
Chapter 1
Convexity, optimization, and
convex duality

The purpose of this chapter is to cover some background theory in convexity,
optimization, and convex duality. The structure of this chapter is as follows:
Section 1.1 recalls some basic notions of convexity theory, such as convex sets,
convex functions and properties of these. In Section 1.2 we consider a weaker
requirement than convexity, namely quasiconvexity. Section 1.3 covers some
of the most central theorems and ideas of optimization theory. In Section 1.4
we consider a method for soving constrained optimization problems, called La-
grange duality. Section 1.5 introduces the convex (conjugate) duality framework
of Rockafellar [18] which can be applied to rephrase and solve a large variety
of optimization problems, due to its generality. The convex duality framework
is a generalized version of the Lagrange duality in Section 1.4. Some examples
of optimization using convex duality is given in Section 1.6. Section 1.7 intro-
duces conjugate functions. In Section 1.8, we introduce the Lagrange function
of convex duality theory.

1

1.1 Basic convexity

This section summarizes some of the most important definitions and properties
of convexity theory. The material of this section is mainly based on the pre-
sentation of convexity in Rockafellar [18], Hiriart-Urruty and Lemarèchal [11]
and Dahl [4]. The last two consider X = Rn, but the extension to a general
inner product space is straightforward. Therefore, in the following, let X be a

1These notes are an adaptation of parts of Dahl [5]: Exercises and solutions have been
added, some new material has been added and other things have been removed. Some material
has been rewritten and new figures have been added.
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real inner product space, i.e. a vector space X equipped with an inner prod-
uct 〈·, ·〉 : X × X → R (so the function 〈·, ·〉 is symmetric, linear in the first
component and positive definite in the sense that 〈x, x〉 ≥ 0 for all x ∈ X, with
equality if and only if x = 0). For instance, X = Rn, n ∈ N is such a space.

We begin with some core definitions.

Definition 1.1.1 (i) (Convex set) A set C ⊆ X is called convex if λx1 +(1−
λ)x2 ∈ C for all x1, x2 ∈ C and 0 ≤ λ ≤ 1.

(ii) (Convex combination) A convex combination of elements x1, x2, . . . , xk in
X is an element of the form

∑k
i=1 λixi where

∑k
i=1 λi = 1 and λi ≥ 0 for

all i = 1, . . . , k.

(iii) (Convex hull, conv(·)) Let A ⊆ X be a set. The convex hull of A, denoted
conv(A) is the set of all convex combinations of elements of A.

(iv) (Extreme points) Let C ⊆ X be a convex set. An extreme point of C is a
point that cannot be written as a convex combination of any other points
than itself. That is: e ∈ C is an extreme point for C if λx+ (1− λ)y = e
for some x, y ∈ C implies x = y = e.

(v) (Hyperplane) H ⊂ X is called a hyperplane if it is of the form H = {x ∈
X : 〈a, x〉 = α} for some nonzero vector a ∈ X and some real number α.

(vi) (Halfspace) A hyperplane H divides X into two sets H+ = {x ∈ X :
〈a, x〉 ≥ α} and H− = {x ∈ X : 〈a, x〉 ≤ α}, these sets intersect in H.
These sets are called halfspaces.

We will now look at some hyperplane theorems in Rn. These will be used
in connection to environmental contours later in the course. Note that most of
these theorems generalise to an arbitrary real inner product space X. However,
the proofs are more complicated in the general case. Since the Rn versions are
sufficient for our purposes in this course, we restrict ourselves to this.

Any hyperplane in Rn can be written in the form Π = {x : c′x = d}, where
c ∈ Rn is a normal vector to Π and d ∈ R. Let Π− = {x : c′x ≤ d} and
Π+ = {x : c′x ≥ d} denote the two half-spaces bounded by Π. Let S ⊆ Rn. A
supporting hyperplane of S, is a hyperplane Π such that we either have S ⊆ Π−

or S ⊆ Π+, and such that Π ∩ ∂S 6= ∅.
If Π is a supporting hyperplane of the set S, and S ⊆ Π−, we say that Π+ is

a supporting half-space of S. We observe that if Π+ is a supporting half-space
of S, we also have:

Π+ ∩ S ⊆ ∂S.
Moreover, we introduce the notation:

P(S) = The family of supporting half-spaces of S.

For a given nonempty set S ⊆ Rn and a vector x0 /∈ S, the vector x∗ ∈ S is
said to be the projection of x0 onto S if x∗ is the point in S which is closest to
x0. In general the projection x∗ may neither exist nor be unique. However, if
S is a closed convex set, x∗ is well-defined, and we have:
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Figure 1.1: Some convex sets in the plane.

x y

Figure 1.2: A non-convex set.
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Theorem 1.1.2 (Projection) Let S ⊆ Rn be a closed convex set, and let
x0 /∈ S. Then the following holds true:

• There exists a unique solution to the projection problem

• A vector x∗ ∈ S is the projection of x0 onto S if and only if:

(x∗ − x0)′(x− x∗) ≥ 0 for all x ∈ S.

See Figure 1.3 for an illustration of the projection in R2.

x0 x*

x

S

Figure 1.3: The point x∗ is the projection of x0 onto the closed convex set S.

Remark 1.1.3 If x ∈ S, and θ is the angle between (x∗ − x0) and (x − x∗),
then we must have θ ∈ [−π/2, π/2]. This holds if and only if:

(x∗ − x0)′(x− x∗) ≥ 0 for all x ∈ S.

Theorem 1.1.4 (Projection hyperplane) Let S ∈ Rn be a closed convex
set, and assume that x0 /∈ S. Then there exists a supporting hyperplane Π =
{x : c′x = d} of S such that:

c′x ≤ d for all x ∈ S, and c′x0 > d.

Proof: Since S is a closed convex set, it follows by the projection theorem that
the projection of x0 onto S, denoted x∗ exists and satisfies:

(x∗ − x0)′(x− x∗) ≥ 0 for all x ∈ S. (1.1)

Now, we let c = (x0 − x∗), and d = c′x∗. Then (1.1) can be written as:

c′(x− x∗) ≤ 0 for all x ∈ S. (1.2)



1.1. BASIC CONVEXITY 5

Hence, by (1.2) we have:

c′x ≤ c′x∗ = d for all x ∈ S.

Thus, S ⊆ Π− = {x : c′x ≤ d}, and since x∗ ∈ S ∩ Π, Π is a supporting
hyperplane of S. Furthermore, we have:

c′(x0 − x∗) = (x0 − x∗)′(x0 − x∗) > 0.

Hence, it follows that:
c′x0 > c′x∗ = d.

�

Theorem 1.1.5 (Supporting hyperplane) Let S ∈ Rn be a convex set, and
assume that either x0 /∈ S or x0 ∈ ∂S. Then there exists a hyperplane Π such
that S ⊆ Π− and such that x0 ∈ Π. If x0 ∈ ∂S, Π is a supporting hyperplane
of S.

Proof: The result follows by a similar argument as for the projection hyperplane
theorem and is left as an exercise to the reader. �

Let S, T ⊆ Rn. A hyperplane Π separates S and T if either S ⊆ Π− and
T ⊆ Π+ or S ⊆ Π+ and T ⊆ Π−.

Theorem 1.1.6 (Separating hyperplane) Assume that S, T ⊆ Rn are con-
vex, and that S ∩ T ⊆ ∂S. Then there exists a hyperplane Π separating S and
T such that S ⊆ Π− and T ⊆ Π+.

Proof: We let u0 = 0 ∈ Rn and introduce the set:

U = {x− y : x ∈ So,y ∈ T },

where So = S \ ∂S is the (convex) set of inner points in S.
We first argue that U is convex. To show this we must show that if u1,u2 ∈

U , then αu1 + (1 − α)u2 ∈ U for all α ∈ [0, 1]. Since u1,u2 ∈ U there exists
x1,x2 ∈ So and y1,y2 ∈ T such that:

u1 = x1 − y1 and u2 = x2 − y2.

Since So and T are convex, it follows that for any α ∈ [0, 1], we have:

αx1 + (1− α)x2 ∈ So and αy1 + (1− α)y2 ∈ T

Hence, we have:

αu1 + (1− α)u2 = α(x1 − y1) + (1− α)(x2 − y2)

= (αx1 + (1− α)x2)− (αy1 + (1− α)y2) ∈ U .
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By the assumption that S ∩ T ⊆ ∂S it follows that So and T do not have
any element in common.

Hence, it follows that:

u = x− y 6= 0, for all x ∈ So and y ∈ T .

Thus, we conclude that:
u0 = 0 /∈ U .

Then, by the supporting hyperplane theorem there exists a hyperplane Π0 =
{x : c′x = d0} such that U ⊆ Π−0 and such that u0 ∈ Π0.

In fact, u0 ∈ Π0 implies that c′u0 = c′0 = d0. Thus, d0 = 0.
Since U ⊆ Π−0 , we have c′u ≤ d0 = 0 for all u ∈ U , implying that:

c′(x− y) ≤ 0 for all x ∈ So and y ∈ T ,

or equivalently:
c′x ≤ c′y for all x ∈ S0 and y ∈ T . (1.3)

We then let d = supx∈So c
′x. By the definition of d we have:

c′x ≤ d, for all x ∈ So. (1.4)

If x0 ∈ ∂S, there exists {xk} ⊆ So such that limk→∞ xk = x0, and so:

c′x0 = lim
k→∞

c′xk ≤ d. (1.5)

By combining (1.4) and (1.5) it follows that we have:

c′x ≤ d, for all x ∈ S. (1.6)

Moreover, by (1.3) and the definition of d it follows that we have:

c′y ≥ d, for all y ∈ T . (1.7)

Hence, by letting Π = {x : c′x = d}, we conclude that:

S ⊆ Π− and T ⊆ Π+ (1.8)

�

In the proof of the separating hyperplane theorem, we defined Π = {x :
c′x = d}, where:

d = sup
x∈So

c′x.

This implies that there exists a sequence {xk} ⊆ S with limit x0 = limk→∞ xk ∈
∂S, such that c′x0 = d.

Thus, x0 ∈ Π ∩ ∂S, implying that Π+ is a supporting halfspace of S.
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Theorem 1.1.7 (Separating hyperplane, supporting halfspace) Assume
that S, T ⊆ Rn are convex, and that S∩T ⊆ ∂S. Then there exists a hyperplane
Π separating S and T such that S ⊆ Π−, T ⊆ Π+ and where Π+ ∈ P(S).

We now define polyhedrons and polytopes. These subsets of Rn are useful
because they are descriptions of the solution set of systems of linear inequalities.
The following definitions are from Rockafellar [17].

Definition 1.1.8 (Polyhedron) A set K ⊆ Rn is called a polyhedron if it can
be described as the intersection of finitely many closed half-spaces.

Hence, a polyhedron can be described as the solution set of a system of
finitely many (non-strict) linear inequalities. It is straightforward to show that
a polyhedron is a convex set.

A (convex) polytope is a set of the following form:

Definition 1.1.9 (Polytope) A set K ⊆ Rn is called a (convex) polytope if it
is the convex hull of finitely many points.

Clearly, all polytopes are convex since a convex hull is always convex. Ex-
amples of (convex) polytopes in R2 are triangles, squares and hexagons.

Actually, all polytopes in Rn are compact sets.

Lemma 1.1.10 Let K ⊆ Rn be a polytope. Then K is a compact set.

Proof: Since K is a polytope, it is the convex hull of finitely many points, say
K = conv({k1}, ..., {km}), so

K = {
m∑
i=1

λiki :

m∑
i=1

λi = 1, λi ≥ 0 for all i = 1, ...,m}.

Consider the continuous function f : Rm → Rn, f(x1, ..., xm) =
∑m
i=1 xiki,

and the compact set

S = {(λ1, ..., λm) :

m∑
i=1

λi = 1, λi ≥ 0 for all i = 1, ...,m} ⊆ Rm

(S is closed and bounded, hence compact in Rm)
Then, since f is continuous and S is compact, f(S) := {x : x = f(s) for some s ∈

S} ⊆ Rn is a compact set (see for example Munkres [15]). But f(S) = K from
the definitions, and hence K is compact. �

From Lemma 1.1.10, any polytope is a closed and bounded set, since com-
pactness is equivalent to being closed and bounded in Rn.

The following theorem connects the notion of polytope and polyhedron.

Theorem 1.1.11 A set K ⊆ Rn is a polytope if and only if it is a bounded
polyhedron.
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For a proof of this, see Ziegler [25].
Sometimes, one needs to consider what is called the relative interior of a set.

Definition 1.1.12 (Relative interior, rint(·)) Let S ⊆ X. x ∈ S is a rela-
tive interior point of S if it is contained in some open set whose intersection
with aff(S) is contained in S. rint(S) is the set of all relative interior points of
S. Here, aff(S) is the smallest affine set that contains S (where a set is affine
if it contains any affine combination of its points; an affine combination is like
a convex combination except the coefficients are allowed to be negative).

Another useful notion is that of a convex cone.

Definition 1.1.13 (Convex cone) C ⊆ X is called a convex cone if for all
x, y ∈ C and all α, β ≥ 0:

αx+ βy ∈ C

From these definitions, one can derive some properties of convex sets.

Theorem 1.1.14 (Properties of convex sets) (i) If {Cj}j∈J ⊆ X is an
arbitrary family of convex sets, then the intersection ∩j∈JCj is also a
convex set.

(ii) conv(A) is a convex set, and it is the smallest (set inclusion-wise) convex
set containing A.

(iii) If C1, C2, . . . , Cm ⊆ X are convex sets, then the Cartesian product C1 ×
C2 × . . .× Cm is also a convex set.

(iv) If C ⊆ X is a convex set, then the interior of C, int(C), the relative
interior rint(C) and the closure of C, cl(C), are convex sets as well.

The proof is left as an exercise.
Sometimes, one considers not just R, but R̄, the extended real numbers.

Definition 1.1.15 (The extended real numbers, R̄) Let R̄ = R∪{−∞,+∞}
denote the extended real numbers.

When working with the extended real numbers the following computational
rules apply: a −∞ = −∞, a +∞ = ∞, ∞ +∞ = ∞, −∞ −∞ = −∞ and
∞−∞ is not defined.

The following function is often useful, in particular in optimization.

Definition 1.1.16 (The indicator function for a set M , δM) Let M ⊆ X
be a set. The indicator function for the set M , δM : X → R̄ is defined as

δM (x) =

{
0 if x ∈M
+∞ if x 6∈M.
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The following example shows why this function is useful in optimization.
Consider the constrained minimization problem

min f(x)
s.t. x ∈M

for some function f : X → R̄ and some set M ⊆ X. This can be transformed
into an unconstrained minimization problem by altering the objective function
as follows

min f(x) + δM (x).

This is the same problem as before because the minimum above cannot be
achieved for x /∈ M , because then δM = +∞, so the objective function is
infinitely large as well.

The next definition is very important.

Definition 1.1.17 (Convex function) Let C ⊆ X be a convex set. A func-
tion f : C → R is called convex if the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.9)

holds for all x, y ∈ C and every 0 ≤ λ ≤ 1.

There is an alternative way of defining convex functions, which is based on
the notion of epigraph.

Definition 1.1.18 (Epigraph, epi(·)) Let f : X → R̄ be a function. Then the
epigraph of f is defined as epi(f) = {(x, α) : x ∈ X, α ∈ R, α ≥ f(x)}.

Definition 1.1.19 (Convex function) Let A ⊆ X. A function f : A → R̄
is called convex if the epigraph of f is convex (as a subset of the vector space
X × R).

Of course, these definitions are actually equivalent.

Theorem 1.1.20 Definitions 1.1.17 and 1.1.19 are equivalent if the set A in
Definition 1.1.19 is convex (A must be convex in order for Definition 1.1.17 to
make sense).

Proof:
1.1.17 ⇒ 1.1.19: Assume that f is a convex function according to Defini-

tion 1.1.17. Let (x, a), (y, b) ∈ epi(f) and let λ ∈ [0, 1]. Then

λ(x, a) + (1− λ)(y, b) = (λx+ (1− λ)y, λa+ (1− λ)b).

But f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) from Definition 1.1.17, so

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

≤ λa+ (1− λ)b.

So (λx+ (1− λ)y, λa+ (1− λ)b) ∈ epi(f).
1.1.19 ⇒ 1.1.17 uses the same type of arguments, thus it is omitted. �
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f

epi(f)

Figure 1.4: The epigraph of a function f .

Figure 1.5: A convex function.
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x

f(x)

Figure 1.6: A lower semi-continuous function f .

Definition 1.1.21 (Concave function) A function g is concave if the func-
tion f := −g is convex.

When minimizing a function, the points where it is infinitely large are unin-
teresting, this motivates the following definitions.

Definition 1.1.22 (Effective domain, dom(·)) Let A ⊆ X and let f : A →
R̄ be a function. The effective domain of f is defined as dom(f) = {x ∈ A :
f(x) < +∞}.

Definition 1.1.23 (Proper function) Let A ⊆ X and let f : A → R̄ be a
function. f is called proper if dom(f) 6= ∅ and f(x) > −∞ for all x ∈ A.

For definitions of general topological terms, such as convergence, continuity
and neighborhood, see any basic topology book, for instance Topology by James
Munkres [15].

Definition 1.1.24 (Lower semi-continuity, lsc) Let A ⊆ X be a set, and
let f : A → R̄ be a function. f is called lower semi-continuous, lsc, at a point
x0 ∈ A if for each k ∈ R such that k < f(x0) there exists a neighborhood U of
x0 such that f(u) > k for all u ∈ U . Equivalently: f is lower semi-continuous
at x0 if and only if lim infx→x0

f(x) ≥ f(x0).

Definition 1.1.25 (α-sublevel set of a function, Sα(f)) Let f : X → R̄ be
a function and let α ∈ R. The α-sublevel set of f , Sα(f), is defined as

Sα(f) = {x ∈ X : f(x) ≤ α}.
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Theorem 1.1.26 Let f : X → R̄ be a function. Then, f is lower semi-
continuous if and only if the sublevel sets Sα(f) are closed for all α ∈ R̄.

Proof: The sublevel sets Sα(f) := {x ∈ X : f(x) ≤ α} are closed for all α ∈ R
iff. the complement sets Y = X − Sα(f) = {x ∈ X : f(x) > α} are open for
all α. But this happens iff. all y ∈ Y are interior points, which is equivalent
with that for each y ∈ Y there is a neighborhood U such that U ⊆ Y , i.e.
f(U) > α. But this is the definition of f being lower semi-continuous at the
point y. Since this argument holds for all y ∈ X (by choosing different α), f is
lower semi-continuous. �

Definition 1.1.27 (Convex hull of a function, co(f)) Let A ⊆ X be a set,
and let f : A → R̄ be a function. Then the convex hull of f is the (pointwise)
largest convex function h such that h(x) ≤ f(x) for all x ∈ A.

Clearly, if f is a convex function co(f) = f . One can define the lower semi-
continuous hull, lsc(f) of a function f in a similar way.

Definition 1.1.28 (Closure of a function, clf) Let A ⊆ X be a set, and let
f : A → R̄ be a function. We define: cl(f)(x) = lsc(f(x)) for all x ∈ A if
lsc(f(x)) > −∞ ∀ x ∈ X and cl(f)(x) = −∞ for all x ∈ A if lsc(f(x′)) = −∞
for some x′ ∈ A.

We say that a function f is closed if cl(f) = f . Hence, f is closed if it is lower
semi-continuous and f(x) > −∞ for all x or if f(x) = −∞ for all x.

Theorem 1.1.29 Let M ⊆ X, and consider the indicator function for the set
M , δM , as defined in Definition 1.1.16. Then, the following properties hold:

• If N ⊆ X, then M ⊆ N ⇐⇒ δN ≤ δM .

• M is a convex set ⇐⇒ δM is a convex function.

• δM is lower semi-continuous ⇐⇒ M is a closed set.

Proof:

• From Definition 1.1.16: δN ≤ δM iff. (If δM (x) < +∞ then δN (x) < +∞)
iff. (x ∈M ⇒ x ∈ N) iff. M ⊆ N .

• δM is convex if and only if δM (λx+(1−λ)y) ≤ λδM (x)+(1−λ)δM (y) holds
for all 0 ≤ λ ≤ 1 and all x, y ∈ X such that δM (x), δM (y) < +∞, that is,
for all x, y ∈M . But this means that λx+ (1− λ)y ∈M , equivalently, M
is convex.

• Assume δM is lower semi-continuous. Then it follows from Theorem 1.1.26
that Sα(δM ) is closed for all α ∈ R. But, for any α ∈ R, Sα(δM ) =
{x ∈ X : δM (x) ≤ α} = M (from the definition of δM ), so M is closed.
Conversely, assume that M is closed. Then, for any α ∈ R, Sα(δM ) = M ,
hence δM is lower semi-continuous from Theorem 1.1.26.
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�

A global minimum for a function f : A → R̄, where A ⊂ X, is an x′ ∈ A
such that f(x′) ≤ f(x) for all x ∈ A. A local minimum for f is an x′ ∈ A such
that there exists a neighborhood U of x′ such that x ∈ U ⇒ f(x′) ≤ f(x).

Based on all these definitions, one can derive the following properties of
convex functions.

Theorem 1.1.30 (Properties of convex functions) Let C ⊆ X be a con-
vex set, f : C → R be a convex function. Then the following properties hold:

1. If f has a local minimum x′, then x′ is also a global minimum for f .

2. If C = R, so that f : R→ R and f is differentiable, then f ′ is monotoni-
cally increasing.

3. If a function g : R → R is twice differentiable and g′′(x) > 0, then g is
convex.

4. Jensen’s inequality: For x1, . . . , xn ∈ X,λ1, . . . , λn ∈ R, λk ≥ 0, for k =
1, . . . , n,

∑n
k=1 λk = 1, the following inequality holds

f(

n∑
k=1

λkxk) ≤
n∑
k=1

λkf(xk).

5. The sum of convex functions is convex.

6. αf is convex if α ∈ R, α ≥ 0.

7. If (fn)n∈N is a sequence of convex functions, fn : X → R, and fn → f
pointwise as n→∞, then f is convex.

8. dom(f) is a convex set

9. If α ∈ R̄, then the sublevel set for f , Sα(f) is a convex set. Similarly,
{x ∈ C : f(x) < α} is a convex set.

10. Maximization: Let {fλ} be an arbitrary family of convex functions, then
g(x) = supλ fλ(x) is convex. Also, g(x) = supy f(x, y) is convex if f(x, y)
is convex in x for all y.

11. Minimization: Let f : X × X → R̄ be a convex function. Then g(x) =
infy f(x, y) is convex.

Proof:

1. Suppose x′ is a local minimum for f , that is: There exists a neighborhood
U ⊆ C of x′ such that f(x′) ≤ f(x) for all x ∈ U . We want to show that
f(x′) ≤ f(x) for all x ∈ C. Let x ∈ C. Consider the convex combination
λx+ (1− λ)x′. This convex combination converges towards x′ as λ→ 0.
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Therefore, for a sufficiently small λ∗, λ∗x + (1 − λ∗)x′ ∈ U , so since f is
convex

f(x′) ≤ f(λ∗x+ (1− λ∗)x′)
≤ λ∗f(x) + (1− λ∗)f(x′)

which, by rearranging the terms, shows that f(x′) ≤ f(x). Therefore, x′
is a global minimum as well.

2. Follows from Definition 1.1.17 and the definition of the derivative.

3. Left as an exercise.

4. Left as an exercise.

5. Left as an exercise.

6. Follows from Definition 1.1.17.

7. Use Definition 1.1.17 and the homogeneity and additivity of limits.

8. Follows from the definitions.

9. Follows from the definitions, but is included here as an example of a typical
basic proof. Let x, y ∈ Sα(f). Then f(x), f(y) ≤ α. Then λx+ (1−λ)y ∈
Sα(f) because

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λα+ (1− λ)α = α

where the first inequality follows from the convexity of f , and the second
inequality follows from that x, y ∈ Sα(f).

10. sup is a limit, so the result is a consequence of property 7.

11. Same as property 10.

�

1.2 Quasiconvex functions
In this section we introduce quasiconvex functions. Quasi-convexity is a weaker
requirement than convexity, but still strong enough that quasiconvex functions
have applications in optimization, game theory and economics.

Definition 1.2.1 (Quasiconvex function) Let S ⊆ X be convex. A function
f : S → R is quasiconvex if for all x, y ∈ S and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.
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Figure 1.7: A function which is quasiconvex, but not convex.

An equivalent way to define quasiconvexity is via convexity of the sublevel
sets Sα := {x ∈ S : f(x) ≤ α} for all α.

Proposition 1.2.2 Let S ⊆ X be convex and let f : S → R. Then, f is
quasiconvex if and only if the α-sublevel sets

Sα = {x ∈ S : f(x) ≤ α}

are convex for all α ∈ R.

Proof: Left as an exercise to the reader. �

All convex functions are quasiconvex. However, the opposite implication is
not true: There exists quasiconvex functions that are not convex, see Figure
1.7. Furthermore, concave functions can be quasiconvex. An example of this is
f(x) = log(x), defined on the positive real numbers.

Not all functions are quasiconvex, and an example of a function which is not
quasiconvex is illustrated in Figure 1.7. Note that this fuction is not quasiconvex
because the set of points in the domain where the function values are below the
horizontal red line is the union of the two bold, red intervals, which is not a
convex set. Hence, the sublevel set Sα for this particular α is not convex, and
therefore the function does not satisfy the condition in Proposition 1.2.2

1.3 Optimization

Optimization is the mathematical theory of maximization and minimization
problems. It is useful in many applications, for example in logistic problems,
finding the best spot to drill for oil, and in mathematical finance. In finance,
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Figure 1.8: A function which is not quasiconvex.

one often considers an investor who wishes to maximize her utility, given various
constraints (for instance her salary). The question is how one can solve such
problems. This section gives a short summary of some of some background
theory on optimization.

Let X be a vector space, f : X → R̄, g : X → Rn and S ⊆ X. Consider an
optimization problem of the form

min f(x)
subject to

g(x) ≤ 0 (componentwise)
x ∈ S.

(1.10)

In problem (1.10), f is called the objective function, while g(x) ≤ 0, x ∈ S
are called the constraints of the problem.

A useful technique when dealing with optimization problems is transforming
the problem. For example, a constraint of the form h(x) ≥ y (for h : X → Rn,
y ∈ Rn) is equivalent to y − h(x) ≤ 0, which is of the form g(x) ≤ 0 with
g(x) = y − h(x). Similarly, any maximization problem can be turned into a
minimization problem (and visa versa) by using that inf f(x) = − sup(−f(x)).
Also, any equality constraint can be transformed into two inequality constraints:
h(x) = 0 is equivalent to h(x) ≤ 0 and h(x) ≥ 0.

One of the most important theorems of optimization is the extreme value
theorem (see Munkres [15]).

Theorem 1.3.1 (The extreme value theorem) If f : X → R is a continu-
ous function from a compact set into the real numbers, then there exist points



1.4. LAGRANGE DUALITY 17

a, b ∈ X such that f(a) ≥ f(x) ≥ f(b) for all x ∈ X. That is, f attains a
maximum and a minimum.

The importance of the extreme value theorem is that it gives the existence
of a maximum and a minimum in a fairly general situation. However, these may
not be unique. But, for convex (or concave) functions, Theorem 1.1.30 implies
that any local minimum (maximum) is a global minimum (maximum). This
makes convex functions useful in optimization.

For a function f : Rn → R, the maximum and minimum are attained in
critical points. Critical points are points x such that

• f ′(x) = 0, where f is differentiable at x,

• the function f is not differentiable at x or

• x is on the boundary of the set one is optimizing over.

Hence, for a differentiable function which is optimized without extra constraints,
one can find maximum and minimum points by solving f ′(x) = 0 and comparing
the objective value in these points to those of the points on the boundary.

Constrained optimization can be tricky to handle. An example of con-
strained optimization is linear programming (LP); maximization of linear func-
tions under linear constraints. In this situation, strong theorems regarding the
solution has been derived. It turns out that corresponding to each LP problem,
there is a "dual" problem, and these two problems have the same optimal value.
This dual problem is introduced in order to get a second chance at solving an
otherwise difficult problem. There is also an effective numerical method for
solving LP problems, called the simplex algorithm. See Vanderbei [24] for more
about linear programming.

The concept of deriving a "dual" problem to handle constraints is the idea
of Lagrange duality as well. Lagrange duality begins with a problem of the
form (1.10) (or the corresponding maximization problem), and derives a dual
problem which gives lower (upper) bounds on the optimal value of the problem.
Actually, linear programming duality is a special case of Lagrange duality, but
since Lagrange duality is more general, one cannot get the strong theorems of
linear programming. The duality concept is generalized even more in convex
duality theory, which is the topic of Section 1.5.

1.4 Lagrange duality

The method of Lagrange duality can be described as follows: Let X be a general
inner product space with inner product 〈·, ·〉. Assume there is a function f :
X → R to be maximized under certain constraints.

Consider a problem of the following, very general, form

maximize f(x) subject to g(x) ≤ 0, x ∈ S (1.11)
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where g is a function such that g : X → RN and S 6= ∅ (to exclude a trivial
case). This will be called the primal problem. Note that if one has a problem
with equality constraints, one can rewrite this in the form of problem (1.11)
by writing each equality as two inequalities. Also, ≥ can be turned into ≤ by
multiplying with −1, and by basic algebra, one can always make sure there is 0
on one side of the inequality. Note that there are no constraints on f or S and
only one (weak) constraint on g. Hence, many problems can be written in the
form (1.11).

Let λ ∈ RN be such that λ ≥ 0 (componentwise), and assume that g(x) ≤ 0
(componentwise) for all x ∈ S. Then:

f(x) ≤ f(x)− λ · g(x) (1.12)

because λ · g(x) ≤ 0 (where · denotes the Euclidean inner product). This
motivates the definition of the Lagrange function, L(x, λ)

L(x, λ) = f(x)− λ · g(x).

Hence, L(x, λ) is an upper bound on the objective function for each λ ∈ RN ,
λ ≥ 0 and x ∈ X such that g(x) ≤ 0. By taking supremum on each side of the
inequality in (1.12), for each λ ≥ 0,

sup{f(x) : g(x) ≤ 0, x ∈ S} ≤ sup{f(x)− λ · g(x) : g(x) ≤ 0, x ∈ S}
= sup{L(x, λ) : x ∈ S, g(x) ≤ 0}
≤ supx∈S L(x, λ)

:= L(λ)
(1.13)

where the second inequality follows because we are maximizing over a larger
set, hence the optimal value cannot decrease.

This implies that for all λ ≥ 0, L(λ) is an upper bound for the optimal
value function. We want to find the smallest upper bound. This motivates the
definition of the Lagrangian dual problem

inf
λ≥0

L(λ). (1.14)

Therefore, the following theorem is proven (by taking the infimum on the
right hand side of equation (1.13)).

Theorem 1.4.1 (Weak Lagrange duality) In the setting above, the follow-
ing inequality holds

sup{f(x) : g(x) ≤ 0, x ∈ S} ≤ inf{L(λ) : λ ≥ 0}.

This theorem shows that the Lagrangian dual problem gives the smallest
upper bound on the optimal value of problem (1.11) generated by the Lagrange
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Figure 1.9: Illustration of Lagrange duality with duality gap.

function. The Lagrangian dual problem has only one, quite simple, constraint,
namely λ ≥ 0, and this may mean that the dual problem is easier to solve than
the original problem.

In some special cases, one can proceed to show duality theorems, proving
that sup{f(x) : g(x) ≤ 0, x ∈ S} = infλ≥0 L(λ). If this is the case, one says
that there is no duality gap. This typically happens in convex optimization
problems under certain assumptions. However, often there actually is a duality
gap, but the Lagrangian dual problem still gives us an upper bound, and hence
some idea of the optimal value of our problem.

An example where Lagrangian duality is applied, and a duality theorem is
derived, is linear programming (LP) duality. The calculation of the LP dual
from the primal is omitted here, but it is fairly straight-forward.

The definition of conjugate functions (see Section 1.7) also has its roots in
Lagrangian duality. The conjugate function shows up naturally when finding
the Lagrangean dual of a minimization problem with linear inequalities as con-
strains.

One can illustrate Lagrange duality such that it is simple to see graphically
whether there is a duality gap. Consider problem (1.11) where S = X, and
define the set G = {(g(x), f(x)) ∈ RN+1 : x ∈ X}. The optimal value of problem
(1.11), denoted p∗, can then be written as p∗ = sup{t : (u, t) ∈ G, u ≤ 0} (from
the definitions). This can be illustrated for g : X → R (i.e. for only one
inequality) as in Figures 1.9 and 1.10.

Figure 1.10 shows the set G, the optimal primal value p∗ and the Lagrange-
function for two different Lagrange multipliers. The value of the function L(l) =
supx∈X{f(x)−lg(x)} is given by the intersection of the line t−lu and the t-axis.
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Figure 1.10: Illustration of Lagrange duality with no duality gap.

Note that the shaded part of G corresponds to the feasible solutions of problem
(1.11). Hence, to find the optimal primal solution p∗ in the figure, find the point
(u∗, t∗) in the shaded area of G such that t∗ is as large as possible.

How can one find the optimal dual solution in Figure 1.10? Fix an l ≥ 0,
and draw the line t− lu into the figure. Now, find the function L(l) by parallel-
adjusting the line so that the intersection of t− lu is as large as possible, while
making sure that the line still intersects G. Having done this, tilt the line such
that l is still greater than or equal 0, but such that the intersection of the line
and the t-axis becomes as big as possible. The final intersection is the optimal
dual solution.

Actually, there is no duality gap in the problem of Figure 1.10, since the
optimal primal value corresponds to the optimal dual value, given by the inter-
section of the line t− l∗u and the t-axis.

In Figure 1.9 there is a duality gap, since the optimal dual value, denoted
d∗ is greater than the optimal primal value, denoted p∗. What goes wrong?
By examining the two figures above, one sees that the absence of a duality
gap has something to do with the set G being "locally convex" near the t-axis.
Bertsekas [2] formalizes this idea, and shows a condition for the absence of a
duality gap (in the Lagrange duality case), called the Slater condition.

The Slater condition, in the case where X = Rn (see Boyd and Vanden-
berghe [3]), states the following: Assume there is a problem of the form (1.11).
If f is concave, S = X, each component function of g is convex and there exists
x ∈ rint(D) (see Definition 1.1.12), where D is defined as the set of x ∈ X where
both f and g are defined, such that g(x) < 0, then there is no duality gap.

Actually, (from Boyd and Vandenberghe [3]) this condition can be weakened
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in the case where the component-functions g are actually affine (and f is still
concave) and dom(f) is open. In this case it is sufficient that there exists a
feasible solution for the absence of a duality gap. Note that for a minimization
problem, the same condition holds as long as f is convex (since a maximization
problem can be turned into a minimization problem by using that sup f =
− inf(−f)).

There is also an alternative version of the Slater condition, where X = Rn.
This is from Bertsekas et. al [2, p.371]: If the optimal value of the primal
problem (1.11) is finite, S is a convex set, f and g are convex functions and
there exists x′ ∈ S such that g(x) < 0, then there is no duality gap.

There is also a generalized version of the Lagrange duality method. The
previous Lagrange duality argument can be done for g : X → Z, where Z is
some normed space (see Rynne and Youngston [22] for more on normed spaces)
with an ordering that defines a non-negative orthant. From this, one can derive
a slightly more general version of the Slater condition (using the separating
hyperplane theorem). This version of the Slater condition is Theorem 5 in
Luenberger [13] (adapted to the notation of this section): Let X be a normed
space and let f be a concave function, defined on a convex subset C of X.
Also, let g be a convex function which maps into a normed space Z (with some
ordering). Assume there exists some x′ ∈ C such that g(x′) < 0. Then the
optimal value of the Lagrange primal problem equals the optimal value of the
Lagrange dual problem, i.e. there is no duality gap.

In particular, since Rm is a normed space with an ordering that defines a non-
negative orthant (componentwise ordering), this generalized Slater condition
applies to the Lagrange problem at the beginning of this section.

Finally, note that the Lagrange duality method is quite general, since it
holds for an arbitrary vector space X.

1.5 Convex duality and optimization

This section is based on Conjugate Duality and Optimization by Rockafellar [18].
As mentioned, convex functions are very handy in optimization problems be-
cause of property 1 of Theorem 1.1.30: For any convex function, a local minimum
is also a global minimum.

Another advantage with convex functions in optimization is that one can
exploit duality properties in order to solve problems. In the following, let X
be a linear space, and let f : X → R be a function. The main idea of convex
duality is to view a given minimization problem minx∈X f(x) (note that it is
common to write min instead of inf when introducing a minimization problem
even though one does not know that the minimum is attained) as one half of a
minimax problem where a saddle value exists. Very roughly, one does this by
looking at an abstract optimization problem

min
x∈X

F (x, u) (1.15)
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where F : X×U → R is a function such that F (x, 0) = f(x), U is a linear space
and u ∈ U is a parameter one chooses depending on the particular problem at
hand. For example, u can represent time or some stochastic vector expressing
uncertainty in the problem data. Corresponding to this problem, one defines an
optimal value function

ϕ(u) = inf
x∈X

F (x, u) , u ∈ U. (1.16)

We then have the following theorem:

Theorem 1.5.1 Let X,U be real vector spaces, and let F : X × U → R be a
convex function. Then ϕ is convex as well.

Proof: This follows from property 10 of Theorem 1.1.30. �

The following is a more detailed illustration of the dual optimization method:
Let X and Y be general linear spaces, and let K : X × Y → R be a function.
Define

f(x) = sup
y∈Y

K(x, y) (1.17)

and
g(y) = inf

x∈X
K(x, y). (1.18)

Then, consider two optimization problems

(P ) min
x∈X

f(x)

and

(D) max
y∈Y

g(y).

From the definitions

g(y) ≤ K(x, y) ≤ f(x), ∀ x ∈ X,∀ y ∈ Y. (1.19)

By taking the infimum over x and then the supremum over y in equation (1.19)

inf
x∈X

sup
y∈Y

K(x, y) = inf
x∈X

f(x) ≥ sup
y∈Y

g(y) = sup
y∈Y

inf
x∈X

K(x, y). (1.20)

If there is equality in equation (1.20), then the common value is called the
saddle value of K.

The saddle value exists if K has a saddle point, i.e. there exists a point
(x′, y′) such that

K(x′, y) ≤ K(x′, y′) ≤ K(x, y′) (1.21)

for all x ∈ X and for all y ∈ Y . If such a point exists, the saddle value of K is
K(x′, y′).

From these definitions, one can prove the following theorem.
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Theorem 1.5.2 A point (x′, y′) is a saddle point for K if and only if x′ solves
(P ), y′ solves (D), and the saddle value of K exists, i.e.

inf
x∈X

f(x) = sup
y∈Y

g(y)

The proof is left as an exercise.
Because of this theorem, (P ) and (D) are called dual problems, since they

can be considered as half of the problem of finding a saddle point for K.
Hence, in order to prove that (P ) and (D) have a solution, and actually find

this solution one can instead attempt to find a saddle point for the function K.
In convex optimization, one is interested in what has been done above in the

opposite order: If one starts with (P ), where f : X → R, how can one choose
a space Y and a function K on X × Y such that f(x) = supy∈Y K(x, y) holds?
This approach gives freedom to choose Y and K in different ways, so that one
can (hopefully) achieve the properties one would like Y and K to have. This
idea is called the duality approach.

1.6 Examples of convex optimization via duality
Example 1.6.1 (Nonlinear programming) Let f0, f1, . . . , fm be real valued,
convex functions on a nonempty, convex set C in the vector space X. The du-
ality approach consists of the following steps:

1. The given problem: min f0(x) over {x ∈ C : fi(x) ≤ 0 ∀ i = 1, . . . ,m}.

2. Abstract representation: min f over X, where

f(x) =

{
f0(x) x ∈ C, fi(x) ≤ 0 for i = 1, . . . ,m
+∞ for all other x ∈ X.

3. Parametrization: Define (for example) F (x, u) for u = (u1, . . . , um) ∈ Rm
by F (x, u) = f0(x) if x ∈ C, fi(x) ≤ ui for i = 1, . . . , m, and F (x, u) =
+∞ for all other x. Then, F : X × Rm → [−∞,+∞] is convex and
F (x, 0) = f(x)

Example 1.6.2 (Nonlinear programming with infinitely many constraints)
Let f0 : C → R where C ⊂ X is convex, and let h : X ×S → R̄ be convex in the
x-argument, where S is an arbitrary set

1. The problem: min f0(x) over K = {x ∈ C : h(x, s) ≤ 0 ∀ s ∈ S}.

2. Abstract representation: min f(x) over X, where f(x) = f0(x) if x ∈ K,
and f(x) = +∞ for all other x.

3. Parametrization: Choose u analoglously with Example 1.6.1: Let U be the
linear space of functions u : S → R and let F (x, u) = f0(x) if x ∈ C,
h(x, s) ≤ u(s) ∀ s ∈ S and F (x, u) = +∞ for all other x. As in the
previous example, this makes F convex and satisfies F (x, 0) = f(x).
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Example 1.6.3 (Stochastic optimization) Let (Ω,F , P ) be a probability space
and let h : X ×Ω→ R̄ be convex in the x-argument, where X is a linear, topo-
logical space. Let C be a closed, convex subset of X.

1. The general problem: minh(x, ω) over all x ∈ C, where ω is a stochastic
element with a known distribution. The difficulty here is that x must be
chosen before ω has been observed.

2. We therefore solve the following problem: Minimize the expectation f(x) =∫
Ω
h(x, ω)dP (ω) over all x ∈ X. Here, it is assumed that h is measurable,

so that f is well defined. Rockafellar then shows in [18], Theorem 3, that
f actually is convex.

3. Parametrization: Let F (x, u) =
∫

Ω
h(x−u(ω), ω)dP (ω)+δC(u) for u ∈ U ,

where U is a linear space of measurable functions and δC is the indicator
function of C, as defined in Definition 1.1.16. Then F is (by the same
argument as for f) well defined and convex, with F (x, 0) = f(x).

1.7 Conjugate functions in paired spaces
The material in this section is based on Rockafellar [18] and Rockafellar and
Wets [20].

Definition 1.7.1 (Pairing of spaces) A pairing of two linear spaces X and
V is a real valued bilinear form 〈·, ·〉 on X × V .

The pairing associates for each v ∈ V a linear function 〈·, v〉 : x 7→ 〈x, v〉 on
X, and similarly for X.

Definition 1.7.2 (Compatible topology) Assume there is a pairing between
the spaces X and V . A topology on X is compatible with the pairing if it is a
locally convex topology such that the linear function 〈·, v〉 is continuous, and any
continuous linear function on X can be written in this form for some v ∈ V . A
compatible topology on V is defined similarly.

Definition 1.7.3 (Paired spaces) X and V are paired spaces if one has cho-
sen a pairing between X and V , and the two spaces have compatible topologies
with respect to the pairing.

Example 1.7.4 Let X = Rn and V = Rn. Then, the standard Euclidean inner
product is a bilinear form, so X and V become paired spaces.

Example 1.7.5 Let X = L1(Ω,F , P ) and V = L∞(Ω,F , P ). Then X and V
are paired via the bilinear form 〈x, v〉 =

∫
Ω
x(s)v(s)dP (s). Similarly, the spaces

X = Lp(Ω, F, P ) and V = Lq(Ω, F, P ), where 1
p + 1

q = 1, are paired.

We now come to a central notion of convex duality, the conjugate of a func-
tion.
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Definition 1.7.6 (Convex conjugate of a function, f∗) Let X and V be
paired spaces. For a function f : X → R̄, define the conjugate of f , denoted by
f∗ : V → R̄, by

f∗(v) = sup{〈x, v〉 − f(x) : x ∈ X}. (1.22)

Finding f∗ is called taking the conjugate of f in the convex sense. One may
also define the conjugate g∗ of a function g : V → R̄ similarly.

Similarly, define

Definition 1.7.7 (Biconjugate of a function, f∗∗) Let X and V be paired
spaces. For a function f : X → R̄, define the biconjugate of f , f∗∗, to be the
conjugate of f∗, so f∗∗(x) = sup{〈x, v〉 − f∗(v) : v ∈ V }.

Definition 1.7.8 (The Fenchel transform) The operation f 7→ f∗ is called
the Fenchel transform.

If f : Rn → R̄, then the operation f 7→ f∗ is sometimes called the Legendre-
Fenchel transform.

To understand why the conjugate function f∗ is important, it is useful to
consider it via the epigraph. This is most easily done in Rn, so let f : Rn → R̄
and consider X = Rn = V . From equation (1.22), it is not difficult to show that

(v, b) ∈ epi(f∗) ⇐⇒ b ≥ 〈v, x〉 − a for all (x, a) ∈ epi(f). (1.23)

This can also be expressed as

(v, b) ∈ epi(f∗) ⇐⇒ lv,b ≤ f (1.24)

where lv,b(x) := 〈v, x〉 − b. So, since specifying a function on Rn is equivalent
to specifying its epigraph, equation (1.24) shows that f∗ describes the family of
all affine functions that are majorized by f (since all affine functions on Rn are
of the form 〈v, x〉 − b for fixed v, b).

But from equation (1.23)

b ≥ f∗(v) ⇐⇒ b ≥ lx,a(v) for all (x, a) ∈ epi(f).

This means that f∗ is the pointwise supremum of all affine functions lx,a for
(x, a) ∈ epi(f).

This is illustrated in Figures 1.11 and 1.12.
We then have the following very central theorem on duality, which is Theo-

rem 5 in Rockafellar [18]:

Theorem 1.7.9 Let f : X → R̄ be arbitrary. Then the conjugate f∗ is a closed
(as defined in Section 1.1), convex function on V and f∗∗ = cl(co(f)). Similarly
if one starts with a function in V . In particular, the Fenchel transform induces
a one-to-one correspondence f 7→ h, h = f∗ between the closed, convex functions
on X and the closed, convex functions on V .
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epi(f)

(x, a)

lv,b(x) = 〈v, x〉 − b

lv,b0(x)

lv,b1(x)
lv,b2(x)

Figure 1.11: Affine functions majorized by f .

epi(f∗)

(v, b)

lx,a(v) = 〈x, v〉 − a

Figure 1.12: Affine functions majorized by f∗.

Proof: By definition f∗ is the pointwise supremum of the continuous, affine
functions V 7→ 〈x, v〉 − α, where (x, α) ∈ epi(f). Therefore, f∗ is convex and
lsc, hence it is closed. (v, β) ∈ epi(f∗) if and only if the continuous affine
function x 7→ 〈x, v〉 − β satisfies f(x) ≥ 〈x, v〉 − β for all x ∈ X, that is if the
epigraph of this affine function contains the epigraph of f . Thus, epi(f∗∗) is the
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intersection of all the nonvertical, closed halfspaces in X ×R containing epi(f).
This implies, using what a closed, convex set is, that f∗∗ = cl(co(f)). �

Theorem 1.7.9 implies that if f is convex and closed, then f = f∗∗. This
gives a one-to-one correspondence between the closed convex functions on X,
and the same type of functions on V . Hence, all properties and operations on
such functions must have conjugate counterparts (see [20]).

Example 1.7.10 Let X and V be paired spaces, and let f = δL where L ⊆ X
is a subspace (so in particular, L is convex) and δL is the indicator function
of L, as in Definition 1.1.16. It follows from Example 1.1.29 that f = δL is
convex. Then

δ∗L(v) = sup{〈x, v〉 − δL(x) : x ∈ X}
= sup{〈x, v〉;x ∈ L}

since 〈x, v〉 − δL(x) = −∞ if x /∈ L. This function δ∗L is called the support
function of L (and is often denoted by ψL). Note also that

δ∗L(v) = δL⊥(v)

because if v ∈ L⊥, then 〈x, v〉 = 0 for all x ∈ L, but if v /∈ L⊥ then 〈x′, v〉 6= 0
for some x′ ∈ L. Hence, since L is a subspace, 〈x′, v〉 can be made arbitrarily
large by multiplying x′ by either +t or −t (in order to make 〈x′, v〉 positive),
and letting t→ +∞.

By a similar argument

δ∗∗L = δ(L⊥)⊥ . (1.25)

We will now use conjugate duality to prove a central result in functional
analysis, namely that for any subspace L ⊆ X, (L⊥)⊥ = L̄ (see for instance
Linear Functional Analysis by Rynne and Youngston [22]).

Theorem 1.7.11 Let L ⊆ X be a subspace. Then (L⊥)⊥ = L̄.

Proof:
From Example 1.7.10

δ∗∗L = δ(L⊥)⊥ (1.26)

But then, Theorem 1.7.9 implies that δ(L⊥)⊥ = cl(co(δL)). δL is convex, so
co(δL) = δL. To proceed, we make the following claim:

Claim: cl(δL) = δL̄.

Proof of Claim: From Definition 1.1.28, cl(δL) = lsc(δL) = the largest lower
semi-continuous function that is less than or equal to δL. δL̄ is lower semi-
continuous since L̄ is closed (from Theorem 1.1.26). Also, from Example 1.7.10,
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δL̄ ≤ δL since L ⊆ L̄. All that remains to be proved is that if f is lower
semi-continuous and f ≤ δL, then f ≤ δL̄.

So assume that f is lower semi-continuous and f ≤ δL. We know that
δL(L) = δL̄(L), so f(L) ≤ δL(L) ≤ δL̄(L), from the assumption that f ≤ δL.

If x ∈ (L̄)⊥, then δL̄(x) = +∞, so f(x) ≤ δL̄(x).
Finally, if x ∈ L̄ \ L, then δL(x) = +∞, but δL̄(x) = 0. Hence, we must

show that f(x) ≤ 0. Since f is lower semi-continuous, Theorem 1.1.26 implies
that the sublevel set S0(f) = {x ∈ X : f(x) ≤ 0} is closed. Because f ≤ δL,
L ⊆ S0(f), hence (since S0(f) is closed) L̄ ⊆ S0(f), so f(x) ≤ 0 for all x ∈ L̄.

So the claim is proved.

The arguments above imply that

δ(L⊥)⊥ = δ∗∗L = cl(co(δL)) = cl(δL) = δL̄

where the final equality uses the claim. But this again implies that (L⊥)⊥ = L̄.
�

For a concave function g : X → R̄ one can define the conjugate as:

g∗(v) = inf{〈x, v〉 − g(x) : x ∈ X} (1.27)

This is called taking the conjugate of g in the concave sense.

1.8 Dual problems and Lagrangians
This is our situation as of now. We have an abstract minimization problem:

(P ) min
x∈X

f(x)

which is assumed to have the representation:

f(x) = F (x, 0), F : X × U → R̄ (1.28)

(where U is some linear space). Everything now depends on the choice of U and
F . We want to exploit duality, so let X be paired with V , and U paired with Y ,
where U and Y are linear spaces (the choice of pairings may also be important
in applications). Preferably, we want to choose (F,U) such that F is a closed,
jointly convex function of x and u.

Definition 1.8.1 (The Lagrange function, K(x, y)) Define the Lagrange func-
tion K : X × Y → R̄ to be

K(x, y) = inf{F (x, u) + 〈u, y〉 : u ∈ U}. (1.29)

The following theorem is Theorem 6 in Rockafellar [18]. It says that K is a
closed convex function which satisfies a certain inequality, and that all functions
of this form actually are the Lagrange function associated with some function
f .
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Theorem 1.8.2 The Lagrange function K is closed, concave in y ∈ Y for each
x ∈ X, and if F (x, u) is closed and convex in u

f(x) = sup
y∈Y

K(x, y). (1.30)

Conversely, if K is an arbitrary extended-real valued function on X × Y such
that (1.30) holds, and if K is closed and concave in y, then K is the Lagrange
function associated with a unique representation f(x) = F (x, 0), F : X×U → R̄
where F is closed and convex in u. This means that

F (x, u) = sup{K(x, y)− 〈u, y〉 : y ∈ Y }.

Further, if F is closed and convex in u, K is convex in x if and only if F (x, u)
is jointly convex in x and u.

Proof: Everything in the theorem, apart from the last statement, follows from
Theorem 1.7.9. For the last statement, assume that F and K respectively are
convex, use the definitions of F and K and that the supremum and infimum of
convex functions are convex (see Theorem 1.1.30). �

We now define, motivated by equation (1.30), the dual problem of (P ),

(D) max
y∈Y

g(y)

where g(y) = infx∈X K(x, y).
Note that this dual problem gives a lower bound on the primal problem,

from (1.30) since

K(x, y) ≥ inf
x∈X

K(x, y) = g(y).

But then

sup
y∈Y

K(x, y) ≥ sup
y∈Y

g(y).

So from equation (1.30), f(x) ≥ supy∈Y g(y). Therefore, taking the infimum
with respect to x ∈ X on the left hand side implies (D) ≤ (P ). This is called
weak duality. Sometimes, one can prove that the dual and primal problems have
the same optimal value. If this is the case, there is no duality gap and strong
duality holds.

The next theorem (Theorem 7 in Rockafellar [18]) is important:

Theorem 1.8.3 The function g in (D) is closed and concave. By taking the
conjugate in concave sense, g = −ϕ∗, hence −g∗ = cl(co(ϕ)), so

sup
y∈Y

g(y) = cl(co(ϕ))(0)
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while

inf
x∈X

f(x) = ϕ(0)

In particular, if F (x, u) is convex in (x, u), then −g∗ = cl(ϕ) and supy∈Y g(y) =
lim infu→0 ϕ(u) (except if 0 /∈ cl(dom(ϕ)) 6= Ø, and lsc(ϕ) is nowhere finite
valued).

For the proof, see Rockafellar [18].
What makes this theorem important is that it converts the question of

whether infx∈X f(x) = supy∈Y g(y) and the question of whether the saddle
value of the Lagrange function K exists, to a question of whether the optimal
value function ϕ satisfies ϕ(0) = (cl(co(ϕ)))(0). Hence, if the value function ϕ
is convex, the lower semi-continuity of ϕ is a sufficient condition for the absence
of a duality gap.

By combining the results of the previous sections, we get the following rough
summary of the duality method, based on conjugate duality:

• To begin, there is a minimization problem minx∈X f(x) which cannot be
solved directly.

• Find a function F : X × U → R̄, where U is a vector space, such that
f(x) = F (x, 0).

• Introduce the linear space Y , paired with U , and define the Lagrange
function K : X × Y → R̄ by K(x, y) = infu∈U{F (x, u) + 〈u, y〉}.

• Try to find a saddle point for K. If this succeeds, Theorem 1.5.2 tells us
that this gives the solution of (P ) and (D).

• Theorem 1.8.3 tells us that K has a saddle point if and only if ϕ(0) =
(cl(co(ϕ)))(0). Hence, if the value function ϕ is convex, the lower semi-
continuity of ϕ is a sufficient condition for the absence of a duality gap.

We can look at an example illustrating these definitions, based on Exam-
ple 1.6.1.

Example 1.8.4 (Nonlinear programming) The Lagrange function takes the
form

K(x, y) = inf{F (x, u) + 〈u, y〉 : u ∈ U}

= inf{

{
f0(x) + 〈u, y〉;x ∈ C, fi(x) ≤ ui
+∞+ 〈u, y〉;∀ other x

: u ∈ U}

=

{
f0(x) + inf{〈u, y〉 : u ∈ U, fi(x) ≤ ui}, x ∈ C
+∞, otherwise.

=


inf{f0(x) + f1(x)y1 + . . .+ fm(x)ym}, u ∈ U, x ∈ C, y ∈ Rm+
−∞, x ∈ C, y /∈ Rm+
+∞, otherwise.
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where the last equality follows because if there is at least one negative yj, one
can choose uj arbitrarily large and make the above expression arbitrarily small.
Therefore, the dual function is

g(y) = inf
x∈X

K(x, y)

= inf
x∈X


f0(x) + f1(x)y1 + . . .+ fm(x)ym if x ∈ C, y ∈ Rm+
−∞, x ∈ C, y /∈ Rm+
+∞, otherwise.

=

{
infx∈C{f0(x) + f1(x)y1 + . . .+ fm(x)ym} if y ∈ Rm+
−∞, y /∈ Rm+ .

By making some small alterations to the approach above, Rockafellar [18] shows
that by beginning with the standard primal linear programming problem (ab-
breviated LP-problem)

max{〈c, x〉 : Ax ≤ b, x ≥ 0}

where c and b are given vectors and A is a given matrix, and finding its dual
problem (in the above sense), one gets the standard dual LP-problem back.
That is

min{〈b, y〉 : AT y ≥ c, y ≥ 0}

(see Vanderbei [24]).

1.9 Exercises to Chapter 1
Exercise 1.1 : Prove Theorem 1.1.14.

Exercise 1.2 : Prove items 3.-5. of Theorem 1.1.30.

Exercise 1.3 : Prove Proposition 1.2.2.

Exercise 1.4 : Prove that all convex functions are quasiconvex.

Exercise 1.5 : Prove that f(x) = log(x) defined on the positive real numbers is
concave and quasiconvex.

Exercise 1.6 : Prove Theorem 1.5.2.

Exercise 1.7 : Prove that Definition 1.1.19 implies Definition 1.1.17. Note that
this completes the proof of Theorem 1.1.20.
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Chapter 2
Convex risk measures and duality

The purpose of this chapter is to present a possible way to quantify monetary
risk. In practice, several different risk measures are used for this purpose. How-
ever, we will focus on a class of such measures, called convex risk measures,
which satisfy certain economically reasonable properties. In Section 2.1, we
define convex risk measures and some corresponding notions, such as coherent
risk measures and acceptance sets. Then, we derive some properties of convex
risk measures. In Section 1.5 we present a brief introduction to convex duality
theory. This theory is needed in Section 2.2, where we prove dual representa-
tion theorems for convex risk measures. These theorems provide an alternative
characterisation of these measures. In Section 2.3, we give some examples of
measures of risk commonly used in finance.

2.1 Convex and coherent risk measures

In the literature, there are many different methods for quantifying risk depend-
ing on the context and purpose. In this section, we focus on monetary measures
of financial risk. We will introduce measures for the risk of a financial position,
X, which takes a random value at some set terminal time. This value depends
on the current world scenario. An intuitive approach for quantifying risk is the
variance. However, the variance does not separate between negative and posi-
tive deviations. Hence, it is only suitable as a measure of risk in cases where any
kind of deviation from the target is a problem. In situations where deviations
in one direction is OK, or even good, while deviations is the other direction is
bad, the variance is unsuitable. Clearly, the variance is an unsuitable measure
of financial risk. In finance, positive deviations are good (earning more money),
but negative deviations are bad (earning less money). In order to resolve this,
Artzner et al. [1] set up some economically reasonable axioms that a measure of
risk should satisfy and thereby introduced coherent risk measures. This notion
has later been modified to socalled convex risk measures.

33
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In order to understand convex risk measures properly, we need some essential
concepts from measure theory. We recall these definitions here for completeness,
and refer the reader to Shilling [23] for a detailed introduction to measure- and
integration theory. Consider a given scenario space Ω. This may be a finite set
Ω = {ω1, ω2, . . . , ωn} or an infinite set. On this space, we can define a σ-algebra
F , i.e. a family of subsets of Ω that contains the empty set ∅ and is closed under
complements and countable unions. The elements in the σ-algebra F are called
measurable sets. (Ω,F) is then called a measurable space. A measurable function
is a function f : (Ω,F)→ (Ω′,F ′) (where (Ω′,F ′) is another measurable space)
such that for any measurable set, E ∈ F ′, the inverse image (preimage), f−1(E),
is a measurable set, i.e.,

f−1(E) := {ω ∈ Ω : f(ω) ∈ E} ∈ F .

A random variable is a real-valued measurable function. On a measurable
space (Ω,F) one can define a measure, i.e. a non-negative countably addi-
tive function µ : Ω → R such that µ(∅) = 0. Then, (Ω,F , µ) is called a
measure space. A signed measure is the same as a measure, but without the
non-negativity requirement. A probability measure is a measure P such that
P (Ω) = 1. Let P denote the set of all probability measures on (Ω,F), and V
the set of all measures on (Ω,F). Then V is a vector space (also called linear
space), and P ⊆ V is a convex set (check this yourself as an exercise!).

In the following, let Ω be a fixed set of scenarios, or possible states of the
world. Note that we make no further assumptions on Ω, so in particular, it may
be infinite. Consider the measure space (Ω,F , P ), where F is a given σ-algebra
on Ω and P is a given probability measure on (Ω,F). A financial position (such
as a portfolio of stocks) can be described by a mapping X : Ω → R, where
X(ω) is the value of the position at the end of the trading period if the state
ω occurs. More formally, X is a random variable. Hence, the dependency of X
on ω describes the uncertainty of the value of the portfolio. Let X be a given
vector space of such random variables X : Ω→ R, which contains the constant
functions. For c ∈ R, let c1 ∈ X denote the constant function c1(ω) = c for all
ω ∈ Ω. An example of such a space is

Lp(Ω,F , P ) := {f : f is measurable and
( ∫

Ω

|f(ω)|pdP (ω)
)1/p

<∞}, 1 ≤ p ≤ ∞.

A convex risk measure is defined as follows:

Definition 2.1.1 (Convex risk measure) A convex risk measure is a func-
tion ρ : X→ R which satisfies the following for each X,Y ∈ X:

(i) (Convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for 0 ≤ λ ≤ 1.

(ii) (Monotonicity) If X ≤ Y , then ρ(X) ≥ ρ(Y ).

(iii) (Translation invariance) If m ∈ R, then ρ(X +m1) = ρ(X)−m.
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If ρ(X) ≤ 0, X is acceptable since it does not have a positive risk. On the other
hand, if ρ(X) > 0, X is unacceptable.

If a convex risk measure also satisfies positive homogeneity, that is if

λ ≥ 0⇒ ρ(λX) = λρ(X)

then ρ is called a coherent risk measure. The original definition of a coherent risk
measure, did not involve convexity directly, but instead required subadditivity:

Definition 2.1.2 (Coherent risk measure) A coherent risk measure is a func-
tion π : X→ R which satisfies the following for each X,Y ∈ X:

(i) (Positive homogeneity) π(λX) = λπ(X) for λ ≥ 0.

(ii) (Subadditivity) π(X + Y ) ≤ π(X) + π(Y ).

(iii) (Monotonicity) If X ≤ Y , then π(X) ≥ π(Y ).

(iv) (Translation invariance) If m ∈ R, then π(X +m1) = π(X)−m.

We can interpret ρ as a capital requirement, that is: ρ(X) is the extra amount
of money which should be added to the portfolio in a risk free way to make the
position acceptable for an agent.

The conditions in Definition 2.1.1 are quite natural. The convexity reflects
that diversification reduces risk. The total risk of loss in two portfolios should
be reduced when the two are weighed into a mixed portfolio. Roughly speaking,
spreading your eggs in several baskets should reduce the risk of broken eggs.

Monotonicity says that the downside risk, the risk of loss, is reduced by
choosing a portfolio that has a higher value in every possible state of the world.

Finally, translation invariance can be interpreted in the following way: ρ
is the amount of money one needs to add to the portfolio in order to make it
acceptable for an agent. Hence, if one adds a risk free amountm to the portfolio,
the capital requirement should be reduced by the same amount.

As mentioned, Artzner et al. [1] originally defined coherent risk measures,
that is, they required positive homogeneity. The reason for skipping this re-
quirement in the definition of a convex risk measure is that positive homogene-
ity means that risk grows linearly with X, and this may not always be the case.
In the following, we consider convex risk measures. However, the results can be
proved for coherent risk measures as well.

Starting with n convex risk measures, one can derive more convex risk mea-
sures, as in the following theorem. This was proven by Rockafellar in [19],
Theorem 3, for coherent risk measures.

Theorem 2.1.3 Let ρ1, ρ2, . . . , ρn be convex risk measures.

1. If λ1, λ2, . . . , λn ≥ 0 and
∑n
i=1 λi = 1, then ρ =

∑n
i=1 λiρi is a convex

risk measure as well.

2. ρ = max{ρ1, ρ2, . . . , ρn} is a convex risk measure.
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Proof:

1. Let’s check the conditions of Definition 2.1.1. Obviously, ρ : X → R, so
we check for any X,Y ∈ X, 0 ≤ λ ≤ 1:

(i) : This follows from that a sum of convex functions is also a convex
function, and that a positive constant times a convex function is still
convex.

(ii) : If X ≤ Y , then ρ(X) =
∑n
i=1 λiρi(X) ≥

∑n
i=1 λiρi(Y ) = ρ(Y ).

(iii) : If m ∈ R,

ρ(X +m) =

n∑
i=1

λiρi(X +m)

=

n∑
i=1

λi(ρi(X)−m)

=

n∑
i=1

λiρi(X)−m
n∑
i=1

λi

= ρ(X)−m.

2. The proof is left as an exercise.

�

Associated with every convex risk measure ρ, there is a natural set of all
acceptable portfolios, called the acceptance set, Aρ, of ρ.

Definition 2.1.4 (The acceptance set of a convex risk measure, Aρ) A
convex risk measure ρ induces a set

Aρ = {X ∈ X : ρ(X) ≤ 0}

The set Aρ is called the acceptance set of ρ.

Conversely, given a class A ⊆ X, one can associate a quantitative risk mea-
sure ρA to it.

Definition 2.1.5 (Associated measure of risk) Let A ⊆ X be a set of "ac-
ceptable" random variables. This set has an associated measure of risk ρA de-
fined as follows: For X ∈ X, let

ρA(X) = inf{m ∈ R : X +m ∈ A}. (2.1)

This means that ρA(X) measures how much one must add to the portfolio X,
in a risk free way, to get the portfolio into the set A of acceptable portfolios.
This is the same interpretation as for a convex risk measure.

The previous definitions show that one can either start with a risk measure,
and derive an acceptance set, or one can start with a set of acceptable random
variables, and derive a risk measure.
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The set of acceptable portfolios

(X(ω1), X(ω2))

(X(ω1) + ρA, X(ω2) + ρA)

Figure 2.1: Illustration of the risk measure ρA associated with a set A of ac-
ceptable portfolios.

Example 2.1.6 (Illustration of the risk measure ρA associated with a set A of acceptable portfolios)
Let Ω = {ω1, ω2}, and let X : Ω → R be a portfolio. Let x = (X(ω1), X(ω2)).
If the set of acceptable portfolios is as in Figure 2.1 , the risk measure ρA asso-
ciated with the set A can be illustrated as in the figure.

Based on this theory, a theorem on the relationship between risk measures
and acceptable sets can be derived. The following theorem is a version of Propo-
sition 2.2 in Föllmer and Schied [8].

Theorem 2.1.7 Let ρ be a convex risk measure with acceptance set Aρ. Then:

(i) ρAρ = ρ

(ii) Aρ is a nonempty, convex set.

(iii) If X ∈ Aρ and Y ∈ X are such that X ≤ Y , then Y ∈ Aρ

(iv) If ρ is a coherent risk measure, then Aρ is a convex cone.

Conversely, let A be a nonempty, convex subset of X. Let A be such that if
X ∈ A and Y ∈ X satisfy X ≤ Y , then Y ∈ A. Then, the following holds:

(v) ρA is a convex risk measure.

(vi) If A is a convex cone, then ρA is a coherent risk measure.

(vii) A ⊆ AρA .

Proof:
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Convex combinations
of X and Y

Y

X

Acceptable portfolios

Y + ρY

X + ρX

Figure 2.2: Illustration of proof of Theorem 2.1.7 part (v).

(i) For any X ∈ Aρ

ρAρ(X) = inf{m ∈ R : m+X ∈ Aρ}
= inf{m ∈ R : m+X ∈ {Y ∈ X : ρ(Y ) ≤ 0}}
= inf{m ∈ R : ρ(m+X) ≤ 0}
= inf{m ∈ R : ρ(X)−m ≤ 0}
= inf{m ∈ R : ρ(X) ≤ m}
= ρ(X)

where we have used the definition of a convex risk measure (Definition 2.1.1)
and an acceptance set (Definition 2.1.4).

(ii) Aρ 6= ∅ because X = 0 ∈ Aρ. Since ρ is a convex function, Aρ is a convex
set.

(iii) The proof is left as an exercise.

(iv) The proof is left as an exercise.

(v) We check Definition 2.1.1: ρA : X→ R. Also, for 0 ≤ λ ≤ 1, X,Y ∈ X

ρA(λX + (1− λ)Y ) = inf{m ∈ R : m+ λX + (1− λ)Y ∈ A}
≤ λ inf{m ∈ R : m+X ∈ A} (2.2)

+(1− λ) inf{m ∈ R : m+ Y ∈ A}
= λρA(X) + (1− λ)ρA(Y )



2.1. CONVEX AND COHERENT RISK MEASURES 39

where the inequality follows because λρA(X) + (1− λ)ρA(Y ) = K +L, is
a real number which will make the portfolio become acceptable since

(K + L) + (λX + (1− λ)Y ) = (K + λX) + (L+ (1− λ)Y )

= λ(inf{m ∈ R : m+X ∈ A}+X)+

(1− λ)(inf{m ∈ R : m+ Y ∈ A}+ Y ) ∈ A

since A is convex (see Figure 2.2). In addition, if X,Y ∈ X, X ≤ Y

ρA(X) = inf{m ∈ R : m+X ∈ A}
≥ inf{m ∈ R : m+ Y ∈ A}
= ρA(Y )

since X ≤ Y . Finally, for k ∈ R and X ∈ X

ρA(X + k) = inf{m ∈ R : m+X + k ∈ A}
= inf{s− k ∈ R : s+X ∈ A}
= inf{s ∈ R : s+X ∈ A} − k
= ρA(X)− k.

Hence, ρA is a convex risk measure.

(vi) From (v), all that remains to show is positive homogeneity. For α > 0

ρA(αX) = inf{m ∈ R : m+ αX ∈ A}

= inf{m ∈ R : α(
m

α
+X) ∈ A}

= inf{m ∈ R :
m

α
+X ∈ A}

= inf{αk ∈ R : k +X ∈ A}
= α inf{k ∈ R : k +X ∈ A}
= αρA(X)

where we have used that A is a convex cone in equality number three.
Hence, ρA is a coherent risk measure.

(vii) Note that AρA = {X ∈ X : ρA(X) ≤ 0} = {X ∈ X : inf{m ∈ R : m+X ∈
A} ≤ 0}.
Let X ∈ A, then inf{m ∈ R : m + X ∈ A} ≤ 0, since m = 0 will suffice
(because X ∈ A). Hence X ∈ AρA .

�

We would like to derive a alternative, dual characterisation of convex risk
measures. However, in order to do so, we need convex duality theory (also called
conjugate duality theory). This theory was first introduced by Rockafellar [18]:
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2.2 A dual characterisation of convex risk mea-
sures

Now, we are ready to derive the dual characterisation of a convex risk measure
ρ. Therefore, let V be a vector space that is paired with the vector space X
of financial positions. For instance, if X is given a Hausdorff topology, so that
it becomes a topological vector space (for definitions of these terms, see Peder-
sen [16]), V can be the set of all continuous linear functionals from X into R, as
in Frittelli and Gianin [10]. Using the theory presented in Section 1.5, a dual
characterisation of a convex risk measure ρ can be derived. The following Theo-
rem 2.2.1 was originally proved by Frittelli and Gianin [10]. In the following, ρ∗
denotes the conjugate of ρ in the sense of Definition 1.7.6, ρ∗∗ is the biconjugate
of ρ as in Definition 1.7.7, and 〈·, ·〉 is a pairing.

Theorem 2.2.1 Let ρ : X → R be a convex risk measure. Assume in addition
that ρ is lower semi-continuous. Then ρ = ρ∗∗. Hence for each X ∈ X

ρ(X) = sup{〈X, v〉 − ρ∗(v) : v ∈ V }
= sup{〈X, v〉 − ρ∗(v) : v ∈ dom(ρ∗)}

where 〈·, ·〉 is a pairing between X and V .

Proof: Since ρ is a convex risk measure, it is a convex function (see Defini-
tion 2.1.1). Hence, the convex hull of ρ is equal to ρ, i.e., co(ρ) = ρ (see Defi-
nition 1.1.27). In addition, since ρ is lower semi-continuous and always greater
than −∞, ρ is closed (see comment after Definition 1.1.28), so cl(ρ) = ρ. There-
fore

cl(co(ρ)) = cl(ρ) = ρ.

But Theorem 1.7.9 says that ρ∗∗ = cl(co(ρ)), hence ρ = ρ∗∗.
The second to last equation in the theorem follows directly from the def-

inition of ρ∗∗ (Definition 1.7.7), while the last equation follows because the
supremum cannot be achieved when ρ∗ = +∞. �

2.2.1 The finite dimensional case
Theorem 2.2.1 is quite abstract, but by choosing a specific set of paired spaces,
X and V , some nice results can be derived. The next theorem is due to Föllmer
and Schied [7]. Consider the paired spaces X = Rn, V = Rn with the standard
Euclidean inner product, denoted ·, as pairing. In the following, let (Ω,F) be a
measurable space and let P denote the set of all probability measures over Ω.

Theorem 2.2.2 Assume that Ω is finite. Then, any convex risk measure ρ :
X→ R can be represented in the form

ρ(X) = sup
Q∈P
{EQ[−X]− α(Q)} (2.3)
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where EQ[·] denotes the expectation with respect to Q and α : P → (−∞,∞] is
a "penalty function" which is convex and closed. Actually, α(Q) = ρ∗(−Q) for
all Q ∈ P.

Proof: (Luthi and Doege [14]) To show that ρ : X→ R (as in Theorem 2.2.2) is a
convex risk measure we check Definition 2.1.1: Let λ ∈ [0, 1],m ∈ R, X, Y ∈ X.

(i) :

ρ(λX + (1− λ)Y ) = sup
Q∈P
{EQ[−(λX + (1− λ)Y )]− α(Q)}

= sup
Q∈P
{λEQ[−X] + (1− λ)EQ[−Y ]− α(Q)}

≤ λ sup
Q∈P
{EQ[−X]− α(Q)}

+(1− λ) sup
Q∈P
{EQ[−Y ]− α(Q)}

= λρ(X) + (1− λ)ρ(Y ).

(ii) : Assume X ≤ Y . Then −X ≥ −Y , so

ρ(X) = sup
Q∈P
{EQ[−X]− α(Q)}

≥ sup
Q∈P
{EQ[−Y ]− α(Q)}

= ρ(Y ).

(iii) :

ρ(X +m1) = sup
Q∈P
{EQ[−(X +m1)]− α(Q)}

= sup
Q∈P
{EQ[−X]−mEQ[1]− α(Q)}

= sup
Q∈P
{EQ[−X]−m− α(Q)}

= sup
Q∈P
{EQ[−X]− α(Q)} −m

= ρ(X)−m.

Hence, ρ is a convex risk measure.
So, assume that ρ is a convex risk measure. The conjugate function of ρ,

denoted ρ∗, is then defined as ρ∗(v) = supX∈X{v ·X − ρ(X)} (where · denotes
Euclidean inner product) for all v ∈ V = Rn. Fix an X ∈ X and consider
Ym := X +m1 ∈ X for an arbitrary m ∈ R. Then

ρ∗(v) ≥ sup
m∈R
{v · Ym − ρ(Ym)}
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because {Ym}m∈R ⊂ X. This means that

ρ∗(v) ≥ sup
m∈R
{v · (X +m1)− ρ(X +m1)}

= sup
m∈R
{m(v · 1 + 1)}+ v ·X − ρ(X)

where the equality follows from the translation invariance of ρ (see Defini-
tion 2.1.1). The first term in the last expression is only finite if v · 1 + 1 = 0,
(where 1 = (1, 1, . . . , 1) ∈ Rn) i.e. if

∑n
i=1 vi = −1 (if not, one can make the

first term go towards +∞ by letting m go towards either +∞ or −∞). It is
now proved that in order for ρ∗(v) < +∞,

∑n
i=1 vi = −1 must hold.

Again, consider an arbitrary, but fixed X ∈ X, X ≥ 0 (here, X ≥ 0 means
component-wise). Then, for all λ ≥ 0, we have λX ≥ 0, and λX ∈ X, and
hence ρ(λX) ≤ ρ(0), from the monotonicity of ρ (again, see Definition 2.1.1).
Therefore, by the same type of arguments as above

ρ∗(v) ≥ sup
λ≥0
{v · λX − ρ(λX)} ≥ sup

λ≥0
{v · (λX)} − ρ(0).

Here, ρ∗(v) is only finite if v ·X ≤ 0 for all X ≥ 0, hence v ≤ 0.
We then get that the conjugate ρ∗ is reduced to

ρ∗(v) =

{
supX∈X{v ·X − ρ(X)} where v · 1 = −1 and v ≤ 0

+∞ otherwise .

Now, define α(Q) = ρ∗(−Q) for all Q ∈ P. From Theorem 2.2.1, ρ = ρ∗∗. But

ρ∗∗(X) = sup
v∈V
{v ·X − ρ∗(v)}

= sup
Q∈P
{(−Q) ·X − α(Q)}

= sup
Q∈P
{
n∑
i=1

Qi(−Xi)− α(Q)}

= sup
Q∈P
{EQ[−X]− α(Q)}

where Qi, Xi denote the i’th components of the vectors Q,X respectively. Hence
ρ(X) = ρ∗∗(X) = supQ∈P{EQ[−X]− α(Q)}. �

Theorem 2.2.2 says that any convex risk measure ρ : Rn → R is the expected
value of the negative of a contingent claim, −X, minus a penalty function, α(·),
under the worst case probability. Note that we consider the expectation of −X,
not X, since losses are negative in our context.

We already know that the penalty function α in Theorem 2.2.2 is of the form
α(Q) = ρ∗(−Q). Actually, Luthi and Doege [14] proved that it is possible to
derive a more intuitive representation of α (see Corollary 2.5 in [14]).
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Theorem 2.2.3 Let ρ : Rn → R be a convex risk measure, and let Aρ be its
acceptance set (in the sense of Definition 2.1.4). Then, Theorem 2.2.2 implies
that ρ(X) = supQ∈P{EQ[−X]− α(Q)}, where α : P → R is a penalty function.
Then, α is of the form

α(Q) = sup
X∈Aρ

{EQ[−X]}.

Proof: It suffices to prove that for all Q ∈ P,

ρ∗(−Q) = sup
X∈X
{EQ[−X]− ρ(X)} = sup

X∈Aρ
{EQ[−X]} (2.4)

since we know that α(Q) = ρ∗(−Q). For all X ∈ Aρ, ρ(X) ≤ 0 (see Defini-
tion 2.1.4), so EQ[−X]− ρ(X) ≥ EQ[−X]. Hence, since Aρ ⊆ X

ρ∗(−Q) ≥ sup
X∈Aρ

{EQ[X]− ρ(X)} ≥ sup
X∈Aρ

{EQ[−X]}.

To prove the opposite inequality, and hence to prove equation (2.4), assume
for contradiction that there existsQ ∈ P such that ρ∗(−Q) > supX∈Aρ{EQ[−X]}.
From the definition of supremum, there exists a Y ∈ X such that

EQ[−Y ]− ρ(Y ) > EQ[−X] for all X ∈ Aρ.

Note that Y + ρ(Y )1 ∈ Aρ since ρ(Y + ρ(Y )1) = ρ(Y ) − ρ(Y ) = 0. Therefore
EQ[−Y ]− ρ(Y ) > EQ[−(Y + ρ(Y )1)] = EQ(−Y ) + ρ(Y )EQ[−1] = EQ(−Y )−
ρ(Y ), which is a contradiction. Hence, the result is proved. �

Together, Theorem 2.2.2 and Theorem 2.2.3 provide a good understand-
ing of convex risk measures in Rn: Any convex risk measure ρ : Rn → R
can be written in the form ρ(X) = supQ∈P{EQ[−X] − α(Q)}, where α(Q) =
supX∈Aρ{EQ[−X]} and Aρ is the acceptance set of ρ.

2.2.2 A little measure theory
We would like to prove a dual representation theorem for convex risk measures
in the case where Ω is infinite as well. In order to do so, we need some concepts
from measure theory. For completeness, we include the required definitions here.
However, we refer the reader to Shilling [23] for a thorough introduction.

First, we consider the Jordan decomposition theorem, which says that any
signed measure can be uniquely decomposed into a positive and a negative part:

Theorem 2.2.4 (Jordan decomposition theorem) Every signed measure µ
has a unique decomposition into a difference:

µ = µ+ − µ−

of two positive measures, µ+ and µ− where at least one of these two measures
is finite. We say that µ+ is the positive part, and µ− is the negative part, of µ,
respectively.
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We also need to define absolutely continuous measures.

Definition 2.2.5 (Absolutely continuous measure) Let µ, ν be two mea-
sures on the measurable space (Ω,F). If

F ∈ F , µ(F ) = 0 =⇒ ν(F ) = 0,

we say that ν is absolutely continuous w.r.t. µ and write ν << µ.

We also say that µ dominates ν. There is a very useful way of representing an
absolutely continuous measure via its dominating measure. This representation
is called the Radon-Nikodým theorem. In order to state this theorem, we need
the concept of σ-finite measures.

Definition 2.2.6 (σ-finite measure) Let µ be a measure on the measurable
space (Ω,F). Then, µ is called σ-finite if the set Ω can be covered with at most
countably many measurable sets with finite measure, i.e. there exists F1, F2, . . . ∈
F with µ(Ai) <∞ for all i ∈ N such that⋃

i∈N
Fi = Ω.

Now, we are ready to state the important Radon-Nikodým theorem. For a
proof of this theorem, we refer to Shilling [23].

Theorem 2.2.7 (Radon-Nikodým theorem) Let µ, ν be two measures on
the measurable space (Ω,F). If µ is σ-finite, then the following are equivalent:

• ν(F ) =
∫
F
f(x)µ(dx) for some almost everywhere unique, non-negative

measurable function f .

• ν << µ.

The unique function f is called the Radon-Nikodým derivative and is often
denoted by f = dν/dµ

With these results from measure theory at hand, we are ready to generalize
the dual representation of convex risk measures to the infinite dimensional case.

2.2.3 The infinite dimensional case

How about infinite-dimensional spaces? Can a similar representation of ρ be
derived? This is partially answered in the following Theorem 2.2.8, which is
Theorem 2.2 in Ruszczynski and Shapiro [21], modified slightly to our setting.

First, let’s introduce the setting. Let (Ω,F) be a measurable space and let
V̄ be the vector space of all finite signed measures on (Ω,F). For each v ∈ V̄
we know that there exists a Jordan decomposition of v, so v = v+ − v− (see
Shilling [23]). Let |v| = v++v−. Let X be a vector space of measurable functions



2.2. A DUAL CHARACTERISATION OF CONVEX RISK MEASURES 45

X : Ω → R. Also, let X+ = {X ∈ X : X(ω) ≥ 0 ∀ ω ∈ Ω}. This gives a partial
order relation on X, so for X,Y ∈ X, X ≤ Y means that Y −X ∈ X+.

Let V ⊆ V̄ be the measures v ∈ V such that
∫

Ω
|X(ω)|d|v| < +∞ for all

X ∈ X. V is a vector space because of uniqueness of the Jordan decomposition
and linearity of integrals. For example: If v, w ∈ V then |v+w| = (v+w)++(v+
w)− = (v+ +w+) + (v− +w−) = |v|+ |w| by uniqueness of the decomposition,
hence

∫
Ω
|X|d|v + w| =

∫
Ω
|X|d|v| +

∫
Ω
|X|d|w| < +∞. Define the pairing

〈X, v〉 =
∫

Ω
X(ω)dv(ω). Let V− ⊆ V be the non-positive measures in V and let

P be the set of probability measures in V .
Assume the following:

(A): If v /∈ V− = {v ∈ V : v ≤ 0}, then there exists an
X ′ ∈ X+ such that 〈X ′, v〉 > 0.

Now, let X and V have topologies so that they become paired spaces under
the pairing 〈·, ·〉.

For example, let X = Lp(Ω,F , P ) where P is a measure, and let V be as
above. Each signed measure v ∈ V can be decomposed so that v = vP+v′, where
vP is absolutely continuous with respect to P (i.e. P (A) = 0 ⇒ vP (A) = 0).
Then, dvP = MdP , where M : Ω → R is the Radon-Nikodym density of v
w.r.t. P . Look at V ′ := {v ∈ V :

∫
Ω
|X(ω)|d|vP | < +∞} ⊆ V . This is a

vector space for the same reasons that V is a vector space. Then, any signed
measure v ∈ V ′ can be identified by the Radon-Nikodym derivative of vP w.r.t.
P , that is by M . Actually, M ∈ Lq(Ω,F , P ), where 1

p + 1
q = 1, because∫

Ω
|M |qdP =

∫
Ω
|M |q−1d|vP | < +∞. Hence, each signed measure v ∈ V ′ is

identified in Lq by its Radon-Nikodym density with respect to P .
Note that the pairing defined above actually is the usual bilinear form be-

tween Lp and Lq since for p̄ ∈ Lp, q̄ ∈ Lq

〈p̄, q̄〉 =

∫
Ω

p̄(ω)q̄(ω)dP (ω)

=

∫
Ω

p̄(ω)M(ω)dP (ω)

=

∫
Ω

p̄(ω)dv(ω)

(2.5)

where the second equality follows from that any q̄ ∈ Lq can be viewed as a
Radon-Nikodym derivative w.r.t. P for some signed measure v ∈ V ′ and the
third equality from the definition of a Radon-Nikodym derivative.

In the following theorem monotonicity and translation invariance mean the
same as in Definition 2.1.1.

Theorem 2.2.8 Let X be a vector space paired with the space V , both of the
form above. Let ρ : X→ R be a proper, lower semi-continuous, convex function.
From Theorem 1.7.9 the following holds: ρ(X) = sup{〈X, v〉 − ρ∗(v) : v ∈
dom(ρ∗)}. Then,
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(i) ρ is monotone ⇐⇒ All v ∈ dom(ρ∗) are such that v ≤ 0

(ii) ρ is translation invariant ⇐⇒ v(Ω) = −1 for all v ∈ dom(ρ∗).

Hence, if ρ is a convex risk measure (so monotonicity and translation
invariance hold), then v ∈ dom(ρ∗) implies that Q := −v ∈ P and

ρ(X) = sup
Q∈P
{〈X,−Q〉 − ρ∗(−Q)}

= sup
Q∈P
{〈−X,Q〉 − ρ∗(−Q)}

= sup
Q∈P
{EQ[−X]− α(Q)}

where α(Q) := ρ∗(−Q) is a penalty function and the pairing, i.e. the
integral, is viewed as an expectation.

Proof:

(i) : Assume monotonicity of ρ. We want to show that ρ∗(v) = +∞ for all
v /∈ V−. From assumption (A), v /∈ V− ⇒ there exists X ′ ∈ X+ such
that 〈X ′, v〉 > 0. Take X ∈ dom(ρ), so that ρ(X) < +∞ and consider
Ym := X + mX ′. For m ≥ 0, monotonicity implies that ρ(X) ≥ ρ(Ym)
(since Ym = X +mX ′ ≥ X because X ′ ≥ 0). Hence

ρ∗(v) ≥ sup
m∈R+

{〈Ym, v〉 − ρ(Ym)}

= sup
m∈R+

{〈X, v〉+m〈X ′, v〉 − ρ(X +mX ′)}

≥ sup
m∈R+

{〈X, v〉+m〈X ′, v〉 − ρ(X)}

where the last inequality uses the monotonicity. But since 〈X ′, v〉 > 0,
by letting m → +∞, one gets ρ∗(v) = +∞ (since X ∈ dom(ρ), so
ρ(X) < +∞, and 〈X, v〉 is bounded since 〈X, ·〉 and 〈·, v〉 are bounded
linear functionals).

Hence, monotonicity implies that ρ∗(v) = +∞, unless v ≤ 0, so all v ∈
dom(ρ∗) are such that v ≤ 0.

Conversely, assume that all v ∈ dom(ρ∗) are such that v ≤ 0. Take
X,Y ∈ X such that Y ≤ X (i.e. X − Y ≥ 0). Then 〈Y, v〉 ≥ 〈X, v〉 (from
the linearity of the pairing). Since ρ(X) = supv∈dom(ρ∗){〈X, v〉 − ρ

∗(v)},
it follows that ρ(X) ≤ ρ(Y ). Hence (i) is proved.

(ii) : Assume translation invariance. Let 1 : Ω → R denote the random
variable constantly equal to 1, so 1(ω) = 1 ∀ ω ∈ Ω. This random variable
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is clearly measurable, so 1 ∈ X. For X ∈ dom(ρ)

ρ∗(v) ≥ sup
m∈R
{〈X +m1, v〉 − ρ(X +m1)}

= sup
m∈R
{m〈1, v〉+ 〈X, v〉 − ρ(X) +m}

= sup
m∈R
{m(v(Ω) + 1) + 〈X, v〉 − ρ(X)}.

Hence, ρ∗(v) = +∞, unless v(Ω) = 〈1, v〉 = −1.

Conversely, if v(Ω) = −1, then 〈X+m1, v〉 = 〈X, v〉+v(Ω)m = 〈X, v〉−m.
(where the first equality follows from linearity of the pairing). Hence,
translation invariance follows from ρ(X) = supv∈dom(ρ∗){〈X, v〉− ρ

∗(v)}.

�

Föllmer and Schied [7] proved a version of Theorem 2.2.8 for X = L∞(Ω,F , P ),
V = L1(Ω,F , P ). In this case, it is sufficient to assume that the acceptance set
Aρ of ρ is weak*-closed (i.e., closed with respect to the coarsest topology that
makes all the linear functionals originating from the inner product, 〈·, v〉 con-
tinuous) in order to derive a representation of ρ as above.

2.3 Two commonly used measures of financial risk
In this section, we present two measures of monetary risk which are frequently
used in practice. One of these measures, called value at risk, is not coherent, or
even convex in general. One may (rightfully so!) wonder why risk professionals
use measures not satisfying the economically reasonable conditions of Definition
2.1.1 and 2.1.2. There are several reasons for this:

• Old habits die hard: These measures were used before the concepts coher-
ent and convex risk measures were introduced. Hence, people are so used
to the old measures that they are hesitant to implement others.

• Simplicity: As we will see in Section 2.3.2, value at risk is a very intuitive
concept.

• Good enough: In many practical situations, the results attained are suffi-
cient, though the measures in question are economically unreasonable in
theory.

In the next subsection, we define value at risk and look at its limitations as
a measure of financial risk.

2.3.1 Value at risk
Value at risk, VaR, is the most commonly used risk measure in practice. For a
given portfolio, time horizon and probability λ, VaR is the maximum potential
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loss over the time period after excluding the λ worst cases. Like in Section
2.1, let X be a random variable representing a financial position. Note that
X may represent one stock, a portfolio of stocks or the financial holdings of
an entire firm. As before, negative values of X(ω) correspond to losses, and
positive values to profit. Mathematically, VaR is defined as follows: Fix some
level λ ∈ (0, 1) (typically close to 0), and define Y := −X. Note that for the
random variable Y , losses are positive numbers. Then, VaRλ is defined as the
(1− λ)-quantile of Y

VaRλ(X) := F−1
Y (1− λ) (2.6)

where FY is the cumulative distribution function of Y . One can show (this is
left as an exercise) that

VaRλ(X) = − inf{x ∈ R : FX(x) > λ}. (2.7)

That is, VaR is the maximum potential loss over the time period after excluding
the λ worst cases.

Lemma 2.3.1 VaRλ(X) is decreasing in λ.

Proof: Left as an exercise to the reader. �

VaRλ(X) := inf{m ∈ R|P (X +m < 0) ≤ λ}, (2.8)

i.e., VaRλ(X) is the smallest amount of money that needs to be added to X in
order for the probability of a loss to be less than λ.

Financial firms and banks often use VaR to quantify the risk of their in-
vestments. This allows the firms to monitor their current risk at any time, and
hence measure their potential losses. In practise, firms will specify their VaR
depending on the confidence level λ, but also depending on some time horizon.
In practice, the definition of VaR (2.6) is typically not used directly for com-
puting the value at risk, since this formula requires that we know the exact
distribution of X. Instead, most banks, insurance firms etc. use historical data
as an approximation to the exact distribution, and compute the quantile in (2.6)
based on this. As an alternative, some firms use Monte Carlo methods based
on a stochastic model of the financial markets. Monte Carlo methods are based
on random sampling from the stochastic model. The Monte Carlo approach
is more time-consuming, and usually involves additional work by an analyst
in order to fit the parameters of the model to the relevant problem based on
historical data. However, a drawback with the historical data method is that
this technique implicitly assumes that the future distribution will be the same
as the past one, no further randomness or adaptation to the general economic
situation is included.

Note that in our mathematical definition of VaR above, we didn’t mention
time at all. However, for a practical interpretation of VaR, one should think
of our random variable X as the profit/loss random variable for the financial
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position. So, if a bank wants to compute their one-month VaR, X is the (uncer-
tain) difference between the current value of the banks financial holdings and
the value a month from now. So how is VaR used and interpreted in practice?
Say a portfolio of stocks has a one-day 2% VaR of NOK 10 million. Then, there
is a 0.02 probability that the value of the portfolio will decrease by more than
NOK 10 million during this day, assuming no trading. On average, the bank will
expect to lose more than this 1 out of 50 days. Note that it is very important
for the VaR calculation that there is no trading happening in the portfolio. If
there is trading, the distribution of the portfolio will change, and hence also the
VaR.

Despite its frequent use in practice, value at risk has some major drawbacks
as a risk measure:

• In general, VaRλ is not convex, see Föllmer and Knispel [6]. This means
that diversification may increase the risk w.r.t. VaR, which is economically
unreasonable.

• In addition, we see from equation (2.6) that VaRλ ignores extreme losses
which occur with small probability. This tail insensitivity makes it an
unsuitable measure of risk in situations where the consequences of large
losses are very bad.

These drawbacks of VaR as a risk measure is what lead to the development
of the theory of convex and coherent risk measures. Nevertheless, value at risk
is still widely used in practice, despite its deficiencies.

2.3.2 Average value at risk

Average value at risk (AVaR), also called expected shortfall (ES) or conditional
value at risk (CVaR), was introduced to mend the deficiencies of value at risk.
For λ ∈ (0, 1], the average value at risk is defined as

AVaRλ(X) :=
1

λ

∫ λ

0

VaRα(X)dα. (2.9)

Hence, average value at risk can be interpreted as the expected loss in a
presupposed percentage of worst cases.
Note that

AVaRλ(X) ≥ VaRλ(X),

(the proof is left as an exercise). So, when considering the same level λ, the
average value at risk is always greater than or equal the value at risk.

Föllmer and Schied [9] prove that AVaRλ is a coherent risk measure, with a
dual representation

AVaRλ(X) = max
Q∈Qλ

EQ[−X]
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where Qλ := {Q << P |dQdP ≤ λ}. That is, Qλ, is the set of all measures Q that
are absolutely continuous w.r.t. the measure P given that the Radon-Nikodym
derivative of Q w.r.t. P is less than or equal λ (see Shilling [23] for more on
these measure theoretical concepts). Note also that for λ = 1, average value at
risk reduces to EP [−X], i.e., the expected loss.

Other examples of convex risk measures are shortfall risk and divergence
risk measures, but are beyond the scope of this chapter. We refer the interested
reader to Föllmer and Knispel [6].

2.4 Exercises to Chapter 2
Exercise 2.1 : Prove item 2. of Theorem 2.1.3.

Exercise 2.2 : Prove items (iii) and (iv) of Theorem 2.1.7.

Exercise 2.3 : Show the alternative representation of VaR in equation (2.7).
Make sure you understand the interpretation of this expression. Hint: Make a
figure of the distribution.

Exercise 2.4 : Prove Lemma 2.3.1.

Exercise 2.5 : Prove that

AVaRλ(X) ≥ VaRλ(X).



Chapter 3
Solutions to selected exercises

3.1 Solutions to exercises from Chapter 1

Solution to exercise 1.1 :

Proof:
Follows from the definitions of convex set, conv(·), intersection, Cartesian

product, interior, relative interior and closure. Statement (i) also uses the fact
that any convex set must contain all convex combinations of its elements. This
can be proved by induction, using that C is convex and that a convex combina-
tion of convex combinations is also a convex combination. �

Solution to exercise 1.2 :

3. Use Definition 1.1.17 and the mean value inequality, see for example Kalkulus
by Lindstrøm [12], or any other basic calculus book.

4. Follows from Definition 1.1.17 by induction, and the fact that a convex
combination of convex combinations is a convex combination.

5. Use Definition 1.1.17 and induction.

Solution to exercise 1.6 :

Proof: One can rewrite the saddle point condition (1.21) as

f(x′) = K(x′, y′) = g(y′).

The theorem then follows from equation (1.20). �

51
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3.2 Solutions to exercises from Chapter 2
Solution to exercise 2.1 :

Proof:
2. Again, we check Definition 2.1.1 for any X,Y ∈ X:

(i) : If 0 ≤ λ ≤ 1,

ρ(λX + (1− λ)Y ) = max{ρ1(λX + (1− λ)Y ),
. . . , ρn(λX + (1− λ)Y )}
≤ max{λρ1(X) + (1− λ)ρ1(Y ),
. . . , λρn(X) + (1− λ)ρn(Y )}
≤ λmax{ρ1(X), . . . , ρn(X)}
+(1− λ) max{ρ1(Y ), . . . , ρn(Y )}
= λρ(X) + (1− λ)ρ(Y ).

(ii) : If X ≤ Y ,

ρ(X) = max{ρ1(X), . . . , ρn(X)}
≥ max{ρ1(Y ), . . . , ρn(Y )}
= ρ(Y ).

(iii) : For m ∈ R,

ρ(X +m) = max{ρ1(X +m), . . . , ρn(X +m)}
= max{ρ1(X)−m, . . . , ρn(X)−m}
= max{ρ1(X), . . . , ρn(X)} −m
= ρ(X)−m.

�

Solution to exercise 2.2 :

Proof:

(iii) Since X ∈ Aρ, ρ(X) ≤ 0, but because Y ∈ X is such that X ≤ Y ,
ρ(Y ) ≤ ρ(X) (from the definition of a convex risk measure). Hence

ρ(Y ) ≤ ρ(X) ≤ 0.

So Y ∈ Aρ (from the definition of an acceptance set).

(iv) Let ρ be a coherent risk measure, and let X,Y ∈ Aρ and α, β ≥ 0. Then,
from the positive homogeneity and subadditivity of coherent risk measures
(see Definition 2.1.2), in addition to the definition of Aρ

ρ(αX + βY ) ≤ αρ(X) + βρ(Y ) ≤ α · 0 + β · 0 = 0.

Hence αX + βY ∈ Aρ, so Aρ is a convex cone (from the definition of a
convex cone).
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�

Solution to exercise 2.3 :
Note that

AVaRλ(X) ≥ 1

λ

∫ λ

0

VaRλ(X)dα = VaRλ(X),

where the first equality follows because VaRλ is decreasing in λ.
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