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Definition of repairable system

Ascher and Feingold (1984):

“A repairable system is a system which, after failing to perform
one or more of its functions satisfactorily, can be restored to fully
satisfactory performance by any method, other than replacement of

the entire system”.
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Ascher and Feingold’s mission in 1984

Ascher and Feingold presented the following example of a “happy”
and “sad” system:
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Their claim:

Reliability engineers do not recognize the difference between these
cases since they always treat times between failures as i.i.d. and fit
probability models like Weibull.

Use nonstationary stochastic point process models to analyze re-
pairable systems data!

-
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Today: Recurrent events extensively studied
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@ Observe events occurring in time

@ Applications: engineering and reliability studies, public health,
clinical trials, politics, finance, insurance, sociology, etc.

Reliability applications:

breakdown or failure of a mechanical or electronic system
@ discovery of a bug in an operating system software

@ the occurrence of a crack in concrete structures

@ the breakdown of a fiber in fibrous composites
°

Warranty claims of manufactured products

Bo Lindqvist The trend-renewal process



Important aspects for modelling and analysis
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Trend in times between events?
Renewals at events?
“Randomness” of events?

Dependence on covariates?

e ¢ ¢ ¢ ¢

Unobserved heterogeneity (“frailty”, “random effects”) among
individual processes?

@ Dependence between event process and the censoring at 77
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Typical data format
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Covariates if available (fixed or time-varying):

Xi(t); j=1,2,....,m
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Proschan (1963): The classical “aircondition data”

Times of failures of aircondition system in a fleet of Boeing 720
airplanes

Event Plot for Aircondition Failures
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Nelson (1995): Valve seat data

Times of valve-seat replacements in a fleet of 41 diesel engines

Event Plot for Valve Seat Replacements

Diesel Engine
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Barlow and Davis (1977): Tractor data

Failure times for tractor engines
25 T T T
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Basic models for repairable systems
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@ RP(F): Renewal process with interarrival distribution F.

Defining property:
o Times between events are i.i.d. with distribution F

@ NHPP(X(+)): Nonhomogeneous Poisson process with intensity

A(t).

Defining property:

© Number of events in (0, t] is Poisson-distributed with
expectation fot/\(u)du

© Number of events in disjoint time intervals are stochastically
independent
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Point process modelling of recurrent event processes

L t |
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o(t[Fe-)

@ F:_ = history of events until time t.

o Conditional intensity at t given history until time t,

. Pr(failure in [t, t + At)|F;-)
)=
HeFe) = Ay At
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Special cases: The basic models

o NHPP(A()):

o(t|Fe-) = A(t)

so conditional intensity is independent of history.
Interpreted as “minimal repair” at failures

@ RP(F) (where F has hazard rate z(-)):

¢(t[Fe-) = 2(t = Ty(e—))

so conditional intensity depends (only) on time since
last event.
Interpreted as ‘“perfect repair” at failures

@ Between minimal and perfect repair? Imperfect repair models.
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Trend Renewal Process — TRP

(BL, Elvebakk and Heggland 2003)

@ Trend function: A(t) (cumulative A(t) = fot A(u)du)

@ Renewal distribution: F with expected value 1 (for
uniqueness)

° o BBt TRR(FA)

0o AT NT>) A(Ts) RP(F)

SPECIAL CASES:

@ NHPP: F is standard exponential distribution
@ RP: \(t) is constant in t
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Motivation for TRP: Well known property of NHPP

0 5! 2. T3 ' NHPP(A())

HPP(1)
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Point process formulation of TRP:

Conditional intensity of TRP(F, A(+)):
Pt Fe-) = 2(A(t) = A(Te-)))A(t)
where z(-) is hazard rate of F

Recall special cases:
@ NHPP: z(-) = 1, implies ¢(t|F:—) = A(t)
o RP: A(-) =1, implies ¢(t|F;—) = z(t — Te—))
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Comparison of NHPP, TRP and RP:

Conditional intensities

Conditional intensity
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Example: Failures observed at times 1.0 and 2.25.
Conditional intensities for NHPP (solid); TRP (dashed); RP
(dotted)
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Conditional intensities of TRP with DFR renewal

distribution and increasing trend function
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Failures observed at times 1.0 and 2.25.
Renewal: F ~ Weibull, shape 0.5
Trend: \(t) = t2
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Interpretation of A(t)

} - TRP(F,A(+))

0 AT A(T2) Ay RO

By using results from renewal theory:

tI_>OO N( )) 1(a.s.)
jim ENO)
t—oo (1)

since F is assumed to have expected value 1.
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Alternative models: Cox’ modulated renewal model

o Cox (1972):

Pt Fe-) = 2(t = Th(e—))A(t)

o Compare to TRP:

Pt Fe-) = 2(A(t) = AM(Tw(e—)))A(2)
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Alternative models: The model by Lawless and Thiagarajah

Lawless and Thiagarajah (1996):
o(t|Fe-) = &M

where h(t) is a vector of observable functions, depending on t and
possibly also on the history F;_, and 0 is a vector of parameters.

This model allows the use of various dynamic covariates, such as
@ number of previous failures of the system, N(t—)

@ time since last event, t — Ty ;)
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Alternative models: The model by Pena and Hollander

Pena and Hollander (2004):

¢(t[Fr—, a) = a do(E(2)) p(N(t=); @) g(x(1), )
where
@ ais a positive unobserved random variable (frailty)

Ao(+) is a baseline hazard rate function

(]

E(t) is “effective age” process, a predictable process modeling
impact of performed interventions after each event. Possible

choices
Minimal intervention on repair: £(t) =t

o Perfect intervention on repair: £(t) =t — Ty

@ Imperfect repair: £(t) = time since last perfect repair

o Age reduction models: £(t) is reduced by a certain factor at
each repair

[

p(+; ) can for example be on geometric form, p(k; o) = o

g(x(t), 3) models impact of covariates, for example on
Cox-form
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CONDITIONAL ROCOF BY MINIMAL REPAIR (NHPP) AND
PERFECT REPAIR (RENEWAL PROCESS)
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SIMPLE EXAMPLE WITH THREE SYSTEMS

Sys. 1: | . . . |
0 Si11 =5 So1 =12 S31 =17 71 =20
Sys. 2 | . . |
0 S1o =09 Soo = 23 ™ = 30
Sys. 3: | . |
0 Siz3 =24 73 = 10
Proj: | —eo 'S S ° S >
0 4 5 9 12 17 23 t
Y(t)i I I I I
Y(t) =3 Y(t) =2 Y(t) =1
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COMPUTATIONS FOR THE NELSON-AALEN ESTIMATOR

¢ 1Y) 1/Y()2 W() VarW(t) SDW(t)

4  1/3 1/9 1/3 1/9 0.3333
5 1/3 1/9 2/3 2/9 0.4714
O 1/3 1/9 1 1/3 0.5774
12 1/2 1/4 3/2 7/12 0.7638
17 1/2 1/4 2 5/6 0.9129

23 1 1 3 11/6 1.3540
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ESTIMATED W (t) with 95% confidence limits (Nelson-Aalen)
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Simple Example With 3 Systems

Mean Cumulative Function for Time

95% CI
System Column in ID
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Nelson-Aalen estimator for Cumulative ROCOF W (t)

1. Order all failure times as t1 <ty < ...t,.

2. Let d;(t;) = # events in system j at ¢;.

3. Let d(t;) = Z?:l d;(t;) = # events in all systems at t;.

0] otherwise

4. Let Y;(t) = { 1 if system j is under observation at time ¢

5. Let Y(t) = Z;”:l Y;(t) = # systems under observation at time ¢ .

Then
. ~ d(t;)
Under general assumptions: W (t) = )
g p (t) Z Y
t; <t
d(t;)
Assuming NHPP: Var W(t) = —
; {Y(t:)}?

Under general assumptions (MINITAB): Var I?[\/(t) = Z Z

m

J=1
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Illustration of last formula for Simple NHPP Example

(Compare with MINITAB Output):

Var W(AL)

Var /V[7(5)
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Simple Example With 3 Systems
Power Law NHPP Model: W (t; a,0) = (t/0)*

Results for: SimpleNHPP.MTW

Parametric Growth Curve: Time

System: ID

Model: Power—-Law Proce=s
Estimation Method: Maximum Likelihood

Parameter Estimates

Standard 55% Normal CI
Parameter E=ztimate Error Lower Upper
Shape 1,15423 0,445 0,323015 2,06545
Scale 11,2803 4, 840 1,8%335 20,8672

Test for Egual Shape Parameters
Bartlett's Modified Likelihood Ratio Chi-Square

Test Statistic 0,06

P—-Valus 0,972
DF 2

Trend Tests

MIL-Hdbk-189 Laplace's
TTT-bazed Pooled TTT-bazed FPooled LAnder=on-Darling
Test Statistic 5,03 8,89 0,28 0,31 0,28
P-Value 0,599 0,376 0,781 0,736 0,554
DF 12 12
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Simple Example With 3 Systems

Mean Cumulative Function for Time
System Column in ID

3r5 ] Parameter, MLE
Shape Scale
1,19423 11,3803

3,0
25

2.0

MCF

1,5-
1,0-

0,5-

0,0-

Time
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RESIDUAL PROCESS: "SIMPLE EXAMPLE" .
Data points (and endpoints on axes) are transformed with the es-
timated cumulative ROCOF,

W(t) = 0.0538 - 120

SyS 1: I ® ° PS I

0 0.3711 1.0612 1.6118 1.9589
Sys. 2: | . . |

0 0.7514 2.3166 3.1866
Sys. 3: | . |

0 0.2840 0.8527

Times between events, plus censored times at the end of each
axis, are on the next slide anlysed by MINITAB as a set of censored
exponential variables.
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=% MINITAB - Untitied

File Edit Manip Calc Stat Graph Editor Window Help

e EEEREEEEEREEROE

Distribution Analysis: C1

Variable: c1

Censoring Information Count
Uncensored value &
Right censored value 3
Censoring value: €2 = 0

Estimation Method: Maximum Likelihood
Distribution: Exponential

Parameter Estimates

Standard 55,0% Normal CI
Parameter Estimate Error Lower Upper
Shape 1,00000
Scale 0,9999 0,4082 0,4492 2,2257
Log-Likelihood = -5,995

Goodness-of-Fit
Anderson-Darling (adjusted) = 4,231%

[« |

B session

=10] %]

ﬁ ProbPlot for C1

Percent

Worksheet 1 ***

0,3711
0,6901
0,5518
0,3471
0,7514
1,5652
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0,2840
0,5687
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-

Probability Plot for C1
Exponential Distribution - ML Estimates - 95.0% CI
Censoring Column in C2

Time to Failure

Shape
Scale
MTTF
StDev
Median
QR

Failure
Censor

AD*

1,000
0,9999

09999
09999

0,6931
10085

42319

o
L 7]

28 projecif=I [T
Current Worksheet: Worksheet 1
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Valve Seat Replacement Times
(Nelson and Doganaksoy 1989)

Data collected from valve seats from a fleet of 41 diesel
engines (days of operation)

Each engine has 16 valves

Does the replacement rate increase with age?

How many replacement valves will be needed in the future?

Can valve life in these systems be modeled as a renewal
process?
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VALVESEAT DATA
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VALVESEAT DATA

Event Plot for Time
System Column in ID
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VALVESEAT DATA

Mean Cumulative Function for Time

95% CI
System Column in ID
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Times of Unscheduled Maintenance Actions
for a USS Grampus Diesel Engine

Unscheduled maintenance actions caused by failure of im-
minent failure.

Unscheduled maintenance actions are inconvenient and ex-
pensive.

Data available for 16,000 operating hours.

Data from Lee (1980).

Is the system deteriorating (i.e., are failures occurring more
rapidly as the system ages)?

Can the occurrence of unscheduled maintenance actions be
modeled by an HPP?
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Cumulative Number of Unscheduled Maintenance

Cumulative Number of Maintenance Actions

Actions Versus Operating Hours
for a USS Grampus Diesel Engine
Lee (1980)
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Grampus- data:

between failures can be assumed independent.

Plot of (7;,T;+1) to investigate whether times

The figure does

not indicate a correlation between successive times.

USS Grampus Diesel Engine

Plot of Times Between Unscheduled Maintenance
Actions Versus Lagged Times Between Unscheduled

Thousands of Hours Between Maintenance Actions

Maintenance Actions

1.2 1

1.0 1

0.8 +

06+ °

0.4 1

0.2 1

0.0 1

00 02 04 06 08 10

1.2

Lagged Thousands of Hours Between Maintenance Actions
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The Likelihood for the NHPP - Single Unit

e With interval recurrence data.

Suppose that the unit has been observed for a period (0, t,]
and the data are the number of recurrences dy....,dm In
the nonoverlapping intervals (tg,t1], (t1.t2], ..., (t;_1.tm]
(with tg = 0, t;, = ta).

L(8)

J=

J

Pr [:\?(fo, IL]_) = {'E]_: ,,,,, N 'T(IL-”;.__]_, IL-”;:.) = (E,IH.]
Uy
Pr|N(tj_1.t;) = dj]
1

d;
o p(t1.15:0)]
L T

g

exp [—,u.(f.j_l: ty; 9)]

d;
o p(ty_1.15:0)]

x exp [—p(to. ta; 0)]

[fem
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The Likelihood for the NHPP (Continued)

e If the number of intervals m increases and there are exact
recurrences at t1 < ... < t, (here r = _}”:ldj, to < tq,
tr < tq), then using a limiting argument it follows that the
likelihood in terms of the density approximation is

r

L(@) = [] v(t;:0) x exp[—pu(0,ta; 8)]
j=1

e For simplicity, above we assumed that the intervals are con-
tiguous. Obvious changes to the formula above give the
likelihood when there are gaps among the intervals.

e In both cases (the interval data or exact recurrences data)
the same methods used in Chapters 7, 8 can be used to
obtain the ML estimate @ and confidence regions for 6 or
functions of 6.
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PROFILE LIKELIHOOD FOR BETA
("SIMPLE EXAMPLE")
3=1.20, A = 0.0538.

-19 T T T T T T T

-20

=21

=22

profile

-23

-24

-25

-26 | | | | | | |
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CONNECTION BETWEEN LAMBDA OG BETA
("SIMPLE EXAMPLE")
3=1.20, A = 0.0538.

lambda

1.2

beta

2.5
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Cumulative Number of Unscheduled Maintenance
Actions Versus Operating Hours with Power and
Loglinear NHPP Models for a USS Grampus Diesel
Engine

50 1 — Monparamefric MCF estimate
— Fitted Log-linear NHPP MCF -
————— Fitted Power NHPP MCF —

Cumulative Number of Maintenance Actions

0 5 10 15
Thousands of Hours of Operation
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Results of Fitting NHPP Models to the USS Grampus
Diesel Engine Data

Both models seem to fit the data very well.
For the power recurrence rate model, 5:1.22 and 77 =0.553.

For the loglinear recurrence rate model, 4p=1.01 and v =.0377.

Times between recurrences are consistent with a HPP:

» the Lewis-Robinson test gave ZLR = 1.02
with p-value p = .21.

» the MIL-HDBk-189 test gave XI%,IHB — 92
with p-value p = .08.
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Comparison of trend tests

5 main topic

Minitab provides five trend tests for data with multiple systems: MIL-hdbk-189 (TTT-based), MIL-hdbk-189 (Pooled), Laplace’s (TTT-based), Laplace's (Pooled), and Anderson-Darling. The
pooled Laplace and military handbook tests reduce to their respective TTT-based tests when there is only one system. These tests behave differenthy under the fallowing two
circumstances:

1 the data follow a non-monatonic trend

2 the data are from heterogeneous systems

Monotonic and non-monotonic trends

There is a trend in the pattern of times between failure if the times change in a systematic way. Trends can be:

* monotonic - times between failures are getting either consistently longer (decreasing trend) or consistently shorter (increasing trend)

* non-monotonic - times between failures alternate between increasing and decreasing trend (cyclic) or have a decreasing trend, no trend, and then increasing trend (bathtub)

The Anderson-Darling test will reject the null hypothesis in the presence of both monotonic and non-monotonic trends. The other tests will generally only detect monotonic trends. While
the Anderson-Darling test is useful if you suspect the existence of a cyclic or other non-manetenic trend, the other tests are more powerful in the case of a monotenic trend.

Homogeneous and hetercgeneous systems
The null hypothesis of no trend differs slightly for the different tests:

& The null hypothesis for the pooled tests (MIL-hdbk-189 and Laplace's) is that the data come from a homogeneous Poisson processes (HPP) with a possibly different MTEFE for each
system. Thus, rejecting the null hypothesis means that you can definitely conclude there is a trend in your data.

¢  The null hypothesis for the TTT-based tests (MIL-hdbk-189, Laplace’s, and Anderson-Darling) is that the data come from a homogeneous Posson process (HPF) with the same MTEF
for each system. Thus. rejecting the null hypothesis could mean that either there is a trend in your data or your data come from heterogeneous systems. Therefore, you should use
TTT-based tests only when you are confident that your systems are homogeneous.

The table below summarizes the different null hypotheses associated with the trend tests.

MIL-hdbk-189 MIL-hdbk-189 Laplace's Laplace's Anderson-

(Pooled) (TTT-based) (Pooled) (TTT-based) Darling
Null HPFP (possibly HPP (equal HPFP (possibly HPP (equal HPP (possibly
Hypothesis different MTBFs) different MTBFs) MTBFs) different
MTBFs) MTBFs)
Rejecting monaotonic monotonic manotonic trend monotonic trend monotonic trend
H mea"s_"trend trend or or systems are aor non-
0 systems are heterogeneous  monotonic trend
heterogeneous or systems are
heterogensous

See ,[mj for more information concerning these tests.

197



Reliability Engineering and Svstem Saferv 60 (1998) 13-28

@ 1998 Elsevier Science Limited

All rights reserved. Printed in Northern Ireland

PII: S0951-8320(97)00099-9 0951-8320/98/519.00

i ey

ELSEVIER

TTT-based tests for trend in repairable
systems data

Jan Terje Kvalgy & Bo Henry Lindqgyvist

Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7034 Trondheim, Norway

(Received 25 September 1996; revised 24 January 1997; accepted 15 July 1997)

A major aspect of analysis of failure data for repairable systems is the testing for a
possible trend in interfailure times. This paper reviews some important and popular
graphical methods and tests for the nonhomogeneous Poisson process model. In
particular, the total time on test (TTT) plot is considered. and trend tests based on the
TTT-statistic are motivated and derived. In particular, a test based on the Anderson—
Darling statistic is suggested. The tests are evaluated and compared in a simulation
study, both with respect to the achievement of correct significance level and rejection
power. The considered alternatives to "no trend’ are the log-linear, power law and a
class of bathtub-shaped intensity functions. The simulation study involves single
systems, as well as the case where several independent systems of the same kind are
observed. © 1998 Elsevier Science Limited.
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Valveseat Data

Mean Cumulative Function for Time

95% CI
System Column in ID
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Valveseat Data

Trend Te=sts=

MIL-Hdbk-185 Laplace's
TTT-kbazed Pooled TTT-kbazed FPooled Anderson-Darling
Test Statistic 80,28 66,15 0,46 2,38 0,80
P-Value 0,245 0,017 0,645 0,017 0,478
DF 896 896
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TTT-analysis Simple Example

Row STTT 1ID Scaled

1 12 1 0,20000
2 15 1 0,25000
3 27 1 0,45000
4 34 1 0,56667
5 44 1 0,73333
6 53 1 0,88333
7 60 1 1,00000

Parameter Estimates

Standard 95% Normal CI
Parameter Estimate Error Lower Upper
Shape 1,25093 0,511 0,249996  2,25186
Scale 0,238749 0,160 -0,0746105 0,552109

Trend Tests

MIL-Hdbk-189 Laplace’s Anderson-Darling

Test Statistic 9,59 0,12 0,24
P-Value 0,697 0,906 0,977
DF 12
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Scaled Total Time on Test

Total Time on Test Plot for Simple Example
System Column in ID

1,07

0,87

0,67

0,47

0,27

0,07

Parameter, MLE
Shape Scale
1,25093 0,238749

0,0

0,2 0,4 0,6 0,8 1,0
Scaled Failure Number
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TTT-analysis of Valve Seat Data

Parametric Growth Curve: C1

Model: Power-Law Process
Estimation Method: Maximum Likelihood

Parameter Estimates

Standard 95% Normal CI
Parameter  Estimate Error Lower Upper
Shape 1,39706 0,202 1,00184 1,79229
Scale 0,0626023 0,026 0,0119179 0,113287

Trend Tests

MIL-Hdbk-189 Laplace’s Anderson-Darling

Test Statistic 68,72 2,03
P-Value 0,032 0,043
DF 96

3,17
0,022
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Scaled Total Time on Test

Total Time on Test Plot for Valve Seat Data

1,07

0,87

0,67

0,47

0,2

0,07

Parameter, MLE
Shape Scale
1,39706 0,0626023

0,0

0,2 0,4 0,6 0,8 1,0
Scaled Failure Number
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