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In this section, we introduce a new concept called buffered environmental
contours. This concept is based on the notion of buffered failure probability from
probabilistic structural design, first introduced by Rockafellar and Royset [5].
Contrary to classical environmental contours, this new concept does not just
take into account failure vs. functioning, but also to which extent the system is
failing. For example, this is relevant when considering the risk of flooding: We
are not just interested in knowing whether a river has flooded. The damages
caused by the flooding greatly depends on how much the water has risen above
the standard level.

1 Motivation: Structural design and the buffered
failure probability

In probabilistic structural design, it is common to define a performance function1

g(x,V) depending on some design variables x = (x1, x2, . . . , xm)′ and some
environmental quantities2 V = (V1, V2, . . . , Vn)′ ∈ V, where V ⊆ Rn. The design
variables can be influenced by the designer of the structure, and may respresent
material type or layout. The quantities are usually random, and cannot be
directly impacted by the designer. Hence, they may describe environmental
conditions, material quality or loads. To emphasize the randomness of the
quantities, we denote them by captial letters. In contrast, the design variables
are controlled by the designer and hence denoted by small letters.

For a given design x, g(x,V) represents the performance of the structure,
i.e., the state of the structure. A given mechanical structure can withstand
environmental stress up to a certain level. The failure region of the structure
is the set of states of the environmental variables that imply that the structure
fails. The performance function is defined such that if g(x,V) > 0, the structure
is failed, while if g(x,V) ≤ 0, the structure is functioning. Moreover, for a given
x the set F(x) = {v ∈ V : g(x,v) > 0} is the failure region of the structure3.

1The performance function is sometimes called the limit-state function.
2Environmental quantities should here be understood in a broad sense. E.g., for marine

structures such quantities typically includes wave height and period. For other types of struc-
tures, one may consider e.g., material quality, effects of erosion or corrosion as environmental
quantities.

3In some papers, such as Huseby and Vanem [1], the failed states are defined as the states
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2 The failure probability, reliability and approx-
imation methods

The failure probability, denoted by pf (x), of the structure is the probability that
the structure is failed. That is, pf (x) = P (g(x,V) > 0). If fV(v) is the joint
probability density function for the random vector V, the failure probability is
given by:

pf (x) =

∫
F(x)

fV(v)dv. (1)

For a given x the reliability, R(x), of the system is defined as the probability
that the system is functioning, i.e.:

R(x) = 1− pf (x) (2)

A classic problem is to compute the reliability of the system. In order to do
so, we need to compute the integral (1). In many cases it is difficult to obtain
an analytical solution to this. To overcome this issue various approximation
methods have been proposed. Two traditional methods for doing this are the
first-order reliability method (FORM) and the second-order reliability method
(SORM). The basic idea of the first-order reliability method is to approximate
the failure boundary at a specific point by a first order Taylor expansion. The
idea behind SORM is similar, but using a second order Taylor expansion instead.
In both cases, the approximated failure probability can be used to optimize the
structural design, i.e. determine a feasible design which has an acceptable failure
probability.

3 Return periods
As is common in structural design models, we view V as representing the average
value of the relevant environmental variables in a suitable time interval of length
L. Based on this and knowledge of the performance function g it is possible to
compute the so-called return period. This is done as follows:

We consider the environmental exposure of the given design from time t ≥ 0.
The time axis is divided into intervals of some specified length L, and we let Vi

denote the average environmental quantity in the ith period, i = 1, 2, . . .. It is
common to assume that V1,V2, . . . are independent and identically distributed.
This is a fairly strict assumption, but as it is so frequently used in structural
design, we assume this as well. We then let T := min{i : g(x,Vi) > 0}. By
the assumptions it follows that T is geometrically distributed with probability
pf = P (g(x,V) > 0). The return period is defined as E[T ] = 1/pf . Thus, the
return period can be interpreted as a property of the distribution of g(x,V).
Hence, it suffices to analyze this distribution, which is what we will focus on in
this paper.

such that g(x,V) < 0. This is just a matter of choice of notation.
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4 The buffered failure probability
The approximations made by FORM and SORM can sometimes be too crude
and ignore serious risks. Therefore, we will consider the buffered failure proba-
bility, introduced by Rockafellar and Royset [5] as an alternative to the failure
probability. This concept relates closely to the conditional value-at-risk (also
called expected shortfall, average value-at-risk or expected tail loss), which is
a notion frequently used in mathematical finance and financial engineering, see
Pflug [3], Rockafellar [4] as well as Rockafellar and Uryasev [6].

Recall that for any level of probability α, the α-quantile of the distribution
of a random variable is the value of the inverse of its cumulative distribution
function at α. For the random variable g(x,V), we let qα(x) denote its α-
quantile. Similarly, for any probability level α, the α-superquantile of g(x,V),
q̄α(x), is defined as:

q̄α(x) = E[g(x,V)|g(x,V) > qα(x)]. (3)

That is, the α-superquantile is the conditional expectation of g(x,V) when
we know that its value is greater than or equal the α-quantile. Rockafeller and
Royset [5] then define the buffered failure probability, p̄f (x), as follows:

p̄f (x) = 1− α, (4)

where α is chosen so that q̄α(x) = 0. Note that from the previous definitions
we have:

p̄f (x) = P (g(x,V) > qα(x)) = 1− F (qα(x)) (5)

where F denotes the cumulative distribution function of g(x,V).
In order to show how to calculate the buffered failure probability p̄f (x),

we consider the plot shown in Figure 1. The curve in the plot represents the
cumulative distribution function of the performance function, g(x,V). As an
example we have chosen a Gaussian distribution with mean value −2.5 and
standard deviation 1.5. For this distribution we have F (0) = 0.952, as can also
be seen in the figure by considering the right-most vertical dashed line starting
at 0 on the x-axis, and the corresponding upper horizontal dashed line starting
at 0.952. Hence, we get that pf (x) = 1 − F (0) = 0.048. In the figure pf (x) is
the distance between 100%-line and the upper horizontal dashed line.

Using e.g., Monte Carlo simulation it is easy to estimate qα(x), and we find
that qα(x) = −0.743. In the figure qα(x) is represented by the leftmost vertical
dashed line. By following this line until it crosses the cumulative curve, we find
that α = F (qα(x)) = 0.879. Finally, the buffered failure probability is found to
be p̄f (x) = 1−α = 0.121. In the figure p̄f (x) is the distance between 100%-line
and the lower horizontal dashed line.

It is easy to see that we always have qα(x) ≤ 0, and thus, it follows that
α = F (qα(x)) ≤ F (0). This implies that:

p̄f (x) = 1− α ≥ 1− F (0) = pf (x).
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Figure 1: Buffered failure probability calculation where: pf (x) = 0.048, qα(x) =
−0.743, α = F (qα(x)) = 0.879, and p̄f (x) = 1− α = 0.121.

Hence, it follows that the buffered failure probability is more conservative than
the failure probability. See [5] for a detailed discussion of this.

Rockafellar and Royset [5] present several advantages of using the buffered
failure probability instead of the regular failure probability. The following are
some of the key arguments:

• In general, the failure probability pf (x) cannot be computed analytically,
and the techniques commonly used to approximate it, such as FORM or
Monte Carlo methods, can sometimes ignore serious risks. This makes
it problematic to apply standard non-linear optimization algorithms in
connection to structure design. In contrast, non-linear optimization algo-
rithms are directly applicable when using the buffered failure probability
instead.

• The buffered failure probability contains more information about the tail
behaviour of the distribution of g(x,V) than the failure probability.

• The buffered failure probability can lead to more computational efficiency
in design optimization when the performance function g(x,V) is expensive
to evaluate.

The buffered reliability, R̄(x), of the structure is defined as R̄(x) = 1− p̄f (x).
Since pf (x) ≤ p̄f (x), it follows that R(x) ≥ R̄(x). That is, the reliability of the
system is greater than or equal to the buffered reliability. Again, this essentially
says that the buffered reliability is more conservative than the reliability.
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5 Buffered environmental contours
In this section, we introduce a new concept called buffered environmental con-
tours. This combines the ideas behind buffered failure probabilities and envi-
ronmental contours (see Figure 2). As mentioned in Section 4, the buffered
failure probability contains more information about the tail behaviour of the
distribution of g(x,V) than the failure probability. It follows that buffered en-
vironmental contours will take into account tail behaviour, i.e., the risk and
consequences of extreme events, better than classical environmental contours.
Environmental contours are typically used during the early design phases where
the exact shape of the failure region is unknown. At this stage it it may not
be possible to express a precise functional relationship between a set of design
variables x and the performance of the structure. Therefore, we skip x in the
notation and let the design options be embedded in the performance function
g(V) itself. In particular we denote the failure region simply by F , while the
corresponding failure probability, P (V ∈ F), is denoted by pf (F). A similar
construction can be done in the case where the design variables are included.
Exploring the connections between design optimization and buffered environ-
mental contours is a current research topic.

V1

V2

B ∂B

F

Environmental contour

Failure region

Figure 2: An environmental contour ∂B and a failure region F .

Before we introduce the main results we review a result on superquantiles
which will be essential in our approach (see Rockafellar [4].)

Proposition 5.1 Let g1 and g2 be two performance functions such that g1(V ) ≤
g2(V ) almost surely, and let q̄1,α and q̄2,α denote the α-superquantiles of g1 and
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g2 respectively. Then q̄1,α ≤ q̄2,α.

As a corollary of this result we get the following result on buffered failure prob-
abilities:

Corollary 5.2 Let g1 and g2 be two performance functions such that g1(V ) ≤
g2(V ) almost surely, and let p̄1,f and p̄2,f denote the buffered failure probabilities
of g1 and g2 respectively. Then p̄1,f ≤ p̄2,f .

For a given performance function g its failure probability, pf , can be com-
puted based on the failure region of g alone. In contrast, computing the buffered
failure probability, p̄f , requires more detailed information about the distribution
of g. We indicate this by expressing p̄f as a function of g and denoted p̄f (g).

Just as for classical environmental contours, a buffered environmental con-
tour is the boundary ∂B̄ of some suitable set B̄ ⊆ Rn. Let U be the set of
all unit vectors in Rn, and let u ∈ U . Moreover, we let Pe be a given target
probability, and let C(u) be defined as follows:

C(u) := inf{C : P (u′V > C) ≤ Pe} (6)

Thus, C(u) is the (1 − Pe)-quantile of the distribution of u′V. Recall for
classical environmental contours, B is defined as,

B :=
⋂
u∈U

Π−(u) (7)

where Π−(u) is the halfspace defined by

Π−(u) := {v : u′v ≤ C(u)}.

Note that B is a convex set because its the intersection of a countable number
of convex sets. The classical environmental contour is the boundary, ∂B, of B.

We shall now describe how the set B̄ defining environmental contours can
be constructed. Given the distribution of V, the function C(u) can easily be
estimated by using Monte Carlo simulation. To estimate C(u), let V1, . . . ,VN

be a random sample from the distribution of V. We then choose u ∈ U , and let
Yr(u) = u′Vr, r = 1, . . . , N . These results are sorted in ascending order:

Y(1) ≤ Y(2) ≤ · · · ≤ Y(N)

Using the sorted numbers we first estimate C(u). Since C(u) is the (1 − Pe)-
quantile in the distribution, a natural estimator is:

Ĉ(u) = Y(k),

where k is determined so that:

k

N
≈ 1− Pe.
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Note, however, that this estimator can be improved considerably by using im-
portance sampling. See Huseby and Vanem [2] for details.

In order to introduce buffering, we let:

C̄(u) := E[u′V|u′V > C(u)]. (8)

Given the distribution of V, the function C̄(u) can be estimated by using Monte
Carlo simulation. As before, we let V1, . . . ,VN be a random sample from the
distribution of V, and choose u ∈ U . Based on the sorted values Y(1) ≤ Y(2) ≤
· · · ≤ Y(N) we first estimate C(u) by Y(k) as previously explained. We then
estimate C̄(u) by computing the average value of the sampled values which are
greater than Y(k). Thus, we estimate C̄(u) by:

ˆ̄C(u) =
1

N − k
∑
r>k

Y(r).

For each u ∈ U , we also introduce the halfspaces:

Π̄−(u) = {v : u′v ≤ C̄(u)},
Π̄+(u) = {v : u′v > C̄(u)},

similar to what is done for classical environmental contours. Finally, we define
the buffered environmental contour as the boundary ∂B̄ of the convex set set B̄
given by:

B̄ :=
⋂
u∈U

Π̄−(u) (9)

We observe that by (8) we obviously have that C̄(u) > C(u). By comparing
(7) and (9), it is easy to see that this implies that:

B ⊂ B̄.

Thus, given that the same target probability Pe is used to construct both con-
tours, the buffered environmental contour is more conservative than the classical
environmental contour.

The next step is to identify a family G of performance functions defined
relative to the set B such that p̄f (g) ≤ Pe for all g ∈ G. We recall that for the
classical environmental contour we choose to let E be the family of all convex
failure regions which do not intersect with the interior of B. Thus, one might
think that the natural counterpart for buffered environmental contours would
be to let G be the family of performance functions with convex failure regions
which do not intersect with the interior of B̄. In this case, however, we need
more control over the distributions of the performance functions. In order to do
so we choose u ∈ U and introduce the performance function Γ(u, ·) given by:

Γ(u,V) = u′V− C̄(u)

7



By (8) we have:

E[Γ(u,V)|Γ(u,V) > C(u)− C̄(u)]

= E[u′V|u′V > C(u)]− C̄(u) = 0.

Moreover, by (6) we have:

p̄f (Γ(u, ·)) = P (Γ(u,V) > C(u)− C̄(u))

= P (u′V > C(u)) = Pe

Since the unit vector u was arbitrarily chosen, we conclude that the performance
function Γ(u, ·) has the desired buffered failure probability Pe for all u ∈ U .

We will use these performance functions as a basis for constructing the family
G where the Γ(u, ·)-functions serve as maximal elements in this family. Note that
the Γ(u, ·)-functions now play a similar role as the halfspaces Π+(u) played in
the construction of the family F . Thus, we let G be the family of all performance
functions g for which there exists a u ∈ U such that g(v) ≤ Γ(u,v) for all v ∈ V.
By the above discussion the following result is immediate:

Theorem 5.3 For all g ∈ G we have p̄f (g) ≤ Pe.

Proof: Assume that g ∈ G. Then there exists a u ∈ U such that g(V) ≤ Γ(u,V)
almost surely. Hence, by Corollary 5.2 and the above calculations we have:

p̄f (g) ≤ p̄f (Γ(u, ·)) = Pe.

�

Having constructed both the set B̄ and the family G we are now ready to
introduce the buffered exceedence probability of B̄ with respect to G defined as:

P̄e(B̄,G) := sup{p̄f (g) : g ∈ G}. (10)

We note that by the definition of G it follows that Γ(u, ·) ∈ G for all u ∈ U .
Hence, we get:

P̄e(B̄,G) = sup{p̄f (g) : g ∈ G}

= sup{p̄f (Γ(u, ·)) : u ∈ U} = Pe,

Thus, we conclude that the contour ∂B̄ indeed has the correct buffered excee-
dence probability with respect to G.

If g ∈ G and g(v) ≤ Γ(u,v) for all v ∈ V, we have:

F(g) ⊆ F(Γ(u, ·))
= {v : u′v− C̄(u) > 0}
= {v : u′v > C̄(u)} = Π̄+(u)
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Thus, the failure region of a performance function g ∈ G does not overlap with
the interior of the set B̄, but is contained within a halfspace supporting B̄. This
is similar to the relation between failure regions in the family E and the set
B for the classical environmental contours. However, as already pointed out,
knowledge about the failure region of a performance function is not sufficient to
ensure that the performance function has the correct buffered failure probability.

It may be argued that the choice of the Γ(u, ·)-functions as maximal elements
in the family G is too restrictive. In order to have a more flexible framework, it
is possible to consider a slightly more general approach where we define:

C̄a(u) := E[au′V|u′V > C(u)] = aC̄(u), (11)

where a is a positive constant. By increasing the a-factor, the contour may be
inflated so that it can be used for steeper performance factors.

On the other hand it should be noted that to ensure that a given performance
function g has the correct buffered failure probability, it is not necessary that
g(v) is dominated by some Γ(u, ·)-function for all v ∈ V. It is sufficient that
this holds for v-values corresponding to the upper tail area of g.

6 Numerical example of buffered environmental
contours

In this section we illustrate the proposed method by considering a numerical
example introduced in Vanem and Bitner-Gregersen [7]. More specifically, we
consider joint long-term models for significant wave height, denoted by H, and
wave period denoted by T . A marginal distribution is fitted to the data for
significant wave height and a conditional model, conditioned on the value of
significant wave height, is subsequently fitted to the wave period. The joint
model is the product of these distribution functions:

fT,H(t, h) = fH(h)fT |H(t|h)

Simultaneous distributions have been fitted to data assuming a three-parameter
Weibull distribution for the significant wave height, H, and a lognormal condi-
tional distribution for the wave period, T . The three-parameter Weibull distri-
bution is parameterized by a location parameter, γ, a scale parameter α, and a
shape parameter β as follows:

fH(h) =
β

α

(
h− γ
α

)β−1
e−[(h−γ)/α]

β

, h ≥ γ.

The lognormal distribution has two parameters, the log-mean µ and the log-
standard deviation σ and is expressed as:

fT |H(t|h) =
1

t
√

2π
e−[(ln(t)−µ)

2/(2σ2)], t ≥ 0,
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where the dependence between H and T is modelled by letting the parameters
µ and σ be expressed in terms of H as follows:

µ = E[ln(T )|H = h] = a1 + a2h
a3 ,

σ = SD[ln(T )|H = h] = b1 + b2e
b3h.

The parameters a1, a2, a3, b1, b2, b3 are estimated using available data from the
relevant geographical location. In the example considered here the parameters
are fitted based on a data set from North West Australia. We consider data
for two different cases: swell and wind sea. The parameters for the three-
parameter Weibull distribution are listed in Table 1, while the parameters for
the conditional log-normal distribution are listed in Table 2. In all the examples
we use a return period of 25 years. The models are fitted using sea states
representing periods of 1 hour. Thus, we get 24 data points per 24 hours. Thus,
the desired exceedence probability is given by:

Pe =
1

25 · 365.25 · 24
= 4.5631 · 10−6.

For more details about these examples we refer to [7].

Table 1: Fitted parameter for the three-parameter Weibull distribution for sig-
nifcant wave heights

α β γ

Swell 0.450 1.580 0.132
Wind sea 0.605 0.867 0.322

Table 2: Fitted parameter for the conditional log-normal distribution for wave
periods

i = 1 i = 2 i = 3

Swell ai 0.010 2.543 0.032
bi 0.137 0.000 0.000

Wind sea ai 0.000 1.798 0.134
bi 0.042 0.224 -0.500

The classical environmental contours are estimated based on the methods
presented in Huseby and Vanem [1]. More specifically, we have used Method 2
presented in this paper. The buffered environmental contours are estimated in
exactly the same way, except that Ĉ(u) is replaced by ˆ̄C(u) for all u ∈ U .

In Figure 3 and Figure 4 the resulting environment contours are shown.
As one expected, the classical environmental contours are located inside their
respective buffered contours. Thus, since the target probability Pe is the same
for both types of contours, the buffered contours are more conservative than the
classical contours.
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Figure 3: Buffered environmental contour (black) and classical environmental
contour (gray) for North West Australia Swell with return period 25 years.
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Figure 4: Buffered environmental contour (black) and classical environmental
contour (gray) for North West Australia Wind sea with return period 25 years.

7 Conclusion
Let us recap what we have done in this chapter: We have introduced buffered
environmental contours, and shown how such contours can be estimated using
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Monte Carlo simulations. Such contours do not just take into account the
probability of failure, but also the consequences of a failure. This is relevant
e.g., when analysing the risk of flooding at a given location. While it may not
be possible to prevent floodings from occurring, the damage caused by such an
event can vary a lot depending on how much the water has risen above the
normal level. In some cases only minor damages may be the result. In other
cases the consequences can be catastrophic.

For a given target probability, Pe buffered environmental contours are gen-
erally more conservative than the classical environmental contours. However,
in cases where the consequences are more important than the triggering event
itself, a higher target probability might be acceptable as long as the damages
are manageable. Thus, in real-life applications a buffered environmental contour
may not be so conservative after all. At the same time these contours provide
much more information about the tail area of the environmental variables. This
may be very useful when a design is optimized. This is a current research topic.
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