the path of a priority strategy follows the boundary of A.

Lemma 3.7 Consider a field with n reservoirs with PPR-functions f1, . . . , fn. Moreover, let
π = (π1, . . . , πn) be a permutation vector, and let bπ be the corresponding priority strategy.
Then we have:

Q(t, bπ) ∈ ∂(A) for all t ≥ 0.

Proof: Let t1 ≥ 0. We first note that if Qπ1(t1, bπ) = Vπ1 , then Q(t1, bπ) ∈ ∂(Q), and hence
obviously Q(t1, bπ) ∈ ∂(A) as well. Thus, in the rest of the proof we can restrict ourselves to
the case where Qπ1(t1, bπ) < Vπ1 . Since reservoir π1 is given the highest priority, it is easy to
see that Qπ1(t, bπ) must be strictly increasing in t for 0 ≤ t ≤ t1.

In order to show that Q(t1, bπ) ∈ ∂(A), we must show that any neighborhood of Q(t1, bπ)
contains a point Q∗ /∈ A. Thus, let N be a neighborhood of Q(t1, bπ). Moreover, let ε > 0,
and consider the point Q∗ = (Q∗1, . . . , Q

∗
n) defined as follows:

Q∗π1
= Qπ1(t1, bπ),

Q∗i = Qi(t1, bπ)− ε, for all i 6= π1.

By choosing a sufficiently small ε, we can ensure that Q∗ ∈ N . We then claim that Q∗ /∈ A.
Assume for a contradiction that Q∗ ∈ A. That is, there exists a production strategy b ∈ B′,
and a point of time t2 ≥ 0 such that Q(t2, b) = Q∗. Since obviously bπ1(t) ≤ bππ1

(t) for all
t ≥ 0, it follows by Proposition 2.1 that Qπ1(t, b) ≤ Qπ1(t, bπ) for all t ≥ 0. Hence, since we
have assumed that Qπ1(t2, b) = Qπ1(t1, bπ) and since Qπ1(t, bπ) is strictly increasing in t for
0 ≤ t ≤ t1, this implies that t2 ≥ t1. From this it follows that:

Qπ1(t2, b) ≤ Qπ1(t2, bπ),
Qi(t2, b) < Qi(t2, bπ), for all i 6= π1.

Hence:
n∑
i=1

Qi(t2, b) <
n∑
i=1

Qi(t2, bπ) ≤ Kt2.

Since b is assumed to be admissible, this implies that t2 > TK(b). Using Proposition 2.1 again
it follows that we also have:

Qπ1(TK(b), b) ≤ Qπ1(TK(b), bπ).

Moreover, we also claim that:

Qi(TK(b), b) < Qi(TK(b), bπ), for all i 6= π1.

To explain why this claim is true, we note that if this is not the case, by continuity there must
exist a point of time t0 ∈ [TK(b), t2) such that for at least one i 6= π1 we have Qi(t0, b) =
Qi(t0, bπ). However, since b ∈ B′ and t0 ≥ TK(b), the ith reservoir is produced without any
choking throughout the interval [TK(b), t2), which contradicts that Qi(t2, b) < Qi(t2, bπ).
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Combining all this we get that:

n∑
i=1

Qi(TK(b), b) <
n∑
i=1

Qi(TK(b), bπ) ≤ KTK(b),

which implies that b cannot be admissible. Hence, we conclude that Q∗ /∈ A. Thus, we have
shown that any neighborhood of Q(t1, bπ) contains a point not in A, i.e., Q(t1, bπ) ∈ ∂(A) �

We also need the following lemma which we state without proof:

Lemma 3.8 Consider a field with n reservoirs. Then we have:

∂(∂(M′)) = ∂(A) ∩ ∂(M). (3.20)

Using Lemma 3.7 and Lemma 3.8 we can now show:

Theorem 3.9 Consider a field with n reservoirs, and let bπ be a priority strategy. Then
Q(TK(bπ), bπ) ∈ ∂(∂(M′)).

Proof: By Lemma 3.7 we have that Q(TK(bπ), bπ) ∈ ∂(A). Moreover, by definition of TK(bπ)
it follows that Q(TK(bπ), bπ) ∈ ∂(M). Hence, by Lemma 3.8 we must have Q(TK(bπ), bπ) ∈
∂(A) ∩ ∂(M) = ∂(∂(M′)) �

When the PPR-functions are convex, and the objective function, φ, interpreted as a function
of Q, is quasi-convex, we know by Theorem 3.4 that an optimal production strategy b∗ should
be chosen so that Q(TK(b∗), b∗) ∈ ∂(∂(M′)). By Theorem 3.9 we see that priority strategies
always satisfies this condition. Thus, priority strategies provide a good starting point for the
optimal strategy. We close this section by a result providing a sufficient criterion for when the
optimal strategy can be found within the class of priority rules.

Theorem 3.10 Consider a field with n reservoirs with convex PPR-functions f1, . . . , fn. Fur-
thermore, let φ be a symmetric, monotone objective function. Assume also that φ, inter-
preted as a function of Q, can be extended to a non-decreasing, quasi-convex function de-
fined on the set Q. Finally assume that ∂(M′) is contained in the convex hull of the points
{Q(TK(b), b) : b ∈ BPR}. Then an optimal production strategy can be found within the class
BPR.

Proof: LetQ ∈ ∂(M′) be chosen arbitrarily. Then by the assumption there exists non-negative
numbers {αb : b ∈ BPR} such that

∑
b∈BPR αb ≤ 1 and such that:

Q =
∑
b∈BPR

αbQ(TK(b), b).

From this the result follows by arguments similar to the proof of Theorem 3.4 �

4 Optimization with linear PPR-functions

In this section we consider the case where all the PPR-functions are linear. That is, we consider
a field with n reservoirs with PPR-functions f1, . . . , fn, such that:

fi(Qi(t)) = Di(Vi −Qi(t)), i = 1, . . . , n, (4.1)
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where V1, . . . , Vn denotes the recoverable volumes from the n reservoirs, and where we assume
that the reservoirs have been indexed so that 0 < D1 ≤ D2 ≤ · · · ≤ Dn.

We then consider the ith reservoir, and let T ≥ 0. If this reservoir is produced without any
choking, i.e., with a choking factor function bi(t) = 1 for all t ≥ T , we can solve the differential
equation (4.1) for t ≥ T given that the cumulative production at time T is Qi(T ), and get:

qi(t) = Di(Vi −Qi(T )) exp(−Di(t− T )), t ≥ T. (4.2)

Moreover, by integrating qi(t) from T to t we also get:

Qi(t) = Vi(1− e−Di(t−T )) +Qi(T )e−Di(t−T ), t ≥ T. (4.3)

If on the other hand, the reservoir is produced with a choking factor function bi(t) ≤ 1 for
t ≥ T it follows by Proposition 2.1 that Qi(t) will be less than or equal to the right-hand side
of (4.3). These relations will be used in order to prove the following result:

Theorem 4.1 Consider a field with n reservoirs with linear PPR-functions f1, . . . , fn given
by (4.1). Then let b1 denote the priority strategy corresponding to the permutation π =
(1, 2, . . . , n), and let b2 be any other valid production strategy. Then Q(t, b1) ≥ Q(t, b2) for
all t ≥ 0. Thus, b1 is optimal with respect to any monotone, symmetric objective function.

Proof: We start by introducing the plateau lengths T1, . . . , Tn as defined in (3.15). When
the priority strategy b1 is used, reservoir 1 is produced at the rate K throughout the interval
[0, T1], the reservoirs 1 and 2 are produced at a total rate K throughout the interval [0, T2],
etc. Moreover, reservoir 1 will be produced without any choking for t ≥ T1, reservoir 1 and 2
will be produced without any choking for t ≥ T2, etc.

We shall now prove by induction that:

i∑
j=1

Qj(t, b1) ≥
i∑

j=1

Qj(t, b2), t ≥ 0, i = 1, . . . , n. (4.4)

Thus, we start out by considering the case where i = 1. If 0 ≤ t ≤ T1, then obviously:

Q1(t, b1) = Kt ≥ Q1(t, b2).

If t > T1, we know that reservoir 1 is produced without any choking when b1 is used. Thus, we
have:

Q1(t, b1) = V1(1− e−D1(t−T1)) +Q1(T1, b
1)e−D1(t−T1).

If, on the other hand, b2 is used, we get:

Q1(t, b2) ≤ V1(1− e−D1(t−T1)) +Q1(T1, b
2)e−D1(t−T1).

Thus, since Q1(T1, b
1) ≥ Q1(T1, b

2), it follows that Q1(t, b1) ≥ Q1(t, b2) for all t > T1. Hence,
we conclude that Q1(t, b1) ≥ Q1(t, b2) for all t ≥ 0, i.e., (4.4) is proved for i = 1.

We then assume that (4.4) is proved for i = 1, . . . , (k − 1), and consider the case where
i = k. If 0 ≤ t ≤ Tk, we have:

k∑
j=1

Qj(t, b1) = Kt ≥
k∑
j=1

Qj(t, b2). (4.5)
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We then consider the case where t > Tk. If b1 is used, the reservoirs 1, 2, . . . , k are produced
without any choking, thus:

k∑
j=1

Qj(t, b1) =
k∑
j=1

Vj(1− e−Dj(t−Tk)) +
k∑
j=1

Qj(Tk, b1)e−Dj(t−Tk). (4.6)

If, on the other hand, b2 is used, we get:

k∑
j=1

Qj(t, b2) ≤
k∑
j=1

Vj(1− e−Dj(t−Tk)) +
k∑
j=1

Qj(Tk, b2)e−Dj(t−Tk). (4.7)

By the induction hypothesis and (4.5) we have that:

i∑
j=1

Qj(Tk, b1) ≥
i∑

j=1

Qj(Tk, b2), i = 1, . . . , k.

Moreover, since D1 ≤ D2 ≤ · · · ≤ Dk, we have:

e−D1(t−Tk) ≥ · · · ≥ e−Dk(t−Tk), for all t ≥ Tk.

Then it follows by Lemma B.1 that:

k∑
j=1

Qj(Tk, b1)e−Dj(t−Tk) ≥
k∑
j=1

Qj(Tk, b2)e−Dj(t−Tk) (4.8)

By combining (4.6), (4.7) and (4.8), for all t > Tk and (4.5) for 0 ≤ t ≤ Tk, we get for t ≥ 0:

k∑
j=1

Qj(t, b1) ≥
k∑
j=1

Qj(t, b2).

Thus, (4.4) is proved for i = k as well. Hence, the result is proved by induction �

Having identified the optimal production strategy in the case of linear PPR-function, we
proceed to calculating the resulting production rates and cumulative production functions.
Since the optimal solution is a priority strategy, it turns out that it is fairly easy to solve this.
We consider once again a field with n reservoirs with PPR-functions f1, . . . , fn, of the form
given in (4.1). The formulas we are about to present, are valid for any priority strategy, not
just the optimal one. Thus, we consider an arbitrary priority strategy bπ where the permutation
vector is π = (π1, . . . , πn).

In order to find the production rates and cumulative production functions, we start out
by assuming that the subplateau lengths, T1, . . . , Tn, are known. As in Section 3.2 we also
let T0 = 0. Then by combining (3.19) and (4.2) it is easy to see that for i = 1, . . . , n, the
production rate, qπi(t) is given by:

qπi(t) =


0 if t < Ti−1,

K −
∑

j<iDπj (Vπj −Qπj (Tj))e
−Dπj (t−Tj) if t ∈ [Ti−1, Ti),

Dπi(Vπi −Qπi(Ti))e−Dπi (t−Ti) if t ≥ Ti.

(4.9)
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Moreover, by integrating these production rates we get the following cumulative production
functions:

Qπi(t) =


0 if t < Ti−1,

K[t− Ti−1]−
∑

j<i(Vπj −Qπj (Tj))[e
−Dπj (Ti−1−Tj) − e−Dπj (t−Tj)] if t ∈ [Ti−1, Ti],

Vπi(1− e−Dπi (t−Ti)) +Qπi(Ti)e
−Dπi (t−Ti) if t > Ti.

(4.10)
In order to complete these formulas we need to explain how to determine the subplateau

lengths, T1, . . . , Tn. This will be done as a sequential process where T1 is determined first.
Then T1 is used to determine T2, T1 and T2 are used to determine T3, and so on until all the
subplateau lengths have been found.

To determine T1 we first consider the case where fπ1(Qπ1(T0)) ≤ K. In this case it follows
by (3.15) that T1 = T0 = 0, i.e., the first subplateau has zero length. On the other hand, if
fπ1(Qπ1(T0)) > K, T1 is found as the solution to the equation:

fπ1(Qπ1(t)) = Dπ1(Vπ1 −Qπ1(t)) = K. (4.11)

Since obviously Qπ1(t) = Kt for all t ≤ T1, we get that T1 = Vπ1K
−1 −D−1

π1
in this case.

We then assume that we have determined T1, . . . , Ti−1, and consider the problem of deter-
mining Ti. As for T1 we first consider the case where fπi(Qπi(Ti−1)) ≤ K−

∑
j<i fπj (Qπj (Ti−1)).

In this case it follows by (3.15) that Ti = Ti−1, i.e., the ith subplateau has the same length as
the (i− 1)th subplateau. On the other hand, if fπi(Qπi(Ti−1)) > K −

∑
j<i fπj (Qπj (Ti−1)), Ti

is found as the solution to the equation:

fπi(Qπi(t)) = Dπi(Vπi −Qπi(t)) = K −
∑
j<i

fπj (Qπj (t)), (4.12)

where Qπi(t) for all t ∈ [Ti−1, Ti] is given by (4.10). In general this equation is easily solvable
using standard numerical methods.

4.1 An example with linear PPR-functions

We consider a field with n = 3 reservoirs with linear PPR functions, f1, f2, f3 of the form given
in (4.1). Moreover, we assume, as above, that the reservoirs are indexed so that 0 < D1 <
D2 < D3. More specifically, we let D1 = 0.0003 D2 = 0.0006, and D3 = 0.0010.

According to Theorem 4.1 the optimal production strategy with respect to any symmetric
monotone objective function is the priority strategy corresponding to the permutation π =
(1, 2, 3). In this example we focus on the objective function φK,0 defined by letting C = K
and R = 0 in (3.10). As explained in Section 3.1, the optimal solution maximizes the plateau
volume, `(Q) = Q1 +Q2 +Q3 subject to Q ∈ ∂(M′).

We observe that the optimal priority strategy does not depend on the producible volumes
V1, V2, V3. However, the volumes may still have an impact on the ranking of the different
priority rules as well as the differences in performance. To see this we consider two different
cases. In the first case we let V1 = 15.0 MSm3, V2 = 10.0 MSm3 and V3 = 5.0 MSm3, while in
the second example we let V1 = 5.0 MSm3, V2 = 10.0 MSm3 and V3 = 15.0 MSm3.

In Table 4.1 we have listed the parameter values for the two cases. We have also included
columns showing the maximum value of the PPR-functions, i.e., fi(0) = DiVi, i = 1, 2, 3. In
both cases we let K = 3.0 kSm3 per day. We note that in the second case the maximum value
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Case 1 Case 2
Res. Producible Scale Max Producible Scale Max

volume parameter rate volume parameter rate
Vi Di DiVi Vi Di DiVi

(MSm3) (kSm3/d) (MSm3) (kSm3/d)
1 15.0 0.0003 4.5 5.0 0.0003 1.5
2 10.0 0.0006 6.0 10.0 0.0006 6.0
3 5.0 0.0010 5.0 15.0 0.0010 15.0

Table 4.1: Parameter values for the three reservoirs.

of f1 is just 1.5 kSm3 per day. Thus, in this case the first reservoir can never reach the plateau
level K alone. Hence, if this reservoir is given the highest priority, the subplateau length T1 is
zero.

By using the formulas (4.9) and (4.10), we may calculate the plateau length TK(bπ) for each
of the six possible priority strategies. Moreover, we may calculate cumulative production for
each of the reservoirs as well as the total cumulative production KTK(bπ) at this point of time.
The results are shown in Table 4.2.

From the table we see that the priority strategy corresponding to the permutation (1, 2, 3)
is indeed optimal in both cases. The second and third best priority strategies correspond to
the permutations (2, 1, 3) and (1, 3, 2) respectively. Both these permutations are “neighbors”
of the optimal permutation in the sense that they can be obtained from (1, 2, 3) by switching
two consecutive entries in the vector. That is, (2, 1, 3) is obtained from (1, 2, 3) by switching
the two first entries, while (1, 3, 2) is obtained from (1, 2, 3) by switching the two last entries.
We observe, however, that in the first case the the total cumulative productions using the
permutations (2, 1, 3) and (1, 3, 2) are very close to each other, while in the second case the
permutation (2, 1, 3) produces a result which is closer to the result of the optimal strategy.

Another observation is that the results using the two worst permutations, i.e., (2, 3, 1) and
(3, 2, 1) switch places in the two cases. In the first case (2, 3, 1) produces the worst results,
while in the second case (3, 2, 1) comes in last.

Summarizing the example, we see that the results confirm that the optimal priority strategy
indeed corresponds to the permutation (1, 2, 3) and thus agree with Theorem 4.1. Still we see
that the producible volumes also affect the results significantly.

We recall that for any admissible strategy the vectorQ(TK) always belongs to the set ∂(M′).
In the linear case ∂(M′) is a part of the hyperplane with equation:

n∑
i=1

fi(Qi) =
n∑
i=1

Di(Vi −Qi) = K.

Thus, in particular,Q(TK , bπ) belongs to this hyperplane for any priority strategy bπ. In Figure
4.1 and Figure 4.2 we have illustrated the resulting hyperplanes for Case 1 and 2 respectively.
Moreover, the plots also show the locations of Q(TK , bπ) for each of the six priority strategies.
In both cases these six points forms a hexagon. However, as we see, the shapes of these hexagons
are quite different. Obviously if the points of two priority strategies are close to each other, then
so are their respective plateau productions as well. Thus, in particular the points corresponding
to the two best permutations (1, 2, 3) and (2, 1, 3) are much closer together in Case 2 than in
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Priority Plateau Plateau Plateau Tot. plateau Rank
strategy prod. res. 1 prod. res. 2 prod. res. 3 production
π Q1(TK) Q2(TK) Q3(TK) `(Q(TK))

MSm3 MSm3 MSm3 MSm3

Case 1
(1, 2, 3) 13.745 9.083 2.927 25.755 1
(2, 1, 3) 11.352 9.897 3.156 24.405 2
(1, 3, 2) 13.551 5.828 4.938 24.317 3
(3, 1, 2) 12.525 6.241 4.998 23.764 4
(3, 2, 1) 6.173 9.424 4.994 20.591 5
(2, 3, 1) 5.810 9.774 4.893 20.477 6

Case 2
(1, 2, 3) 4.654 9.885 12.173 26.712 1
(2, 1, 3) 4.331 9.932 12.241 26.504 2
(1, 3, 2) 4.585 5.466 14.845 24.896 3
(3, 1, 2) 3.396 5.887 14.949 24.232 4
(2, 3, 1) 0.461 9.883 13.432 23.776 5
(3, 2, 1) 0.655 7.306 14.920 22.880 6

Table 4.2: Plateau production for the six priority strategies in the two cases.

Case 1. At the same time their respective plateau productions are closer in Case 2 than Case
1.

A similar but opposite effect holds for the two worst permutations, i.e., (2, 3, 1) and (3, 2, 1).
In Case 1 both the points representing these two strategies and the plateau productions are
very close to each other. In Case 2 the points are much further apart, and so are the plateau
productions.
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(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)
(3, 2, 1)

Figure 4.1: The hyperplane containing ∂(M′) in Case 1

Q1

(1, 2, 3)

Q2

Q3

(1, 3, 2)

(2, 1, 3)
(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

Figure 4.2: The hyperplane containing ∂(M′) in Case 2

5 Generating optimal strategies using backtracking

In this section we present a methodology for Step 2 of Algorithm 3.3. Thus, we consider a field
with n reservoirs with PPR-functions f1, . . . , fn, and assume that Step 1 of this algorithm is
completed, where Q∗ = (Q∗1, . . . , Q

∗
n) is the vector maximizing φ(Q) subject to Q ∈ ∂(M).

Moreover, we assume that T ∗K = K−1
∑n

i=1Q
∗
i is the point of time when Q∗ is reached. The

idea is to construct an admissible production strategy generating a path {Q(t) : 0 ≤ t ≤ T ∗K},
where Q(0) = 0 and Q(T ∗K) = Q∗. As pointed out in the discussion following Theorem 3.5,
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finding such a production strategy implies that Q∗ ∈ ∂(M′) as well. Thus, the constructed
admissible production strategy is indeed an optimal strategy.

Except in special cases, like e.g., when Q∗ corresponds to a priority strategy, there will
typically be an infinite number of admissible paths from 0 to Q∗. In order to find one such
path, we search within the class of piecewise linear paths. More specifically, let 0 = t0 < t1 <
· · · < tN = T ∗K , and let qj = (q1,j , . . . , qn,j), j = 1, . . . , N . We then assume that the reservoirs
are produced using the following rates:

qi(t) = qi,j , t ∈ (tj−1, tj ], i = 1, . . . , n, j = 1, . . . , N.

Thus, the production rates are constant within each of the N intervals (t0, t1], . . . , (tN−1, tN ].
Hence, the cumulative production functions are given by:

Qi(t) = Qi(tj−1) + qi,j(t− tj−1), t ∈ (tj−1, tj ], i = 1, . . . , n, j = 1, . . . , N,

where we of course assume that Qi(t0) = Qi(0) = 0, i = 1, . . . , n. In order to ensure that we
have an admissible path, we must have:

n∑
i=1

qi,j = K, j = 1, . . . , N, (5.1)

and that:
0 ≤ qi,j ≤ fi(Qi(t)), t ∈ (tj−1, tj ], i = 1, . . . , n, j = 1, . . . , N. (5.2)

Since the PPR-functions are assumed to be non-increasing, it follows that the last condition is
satisfied if and only if

0 ≤ qi,j ≤ fi(Qi(tj)), i = 1, . . . , n, j = 1, . . . , N. (5.3)

Finally, we want the path to end up at the optimal point, i.e., we must have Q(T ∗K) = Q(tN ) =
Q∗. Expressed in terms of q1, . . . , qN we get the following condition:

N∑
j=1

qj(tj − tj−1) = Q∗. (5.4)

Thus, the problem is reduced to choosing the intervals (t0, t1], . . . , (tN−1, tN ], in particular, the
number of intervals N , and finding the vectors q1, . . . , qN subject to the conditions (5.1), (5.3)
and (5.4).

From a practical point of view it is of interest to keep the number of intervals as small as
possible, since this means that the reservoirs can be produced with stable rates. However, if N
is too small, it may not be possible to find a piecewise linear admissible path from 0 to Q∗. In
order to find a suitable N , we start out by letting N be small, e.g., N = 1. If it is possible to
find an admissible path from 0 to Q∗ with this N , we are done. If not, we increase N and try
once more. This process is repeated until we eventually find an admissible path from 0 to Q∗

given that such a path exists.
For a given N we also need to choose the numbers t1, . . . , tN . The easiest choice here would

be to distribute these partition points uniformly over the interval [0, T ∗K ]. Since, however, the
condition (5.2) is stricter fi(Qi(t)) is small, i.e., when t is close to T ∗K , it may be a good idea to
distribute the partition points so that we have shorter intervals when t is close to T ∗K , and longer
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intervals when t is close to 0. In Appendix C we show how this can be done in a systematic
way.

Having chosen N the partition points t1, . . . , tN , we now turn to the problem of choosing the
vectors q1, . . . , qN subject to the conditions (5.1), (5.3) and (5.4). Rather than finding all these
vectors at once, it turns out to be easier to determine them one by one, starting backwards
with qN . Thus, let:

Q(k) = Q∗ −
∑
j>k

qj(tj − tj−1), k = 0, 1, . . . , N.

Thus, in particular Q(0) = 0, while Q(N) = Q∗. As we move backwards from Q∗ to 0, we follow
a piecewise linear path through the points Q(N),Q(N−1), . . . ,Q(0). At each of these points we
are allowed to change direction by choosing the next vector in the set {qN , qN−1, . . . , q1}. Thus,
assume that we have chosen the directions qN , . . . , qk+1, and that we want to choose qk. At this
stage we have constructed an admissible path backwards from Q∗ to the point Q(k). Since our
goal is to find an admissible path back to 0, the ideal direction from the point Q(k) is a vector
qk that is parallel to Q(k). If we can find such a vector which at the same time satisfies the
conditions (5.1), (5.3) and (5.4), we would be right on track back to 0. In general,! however,
this may not be possible. Thus, we instead look for a vector qk satisfying the conditions (5.1),
(5.3) and (5.4), and such that the angle between qk and Q(k) is as small as possible. That is,
we choose qk by maximizing the scalar product Q(k)qk subject to (5.1), (5.3) and (5.4). This
optimization problem is a standard linear programming problem which can easily be solved
using the well-known Simplex algorithm.

By solving a linear programming problem at each of the points Q(N),Q(N−1), . . . ,Q(1), we
may be able to construct an admissible path from Q∗ back to 0. If the procedure fails, we
increase N , and run the procedure once again, and so forth. In order to avoid an infinite number
of runs, however, one would typically specify some suitable maximum number of intervals,
denoted by Nmax. Ideally the process produces an admissible path with N ≤ Nmax intervals.
Still it may happen that no such path is found even for a very large value of Nmax. This
obviously happens if Q∗ /∈ ∂(M′) since by definition no admissible path from 0 to Q∗ exists in
this case. Unfortunately, since Nmax is finite, the process may also fail when Q∗ is a point in
∂(M′) very close to or at the boundary of this set. Thus, the algorithm is not guaranteed to
work even though there may exist an admissible path from 0 to Q∗. Still in cases where Q∗ is
located in the central parts of ∂(M′), the algorithm tends to work very well.

5.1 An example with concave PPR-functions

We consider a field with concave PPR-functions f1, . . . , f10 given by

fi(Qi(t)) =
√
Di(Vi −Qi(t)), i = 1, . . . , 10, (5.5)

where V1, . . . , Vn denote the producible volumes from the n reservoirs. Table 5.1 shows the
parameter values for the 10 reservoirs. The process capacity constraint K = 7.5 kSm3 per day
is used. The max rate for the i-th reservoir is given by

√
DiVi and is obtained by inserting

Qi(0) = 0 in (5.5). In this example we use the objective function φK,0 defined by letting C = K
and R = 0 in (3.10). By (3.12) it follows that φK,0, interpreted as a function defined for all
Q ∈ Q is given by φK,0(Q) = `(Q) =

∑10
i=1Qi. Since the PPR-functions and the extended

objective function φK,0(Q) are differentiable, we may apply Lagrange multipliers in order to
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find Q∗. Hence, it is easy to show that Q∗ is given by

Q∗ = (Q∗1, . . . , Q
∗
n) = (V1 −D1{

K∑n
i=1Di

}2, . . . , Vn −Dn{
K∑n
i=1Di

}2).

Reservoir Producible Scale Max Plateau
volume parameter rate production
Vi Di

√
DiVi Q∗i

(MSm3) (kSm3/d) (MSm3)
1 4.5 0.001200 3.25 4.204
2 6.5 0.001400 4.20 6.158
3 7.0 0.000600 3.00 6.838
4 10.0 0.000300 2.50 9.921
5 5.0 0.000625 2.50 4.842
6 4.0 0.001100 3.00 3.716
7 6.0 0.001300 4.00 5.664
8 8.0 0.001000 4.00 7.748
9 9.0 0.000500 3.00 8.874
10 5.0 0.002500 5.00 4.370

Table 5.1: Parameter values for the 10 reservoirs used in the backtracking example.

Figure 5.1: Actual production rates (q1(t), . . . , q12(t)) (red curves) satisfying the conditions
(5.1), (5.3) and (5.4) and PPR-functions (f1(Q1(t)), . . . , f10(Q10(t))) (green curves) for the
backtracking example. The last panel shows the total production rate q(t) (red curve) and the
sum of the PPR-functions

∑10
i=1 fi(Qi(t)) (green curve).

We then proceed to Step 2 of Algorithm 3.3. To generate a production strategy reaching Q∗

we use the approach described in Section 5 where we search for intervals (t0, t1], . . . , (tN−1, tN ]
so that the condition expressed in (5.2) is satisfied. For simplicity we distributed the partition
points uniformly over the interval [0, T ∗K ]. Starting out with N = 1 and increasing N until
an admissible path from 0 to Q∗ was found, it turned out that N = 12 periods were needed.
Figure 5.1 shows the actual production rates and the PPR-rates of the 10 reservoirs. The total
actual production rate and the total PPR-rate are also displayed in Figure 5.1. From Figure
5.1 we see that the conditions (5.1) and (5.2) are satisfied for all t ≥ 0.
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6 Conclusions

In the present paper we have focused on the problem of optimizing the production of an oil or
gas field consisting of many reservoirs. We have shown how to construct an optimal production
strategy using a procedure described in Algorithm 3.3. The first step of the algorithm involves
finding the optimal state of the reservoirs at the end of the plateau phase, i.e, when the path
defined by the vector of cumulative productions reaches the set ∂(M′). The second step involves
finding an admissible production strategy such that the optimal state is reached.

The key results given in Theorem 3.4 and Theorem 3.5 indicate how to solve the optimization
problem given in Step 1 of Algorithm 3.3 in two important cases characterized by the convexity
or concavity of the PPR-functions and the quasi-convexity or quasi-concavity of the objective
function.

If the optimal state is located at the boundary of ∂(M′), the priority strategies play an
important part, since these strategies correspond to the extreme points of the boundary of
∂(M′). Searching for an optimal rule within this class is, at least in principle, easy, since
there are only a finite number of such strategies. Moreover, having found the best priority
strategy, the second step of the algorithm is trivial, since any priority strategy is uniquely
defined by the permutation vector representing the ordering of the reservoirs. While there
of course are infinitely many other production strategies with cumulative production paths
reaching the boundary of ∂(M′), we believe that the priority strategies at least provide a very
good approximation to the optimal solution.

In the special case where all the PPR-functions are linear, a specific priority strategy is
shown to be optimal with respect to any monotone, symmetric objective function.

If the optimal state is located in the interior of the set ∂(M′), a backtracking algorithm
is proposed for handling Step 2 of Algorithm 3.3. Unless the optimal state is too close to
the boundary of ∂(M′) this method produces an admissible production strategy such that the
optimal state is reached.

We believe that the general framework developed in this theoretical paper is of fundamental
importance in order to gain insight into the general production optimization problem. Still
there are many unsolved problems left. In particular, by running Step 1 of Algorithm 3.3 as
proposed in the present paper, we only get a candidate for the optimal state in the set ∂(M′).
Thus, having a precise and easy condition for when this candidate actually belongs to ∂(M′),
would be very convenient. Using this we could e.g., avoid running Step 2 of the algorithm
in cases where the candidate state does not belong to ∂(M′), in which case we know that no
admissible strategy reaching this state can be found. Given such a condition we could also be
able to handle combinations of convex and concave PPR-functions.

Furthermore, in order to analyze the robustness of the derived production strategies, it is
of interest to incorporate uncertainty into the framework. These issues will addressed in a
forth-coming paper, where a certain parametric class of production strategies will be proposed.

In this paper we have focused on single-phase production optimization, i.e., either oil or
gas. In real life typically oil, gas and water are produced simultaneously. Thus, extending the
framework so that multi-phase production optimization can be handled, is of great interest.
We will return to this problem in a future research project.
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A Some results on convexity

A.1 Separating and supporting hyperplanes

Many results in convex optimization theory rest upon the well-known separating and supporting
hyperplane theorems. For more details see Boyd & Vandenberghe (2004). In the space Rn a
hyperplane H = {x ∈ Rn : `(x) = c}, where ` is a non-zero linear form, divides the space
into two closed half-spaces, H+ = {x ∈ Rn : `(x) ≥ c} and H− = {x ∈ Rn : `(x) ≤ c}. A
hyperplane H is said to separate the sets S and T if one of the sets is contained in H+ while
the other is contained in H−. A hyperplane, H, is said to support a set S, if either S ⊆ H+

or S ⊆ H−, and S ∩H 6= ∅. The separating and supporting hyperplane theorems can now be
stated as follows:

Theorem A.1 Let S, T ⊂ Rn be two disjoint convex sets. Then there exists a hyperplane H
separating S and T .

Theorem A.2 Let S ⊂ Rn be a closed convex set, and let x0 ∈ S be a point at the boundary
of S. Then there exists a hyperplane, H, supporting S such that x0 ∈ H.

The following proposition combines Theorem A.1 and Theorem A.2:

Proposition A.3 Let S, T ⊂ Rn be two disjoint convex sets. Moreover, assume that there
exists a x0 ∈ S such that any neighborhood of x0 intersects T . Then there exists a hyperplane
H separating S and T such that H supports S at x0.

Proof: By Theorem A.1 it follows that there exists a hyperplane H = {x ∈ Rn : `(x) = c}
separating S and T . Assume without loss of generality4 that S ⊆ H+ while T ⊆ H−. To prove
that H supports S at x0, it is sufficient to show that x0 ∈ H, i.e., that `(x0) = c. Assume
conversely that this is not true, i.e., that `(x0) > c. Since the linear form ` is continuous, this
implies that there exists a neighborhood N of x0 such that `(x) > c for all x ∈ N . On the
other hand, since T ⊆ H−, we know that `(x) ≤ c for all x ∈ T . Thus, N ∩ T = ∅. However,
this contradicts the assumption that any neighborhood ! of x0 intersects T . Thus, we conclude
that x0 ∈ H �

Using the various sets and notation introduced in Section 3, we can now formulate the
following important result:

Theorem A.4 Consider a field with n reservoirs with convex PPR-functions f1, . . . , fn. More-
over, let Q∗ ∈ ∂(M′). Then there exists m (m suitably chosen) vectors Q1, . . . ,Qm ∈ ∂(∂(M′))
and non-negative numbers α1, . . . , αm such that

∑m
i=1 αi ≤ 1 and such that:

Q∗ =
m∑
i=1

αiQi. (A.1)

Proof: Let Q∗ ∈ ∂(M′). We start out by noting that the result is trivial if Q∗ ∈ ∂(∂(M′)).
Thus, in the remaining part of the proof we assume that Q∗ lies in the interior of ∂(M′),
denoted ∂(M′)o.

By Corollary 3.2 we know that M̄ ∪ ∂(M) is convex. Hence, by Theorem A.2 there exists
a supporting hyperplane H = {Q ∈ Rn : `(Q) = c} such that M̄ ∪ ∂(M) ⊆ H+ and Q∗ ∈ H.

4If not, we simply replace H by the equivalent hyperplane representation H∗ = {x ∈ Rn : −`(x) = −c},
where H∗+ = H− and H∗− = H+.
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In particular, ∂(M′) ⊆ H+, i.e., `(Q) ≥ c for all Q ∈ ∂(M′). Since we have assumed that∑n
i=1 fi(0) > K > 0, we know that 0 /∈ M̄ ∪ ∂(M). From this it is easy to see that H may be

chosen so that c > 0.
We then introduce a mapping λ : ∂(M′)→ H defined as follows:

λ(Q) = c[`(Q)]−1Q, for all Q ∈ ∂(M′). (A.2)

We observe that since ` is linear, we have:

`(λ(Q)) = c[`(Q)]−1`(Q) = c,

implying that we indeed have λ(Q) ∈ H for all Q ∈ ∂(M′). Note also that for all Q ∈ ∂(M′)
the scaling factor c[`(Q)]−1 is always positive (since c > 0), and less than or equal to 1 (since
`(Q) ≥ c). In particular, since Q∗ ∈ H, i.e., `(Q∗) = c, the scaling factor c[`(Q∗)]−1 is 1.
Hence, λ(Q∗) = Q∗.

We denote the image of the mapping λ by λ[∂(M′)]. We also introduce the boundary and
interior of λ[∂(M′)], denoted respectively ∂(λ[∂(M′)]) and λ[∂(M′)]o.

Due to the monotonicity of the PPR-functions it is easy to see that λ is a homeomorphism.
Thus, since ∂(M′) is assumed to be an (n − 1)-manifold with boundary, then so is the image
λ[∂(M′)]. Moreover, λmaps the points in ∂(∂(M′)), over to the set ∂(λ[∂(M′)]), and the points
in ∂(M′)o, over to the set λ[∂(M′)]o. In particular, since we have assumed that Q∗ ∈ ∂(M′)o,
it follows that λ(Q∗) = Q∗ ∈ λ[∂(M′)]o.

Since λ[∂(M′)] is an (n − 1)-manifold with boundary embedded in an (n − 1)-dimensional
hyperplane, this set satisfies the following:

Lemma A.5 Let Q1,Q2 ∈ H be such that Q1 /∈ λ[∂(M′)]o while Q2 ∈ λ[∂(M′)]o. Then there
exists β ∈ (0, 1] such that:

βQ1 + (1− β)Q2 ∈ ∂(λ[∂(M′)]).

Furthermore, since λ[∂(M′)] is obviously a bounded set, there exists a convex polytope P ,
i.e., a convex hull of a finite set of points, such that:

λ[∂(M′)] ⊆ P ⊂ H. (A.3)

Let QP
1 , . . . ,Q

P
m be the extreme points of P . Since λ[∂(M′)] is contained in P , any point in

λ[∂(M′)] can be written as a convex combination of these extreme points. In particular, since
Q∗ ∈ λ[∂(M′)], there exists non-negative numbers, αP1 , . . . , αPm such that

∑m
i=1 α

P
i = 1, and

such that:

Q∗ =
m∑
i=1

αPi Q
P
i . (A.4)

By Lemma A.5 we then know that there exists β1, . . . , βm ∈ (0, 1] such that

Q∂
i = βiQ

P
i + (1− βi)Q∗ ∈ ∂(λ[∂(M′)]), i = 1, . . . ,m. (A.5)

By solving (A.5) with respect to QP
1 , . . . ,Q

P
m we get:

QP
i = β−1

i [Q∂
i − (1− βi)Q∗], i = 1, . . . ,m. (A.6)
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Inserting the expressions for QP
1 , . . . ,Q

P
m given in (A.6) into (A.4), and solving with respect to

Q∗, yields the following representation:

Q∗ =
m∑
i=1

α∂iQ
∂
i , (A.7)

where the weights α∂1 , . . . , α∂m are given by:

α∂i =
αPi β

−1
i∑m

j=1 α
P
j β
−1
j

, i = 1, . . . ,m. (A.8)

Using that
∑m

i=1 α
P
i = 1, it is easy to show that

∑m
i=1 α

∂
i = 1 as well. Hence, (A.7) expresses

Q∗ as a convex combination of Q∂
1 , . . . ,Q

∂
m.

Since Q∂
1 , . . . ,Q

∂
m ∈ ∂(λ[∂(M′)]), these points are mapped from points in ∂(∂(M′)). That

is, there exists Q1, . . . ,Qm ∈ ∂(∂(M′)) such that:

Q∂
i = λ(Qi) = c[`(Qi)]−1Qi, i = 1, . . . ,m. (A.9)

Inserting the expressions for Q∂
1 , . . . ,Q

∂
m given in(A.9) into (A.7), we get the following repre-

sentation:

Q∗ =
m∑
i=1

αiQi, (A.10)

where α1, . . . , αm are given by:

αi = c[`(Qi)]−1α∂i , i = 1, . . . ,m. (A.11)

Finally, since 0 < c[`(Qi)]−1 ≤ 1, i = 1, . . . ,m, we get that αi, . . . , αm are non-negative and
that

∑m
i=1 αi ≤

∑m
i=1 α

∂
i = 1, and this completes the proof of theorem �

Note that in the above argument we embed the set λ[∂(M′)] in a convex polytope P with
m extreme points, where m is a suitably chosen integer. If n = 2, the set λ[∂(M′)] can be
embedded within an interval, i.e., a polytope with two extreme points. Similarly, if n = 3, the
set can be embedded withing a triangle, which is a polytope with three extreme points. In
general the set λ[∂(M′)] can always be embedded within an n-dimensional simplex which is a
polytope with n extreme points. Thus, we may always choose the polytope P such that m = n.

A.2 Quasi-convex functions

In Section 3 we needed the concept of quasi-convexity. This is defined as follows (see Boyd &
Vandenberghe (2004)):

Definition A.6 Let S ⊆ Rn be a convex set. We say that a function g : S → R is quasi-convex
if for any pair of vectors x1,x2 ∈ S and λ ∈ [0, 1] we have:

g(λx1 + (1− λ)x2) ≤ max{g(x1), g(x2)}.

Furthermore, the function g is said to be quasi-concave if −g is quasi-convex. Finally, if g is
both quasi-convex and quasi-concave, we say that g is quasi-linear.

More generally quasi-convexity implies the following:
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Proposition A.7 Let S ⊆ Rn be a convex set, and let g : S → R be a quasi-convex function.
Moreover, let x1, . . . ,xn ∈ S, and let λ1, . . . , λn ∈ [0, 1], be such that

∑n
i=1 λi = 1. Then:

g(
n∑
i=1

λixi) ≤ max{g(x1), . . . , g(xn)}. (A.12)

Proof: The proof is by induction on n. The result is trivial for n = 1, and holds by Definition
A.6 for n = 2. We then assume, as an induction hypothesis, that the result is proved for n− 1
or fewer vectors, and consider the case with n vectors. If λn = 1, the result is again trivial, so
we assume that λn < 1, and introduce:

λ′i = λi[
n−1∑
j=1

λj ]−1, i = 1, . . . , (n− 1).

Since obviously
∑n−1

i=1 λ
′
i = 1, it follows by the induction hypothesis that:

g(
n−1∑
i=1

λ′ixi) ≤ max{g(x1), . . . , g(xn−1)}.

Hence, we get:

g(
n∑
i=1

λixi) = g([
n−1∑
j=1

λj ][
n−1∑
i=1

λ′ixi] + λnxn)

≤ max{g(
n−1∑
i=1

λ′ixi), g(xn)}

≤ max{max{g(x1), . . . , g(xn−1)}, g(xn)}
= max{g(x1), . . . , g(xn)}.

Hence, by induction the result is proved �
The following result provides alternative definitions of quasi-convexity and quasi-concavity

(see Boyd & Vandenberghe (2004)):

Proposition A.8 Let S ⊆ Rn be a convex set, and let g : S → R. Then g is quasi-convex if
and only if the sets Ly = {x ∈ S : g(x) ≤ y} are convex for all y. Similarly, g is quasi-concave
if and only if the sets Uy = {x ∈ S : g(x) ≥ y} are convex for all y. Finally, g is quasi-linear
if and only if Ly and Uy are convex for all y.

Note that for some y Ly or Uy may be empty. In this setting, however, ∅ is defined to be
convex, so in order to verify quasi-convexity or quasi-concavity, only non-empty sets need to
be considered.

Using Proposition A.8 we can also prove the following characterizations:

Proposition A.9 Let S ⊆ Rn be a convex set, and let g : S → R. Then g is quasi-convex if
and only if the sets Loy = {x ∈ S : g(x) < y} are convex for all y. Similarly, g is quasi-concave
if and only if the sets Uoy = {x ∈ S : g(x) > y} are convex for all y. Finally, g is quasi-linear
if and only if Loy and Uoy are convex for all y.
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Proof: Assume first that g is quasi-convex, and consider the set Loy = {x ∈ S : g(x) < y}.
Moreover, let x1,x2 ∈ Loy, so g(xi) < y, i = 1, 2. We then introduce y′ = max{g(x1), g(x2)},
and consider the set Ly′ . Since y′ < y, it follows that Ly′ ⊆ Loy. Moreover, using Proposition
A.8 we know that since g is quasi-convex, Ly′ must be convex. Hence, αx1 + (1− α)x2 ∈ Ly′
for all α ∈ [0, 1]. However, since Ly′ ⊆ Loy, it follows that αx1 +(1−α)x2 ∈ Loy for all α ∈ [0, 1]
as well. Thus, we conclude that Loy is convex.

Assume conversely that the sets Loy = {x ∈ S : g(x) < y} are convex for all y, and consider
the set Ly = {x ∈ S : g(x) ≤ y}. We then let yn = y + 1/n, n = 1, 2, . . .. By the assumption
the sets Loy1 , L

o
y2 , . . . are all convex. Moreover,

Ly =
∞⋂
n=1

Loyn .

Hence, since convexity is preserved under intersection (see Boyd & Vandenberghe (2004)), it
follows that Ly is convex. Since this holds for all Ly, by Proposition A.8 we get that g is
quasi-convex �

By combining the above results, we see that a function g : S → R is quasi-linear if and only
if Ly and its complement are both convex for all y. It is easy to see that this implies that for
all y, ∂(Ly) = S ∩ Hy where Hy is a hyperplane. The following result provides a sufficient
condition for quasi-linearity.

Proposition A.10 Let S ⊆ Rn be a convex set, and let g : S → R. Moreover assume that
there exists a non-zero linear form ` such that g(x) = h(`(x)) for all x ∈ S, where h : R→ R
is either non-decreasing or non-increasing. Then g is quasi-linear.

Proof: We assume that h is non-decreasing. The proof for the case where h is non-increasing,
is completely analogous. We then consider the set Ly = {x ∈ S : h(`(x)) ≤ y} assuming that
this is non-empty, and define z = sup{u : h(u) ≤ y}. Since h is non-decreasing, it follows that
h(u) ≤ y for all u < z, and that h(u) > y for all u > z. If h(z) ≤ y, it follows that h(u) ≤ y
if and only if u ≤ z. Hence, in this case Ly = {x ∈ S : `(x) ≤ z}. If h(z) > y, we have that
h(u) ≤ y if and only if u < z. Hence, in this case Ly = {x ∈ S : `(x) < z}. In both cases Ly
is convex since ` is linear. Using a parallel argument one can show that Uy is convex as well,
and thus we conclude that g is quasi-linear �

B A result on dominating sums

Lemma B.1 Assume that x,y ∈ Rn are such that:

k∑
i=1

xi ≥
k∑
i=1

yi, k = 1, . . . , n. (B.1)

Then for any a ∈ Rn such that:

a1 ≥ a2 ≥ . . . ≥ an ≥ 0, (B.2)

we also have:
k∑
i=1

xiai ≥
k∑
i=1

yiai, k = 1, . . . , n.

32



Proof: The proof is by induction on k. By B.1 it follows that x1 ≥ y1. Thus, since all the ais
are assumed to be nonnegative, it follows that:

x1a1 ≥ y1a1.

Hence, the result obviously holds for k = 1. We then assume that the result is proved for k ≤ m,
and consider the case where k = m + 1. We then introduce bi = ai − am+1, i = 1, . . . ,m. By
B.2 it follows that:

b1 ≥ b2 ≥ . . . ≥ bm ≥ 0.

Hence, by the induction hypothesis we have that:

m∑
i=1

xibi ≥
m∑
i=1

yibi.

By combining this and B.1 we get that:

m+1∑
i=1

xiai =
m∑
i=1

xi(ai − am+1) + am+1

m+1∑
i=1

xi

=
m∑
i=1

xibi + am+1

m+1∑
i=1

xi

≥
m∑
i=1

yibi + am+1

m+1∑
i=1

yi

=
m∑
i=1

yi(ai − am+1) + am+1

m+1∑
i=1

yi

=
m+1∑
i=1

yiai.

Thus, the result holds for k = m+ 1 as well, and hence for k = 1, . . . , n by induction.

C Sequences of partitions

In this section we consider the problem of constructing a sequence of increasingly finer partitions
of a given finite interval [A,B] on the real line. We assume that the nth partition in the
sequence partitions [A,B] into n + 1 intervals, [t0,n, t1,n], (t1,n, t2,n], . . . , (tn,n, tn+1,n], where
A = t0,n < · · · < tn,n < tn+1,n = B. As the number of intervals increases, we want to ensure
that all the intervals become shorter and shorter. That is, we want to choose t1,n, . . . , tn,n,
n = 1, 2, . . . such that for any i we have:

lim
n→∞

(ti,n − ti−1,n) = 0.

The easiest way to accomplish this is of course to distribute the partition points, t1,n, . . . , tn,n,
uniformly over the interval [A,B]. That is, we partition [A,B] into intervals of equal lengths,
so that:

ti,n = i/n, i = 0, 1, . . . , (n+ 1), n = 1, 2, . . . ,
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from which it follows that for any i

lim
n→∞

(ti,n − ti−1,n) = lim
n→∞

1/n = 0,

as claimed.
However, what if we want the lengths of the intervals closer to A to converge faster to zero

than those closer to B? One possible approach to this is as follows. Let f be a function defined
for all non-negative real numbers satisfying the following conditions:

(i) f(0) = 0.

(ii) f is strictly increasing.

(iii) f is convex.

(iv) limn→∞
f(n)
f(n+1) = 1.

We then define the partition points as:

ti,n = A+ (B −A)
f(i)

f(n+ 1)
, i = 0, 1, . . . , n, (n+ 1), n = 1, 2, . . .

We observe that by (i) and (ii) it follows that A = t0,n < · · · < tn,n < tn+1,n = B. Furthermore,
since by (iii) f is assumed to be convex, it follows that:

f(i) ≤ f(i+ 1) + f(i− 1)
2

, i = 1, . . . n.

Hence, by multiplying by 2 and subtracting f(i) + f(i− 1) on both sides, we obtain:

f(i)− f(i− 1) ≤ f(i+ 1)− f(i), i = 1, . . . n.

Using this it follows that for i = 1, . . . , n we have:

ti,n − ti−1,n = (B −A)
f(i)− f(i− 1)

f(n+ 1)
≤ (B −A)

f(i+ 1)− f(i)
f(n+ 1)

= ti+1,n − ti,n.

This implies that the intervals closer to A are shorter than those close to B. In particular,

0 ≤ ti,n − ti−1,n ≤ tn+1,n − tn,n = (B −A)
f(n+ 1)− f(n)

f(n+ 1)
= (B −A)(1− f(n)

f(n+ 1)
)

Hence, by (iv), we get:

0 ≤ lim
n→∞

(ti,n − ti−1,n) ≤ lim
n→∞

(B −A)(1− f(n)
f(n+ 1)

) = 0,

for i = 1, . . . n.
We observe that if we let f be linear, i.e., f(x) = ax where a > 0, we get a uniform

distribution of the partition points. A more satisfactory choice of f satisfying (i) − (iv), is
f(x) = x2. It is very easy to verify that this function actually satisfies the requirements.

A similar method can be used if we want the lengths of the intervals closer to B to converge
faster to zero than those closer to A. In this case we may also use a function f satisfying the
requirements (i)− (iv). However, now we define the partition points as:

ti,n = B + (A−B)
f(n+ 1− i)
f(n+ 1)

, i = 0, 1, . . . , n, (n+ 1), n = 1, 2, . . .

Then using a parallel argument as above it is easy to verify that the resulting partitions behave
the way we want them to.
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