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Environmental contours for mixtures of distributions
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Environmental contours are widely used as a basis for e.g., ship design, especially in early design phases. The
traditional approach to such contours is based on the well-known Rosenblatt transformation. In the present paper
we present a numerical method making it possible to apply the inverse Rosenblatt transformation to mixtures of
distributions. Due to the effects of this transformation the probabilistic properties of the resulting environmental
contour can be distorted. Based on a precise definition of the concept of exceedance probability, valid for all types
of environmental contours, we show how to evaluate a given contour and adjust it so that it gets the desired properties.
The methods are illustrated by a numerical example.
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1. Introduction
Environmental contours are widely used as a basis
for e.g., ship design. Such contours are typically
used in early design when the strength and failure
properties of the object under consideration are
not known. An environmental contour describes
the tail properties of some relevant environmental
variables, and is used as input to the design pro-
cess. See Haver (1987), Baarholm et al. (2010),
Ditlevsen (2002), Moan (2009) and Jonathan et al.
(2011). The methodology for constructing en-
vironmental contours were introduced by Win-
terstein et al. (1993) and Haver and Winterstein
(2009). The process starts out by construct-
ing a contour for two independent standard nor-
mally distributed variables. This contour is then
transformed to the environmental space using the
inverse Rosenblatt transformation introduced in
Rosenblatt (1952). As pointed out in Huseby et al.
(2013) the probabilistic properties of the contour
is typically not preserved under this transforma-
tion. Hence, the resulting contour may need to
be adjusted in order to get the desired exceedance
probability. Huseby et al. (2013) also presented
an alternative approach where environmental con-
tours are constructed using Monte Carlo simula-
tion. For a similar approach to a related problem
see Ottesen and Aarstein (2006). Improved meth-
ods are found in Huseby et al. (2015a) and Huseby
et al. (2015b).

The Rosenblatt transformation and its inverse is
defined for any absolutely continuous joint distri-

bution of the environmental variables. Thus, the
method introduced by Winterstein et al. (1993) is
in principle applicable to any such joint distribu-
tion. In general, however, the transformation may
need to be carried out using numerical methods.
In the present paper we show how this can be done
efficiently in cases where the joint distribution is a
mixture of a finite number of distributions. Such
mixtures occur in cases where the joint distribu-
tion depends on some background variable such
as the season or the wind direction. An example
of this can be found in Vanem and Huseby (2018).
See also Winterstein (2016).

The Monte Carlo approach presented in Huseby
et al. (2015b) uses importance sampling based
on the inverse Rosenblatt transformation. Thus,
the proposed numerical method for mixtures is
relevant for this approach as well. In the present
paper, however, we focus on the method intro-
duced by Winterstein et al. (1993). As mentioned
above such contours may need to be adjusted in
order to get the desired exceedance probability. In
the present paper we also provide a tight upper
bound on this probability calculated using a new
geometric method. Using this upper bound the
necessary adjustments can be identified and car-
ried out. We illustrate the proposed methods on a
simple numerical example.

2. Basic concepts
In this paper we consider cases where the envi-
ronmental conditions can be described by a vector
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(T,H) ∈ R2. An environmental contour is then
defined as the boundary of a set B ⊆ R2, and
denoted ∂B.

A given mechanical structure can withstand
environmental stress up to a certain level. The
failure region of the structure is the set of states
of the environmental variables that imply that the
structure fails. The exact shape of the failure
region of a structure may be unknown. Still it may
be possible to argue that the failure region belongs
to a certain family which we denote by E . A given
environmental contour ∂B will be evaluated with
respect to this family. The family E is chosen
relative to B such that for all failure regions F ∈ E
we have that F ∩ Bo = ∅, where Bo = B \ ∂B
denotes the interior of B. Thus, a failure region F
may intersect with the boundary of B but not the
interior of B.

The exceedence probability of B with respect
to E was introduced in Huseby et al. (2017) and is
defined as:

Pe(B, E) = sup
F∈E

P [(T,H) ∈ F ]. (1)

We observe that the exceedance probability de-
fined above represents an upper bound on the fail-
ure probability of the structure assuming that the
true failure region is a member of the family E . Of
particular interest are cases where one can argue
that the failure region of a structure is convex.
Throughout this paper we will assume that this is
the case. Thus, for a given set B we let E be the
class of all convex sets which do not intersect with
Bo.

2.1. Transformed contours
We now review the approach to environmental
contours based on the well-known Rosenblatt
transformation in the context of an exceedance
probability defined relative to a family of failure
regions. The Rosenblatt transformation, denoted
Ψ, is such that if (X,Y ) = Ψ(T,H), then X and
Y are independent standard normally distributed.
See Winterstein et al. (1993).

A contour for the transformed vector (X,Y )
is constructed as follows: Let pe < 0.5 be the
desired exceedance probability, and let r > 0
denote the (1 − pe)-percentile in the standard
normal distribution. We then let B′ be a circle
centred at the origin and with radius r, and let E ′

be the family of all convex sets F ′ which do not
intersect with B′

o. It is then easy to verify that:

Pe(B′, E ′) = sup
F ′∈E′

P [(X,Y ) ∈ F ′] = pe. (2)

Thus, the contour ∂B′ has the desired ex-
ceedance probability with respect to the family E ′

of failure regions. For details see Huseby et al.
(2017).

In order to obtain a contour set in the original
space, the set B′ is transformed using the inverse
Rosenblatt transformation, Ψ−1, as follows:

B = {(t, h) = Ψ−1(x, y) : (x, y) ∈ B′}. (3)

Similarly, under mild regularity conditions the
environmental contour ∂B is obtained from ∂B′

as:

∂B = {(t, h) = Ψ−1(x, y) : (x, y) ∈ ∂B′}. (4)

In applied cases one has to simplify this transfor-
mation by transforming only a finite set of evenly
spaced points, (x1, y1), . . . , (xm, ym) ∈ ∂B′. We
then let:

(ti, hi) = Ψ−1(xi, yi), i = 1, . . . ,m, (5)

and approximate ∂B by a polygon with the trans-
formed points as corners. For convenience we
also introduce the edges of this polygon, denoted
e1, . . . , em, where ei is the line segment between
(ti, hi) and (ti+1, hi+1), i = 1, . . .m− 1, and em
is the line segment between (tm, hm) and (t1, h1).

3. Tail issues with the inverse Rosenblatt
transformation

As mentioned in the introduction the inverse
Rosenblatt transformation can also be used as a
very efficient tool in Monte Carlo simulation. See
Huseby et al. (2015b) for details. However, when
sampling from the tail of a distribution, there are
some issues one needs to take into account. In
this section we take a closer look at this, and
assume that we are given a random vector (X,Y )
where X and Y are independent and standard
normally distributed. The objective is to transform
(X,Y ) to a vector (T,H) with a given absolutely
continuous joint distribution where:

P (H ≤ h) = FH(h),

P (H > h) = 1− FH(h)

= F̄H(h),

P (T ≤ t|H = h) = FT |H(t|h),

P (T > t|H = h) = 1− FT |H(t|h)
= F̄T |H(t|h).

This is done using the inverse Rosenblatt transfor-
mation which consists of two steps:

Step 1. Transform (X,Y ) to a vector (U, V )
where U and V are independent and uniformly
distributed on [0, 1].

Step 2. Transform (U, V ) to a vector (T,H) with
the desired joint distribution.
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We denote the cumulative distribution function
of the standard normal distribution by Φ, and the
survival function of the standard normal distribu-
tion by Φ̄.

In principle the first step of inverse Rosenblatt
transformation can be carried out by transforming
(X,Y ) to (U, V ) as follows:

U = Φ(X),

V = Φ(Y ).

This implies that for all u, v ∈ [0, 1] we have:

P (U ≤ u) = P (Φ(X) ≤ u) = P (X ≤ Φ−1(u))

= Φ(Φ−1(u)) = u,

P (V ≤ v) = P (Φ(Y ) ≤ v) = P (Y ≤ Φ−1(v))

= Φ(Φ−1(v)) = v.

Hence, U and V are independent and uniformly
distributed on [0, 1].

The second step of the inverse Rosenblatt trans-
formation where (U, V ) is transformed to (T,H)
is then done as follows:

H = F−1
H (U),

T = F−1
T |H(V |H).

This implies that for all h, t we have:

P (H ≤ h) = P (F−1
H (U) ≤ h)

= P (U ≤ FH(h)) = FH(h),

P (T ≤ t|H = h) = P (F−1
T |H(V |h) ≤ t|H = h)

= P (V ≤ FT |H(t|h)|H = h) = FT |H(t|h).

When sampling from the upper tail of the nor-
mal distribution, however, this procedure can be
numerically unstable. If X and Y are large pos-
itive numbers, the resulting values of U and V
will be close to 1. Such numbers will often be
rounded up to 1, and thus, yielding bad results in
the second step of the transformation. In order to
avoid these issues a modified procedure should be
applied:

If X ≤ 0, we let:

U = Φ(X),

H = F−1
H (U).

If X > 0, we let:

U = Φ̄(X),

H = F̄−1
H (U).

If Y ≤ 0, we let:

V = Φ(Y ),

T = F−1
T |H(V |H).

If Y > 0, we let:

V = Φ̄(Y ),

T = F̄−1
T |H(V |H).

It is easy to verify that (T,H) gets the correct
joint distribution in this case as well. At the same
time we keep U and V in the lower part of the
interval [0, 1], and thus, we avoid the numerical
issues with handling numbers close to the upper
part of this interval.

4. Mixtures of distributions
We now consider a case where the joint distribu-
tion of (T,H) is a mixture of distributions. In
such cases it may not be possible to find explicit
formulas for F−1

H and F−1
T |H . Instead one has

to find the inverse by solving an equation nu-
merically. Here we explain how to do this for
F−1
H . The corresponding procedure for F−1

T |H is
completely similar. More specifically, we assume
that FH,1, . . . , FH,m are m cumulative distribu-
tion functions which are all continuous and strictly
increasing. Moreover, we assume that the inverse
functions F−1

H,1, . . . , F
−1
H,m are known and easy to

calculate, and we introduce:

hj = F−1
H,j(u), j = 1, . . . ,m.

We also define:

hmin = min
1≤j≤m

hj , and hmax = max
1≤j≤m

hj .

We then introduce the cumulative distribution
function for H as the mixture of FH,1, . . . , FH,m:

FH(h) =

m!

j=1

αjFH,j(h),

where αj ≥ 0, j = 1, . . . ,m, and
"m

j=1 αj = 1.

We assume that we have found that U = u, and
that we want to compute the corresponding value
for H , h = F−1

H (u). This is equivalent to solving
the following equation:

FH(h) =

m!

j=1

αjFH,j(h) = u. (6)

We then claim that if h is the solution to (6), then:

hmin ≤ h ≤ hmax. (7)
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To prove (7) we note that since the cumula-
tive distribution functions are non-decreasing and"m

j=1 αj = 1, we have:

FH(hmin) =

m!

j=1

αjFH,j(hmin)

≤
m!

j=1

αjFH,j(hj)

=

m!

j=1

αju = u

Similarly, we have:

FH(hmax) =

m!

j=1

αjFH,j(hmax)

≥
m!

j=1

αjFH,j(hj)

=

m!

j=1

αju = u

Since FH,1, . . . , FH,m are continuous and strictly
increasing, it follows that FH is continuous and
strictly increasing as well. Thus, since we have
established that:

FH(hmin) ≤ u ≤ FH(hmax)

there must exist some h ∈ [hmin, hmax] such that
FH(h) = u.

Having identified the interval [hmin, hmax]
which must contain the solution to (6), the so-
lution can easily be found numerically, e.g., by
using the bisection method.

5. Exceedance probabilities of
transformed contours

The problem with transformed contours is that the
exceedance probability is not preserved under this
transformation in general. In fact, we typically
have Pe(B, E) > pe. Thus, the contour may need
to be inflated in order to get the correct exceedance
probability. Before this can be done, however, we
need to have a way of computing the exceedance
probability of a given contour set B.

If B is convex, the maximal failure regions
will be half-spaces separated from B by tangents.
Using Monte Carlo simulation the probability of
having an outcome within such a half-space can
be estimated. By running through all tangents
along the border of B, the failure region with the
highest probability can be identified, and thus the
exceedance probability can be estimated.

In a more general case, however, the set B may
not be convex. In such cases it is difficult to
run through all maximal failure regions in order
to identify the one with the highest probability.
Huseby et al. (2017) showed how to calculate
an upper and a lower bound on the exceedance
probability in such cases. In the present paper we
suggest an improved upper bound. Comparisons
with the lower bound show that this upper bound
is in fact very close to the correct exceedance
probability.

The main idea of this new approach is to work
with a slightly modified family of failure regions.
In order to explain this in detail we consider a
contour set B and introduce:

Ẽ = {F̃(u) : u ∈ ∂B},

where F̃(u) is the set of all points v /∈ Bo that
are visible from u. A point v /∈ Bo is said to be
visible from u if the line between u and v is not
intersecting Bo.

For an arbitrary failure region F ∈ E , there
exists a maximal set F∗ ∈ E such that F ⊆ F∗

and such that F∗ has at least one point, say u0, in
common with the contour ∂B, i.e., u0 ∈ F∗∩∂B.
We now claim that F∗ ⊆ F̃(u0).

In order to show this we need to show that
all points in F∗ are visible from u0. From the
definition of failure regions and contours we know
that F∗ does not intersect with B0. Since F∗ is
convex, we have that for any two points u, v ∈
F∗, every point on the line segment between u
and v is also a member of F∗. This means that all
points in F∗ are visible from all other points in the
set. In particular, all points in F∗ must be visible
from u0 implying that F∗ ⊆ F̃(u0) as claimed.
From this it also follows that F ⊆ F̃(u0).

Summarising this, we have shown that for each
F ∈ E there exists a set F̃(u0) ∈ Ẽ such that
F ⊆ F̃(u0), and from this it follows that:

Pe(B, E) ≤ Pe(B, Ẽ)

Thus, Pe(B, Ẽ) is an upper bound on the ex-
ceedance probability.

It can be shown that if B is convex and ∂B is a
differentiable curve, we get that:

Pe(B, E) = Pe(B, Ẽ).

Thus, in such cases Pe(B, Ẽ) is exact. Further-
more, in general the sets in Ẽ are almost convex.
Thus, Pe(B, Ẽ) is typically a very good upper
bound on the true exceedance probability.

5.1. Estimating the upper bound

In order to estimate the upper bound Pe(B, Ẽ)
we recall that the set ∂B is approximated by a
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polygon with edges e1, . . . , em. We say that a
point v /∈ Bo is visible from the edge ei if it
is visible from the midpoint of ei, denoted ui,
i = 1, . . . ,m. The family Ẽ is then approximated
by the finite family:

Ẽm = {F̃(ui) : i = 1, . . . ,m},

while the upper bound of the exceedance proba-
bility is approximated by:

Pe(B, Ẽm) = max
1≤i≤m

P [(T,H) ∈ F̃(ui)].

The m probabilities on the right-hand side of
the above formula can be estimated by Monte
Carlo simulation. A simple method for do-
ing this is to start out by generating N points
(x1, y1), . . . , (xN , yN ) from the bivariate normal
distribution. These points are then transformed
using the inverse Rosenblatt transformation as
explained in Sections 3 and 4. For simplicity,
the transformed points are denoted by v1, . . . , vN .
The probability P [(T,H) ∈ F̃(ui)] can then be
estimated by:

P̂i =
1

N

N!

j=1

I(vj ∈ F̃(ui)), i = 1, . . . ,m.

(8)
Note that this simulation method can be improved
considerably by using importance sampling where
we only sample points in the tail area of the bi-
variate normal distribution. A detailed description
of how this can be done, however, is beyond the
scope of the present paper. For more on this see
Huseby et al. (2015b). This method is improved
further in Barbosa (2018).

The remaining problem now is how to calculate
the indicator functions:

I(vj ∈ F̃(ui)), i = 1, . . . ,m, j = 1, . . . , N,

in an efficient way. That is, for any given point vj
we need to determine if this point is visible from
ui, i = 1, . . . ,m, j = 1, . . . , N .

If the edge ei is a supporting hyperplane of B,
vj is visible from ui if and only if vj and Bo lie
on opposite sides of ei. This is very easy to check
using standard geometric methods. If the edge ei
is not a supporting hyperplane of B, vj is visible
from ui if and only if the line segment between
vj and ui does not intersect with any of the other
edges. An efficient way of checking this can be
found in O’Rourke (1998).

Although both cases can be handled reason-
ably fast, the first procedure is by far the easiest
one. In order to quickly distinguish between these
two cases, it is convenient to identify all edges
which are supporting hyperplanes before running
the simulations. If this is done, the more complex

procedure where ei is not a supporting hyperplane
is easily avoided whenever possible.

Note that if B is convex, all edges are support-
ing hyperplanes of B. Thus, such cases are very
easy to handle.

6. Numerical example
In this subsection we illustrate the proposed
method by considering a joint long-term model for
significant wave height and wave period, denoted
respectively by H and T . The joint distribution for
H and T is based on a model discussed in Vanem
and Bitner-Gregersen (2015). In this model a
marginal distribution is fitted to the data for signif-
icant wave height and a conditional model, condi-
tioned on the value of significant wave height, is
subsequently fitted to the wave period. The joint
model has the following form:

fT,H(t, h) = fH(h)fT |H(t|h)
Following Vanem and Bitner-Gregersen (2015) a
three-parameter Weibull distribution is used for
the significant wave height, H , and a lognormal
conditional distribution is used for the wave pe-
riod, T . The three-parameter Weibull distribution
is parameterized by a location parameter, γ, a
scale parameter α, and a shape parameter β as
follows:

fH(h) =
β

α

#
h− γ

α

$β−1

e−[(h−γ)/α]β , h ≥ γ.

The lognormal distribution has two parameters,
the log-mean µ and the log-standard deviation σ
and is expressed as:

fT |H(t|h) = 1

t
√
2π

e−[(ln(t)−µ)2/(2σ2)], t ≥ 0,

where the dependence between H and T is mod-
elled by letting the parameters µ and σ be ex-
pressed in terms of H as follows:

µ = E[ln(T )|H = h] = a1 + a2h
a3 ,

σ = SD[ln(T )|H = h] = b1 + b2e
b3h.

The parameters a1, a2, a3, b1, b2, b3 are typically
estimated using available data from the relevant
geographical location.

Vanem and Huseby (2018) consider a case
where the joint model depends on the season. In
order to handle this situation separate submodels
are fitted for each season. The combined model is
a mixture of all the submodels. As an illustration
of the proposed method we consider a simple
version of this with only five different submodels.
Thus, the mixture model becomes:

fT,H(t, h) =

5!

i=1

λifH,i(h)fT |H,i(t|h),
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where the weights λ1, . . . ,λ5 are non-negative
with sum 1, and where each submodel is of the
same type as considered in Vanem and Bitner-
Gregersen (2015).

The parameters for the three-parameter Weibull
distributions are listed in Table 1, while the param-
eters for the conditional log-normal distributions
are listed in Table 2. In a real life situation the
parameter values are estimated based on relevant
data. See Vanem and Huseby (2018). Here,
however, the parameter values are just made-up
examples chosen so that the different submodels
represent a substantial range of conditions.

Table 1. Parameters for the five three-parameter
Weibull distributions for significant wave heights.

Submodel α β γ

1 2.527 1.460 0.337
2 2.517 1.470 0.327
3 3.007 1.260 0.437
4 2.007 1.560 0.299
5 2.307 1.360 0.307

Table 2. Parameters for the five conditional log-normal distribu-
tions for wave periods.

Submodel i = 1 i = 2 i = 3

1 ai 1.069 0.898 0.243
bi 0.025 0.263 - 0.148

2 ai 1.079 0.888 0.253
bi 0.015 0.273 - 0.108

3 ai 1.060 0.878 0.253
bi 0.020 0.273 - 0.108

4 ai 1.059 0.868 0.223
bi 0.030 0.253 - 0.088

5 ai 1.073 0.798 0.213
bi 0.028 0.260 - 0.188

We use a return period of 25 years, and as-
sume that the models are fitted using sea states
representing periods of 3 hours. Thus, we get 8
data points per 24 hours. The desired exceedance
probability then becomes:

Pe =
1

25 · 365.25 · 8 = 1.37 · 10−5.

For more details about how to calculate this we
refer to Vanem and Bitner-Gregersen (2015).

Figure 1 shows the environmental contours
for the five individual submodels before mixing.
All curves are derived using the standard inverse
Rosenblatt transformation. We note that the con-
tours vary quite a lot. In particular the blue con-

tour, representing Submodel 3, is much wider than
the others.

0.00 5.00 10.00 15.00 20.00 25.00

22.50

18.00

13.50

9.00

4.50

0.00

Fig. 1. Environmental contours for the five individual sub-
models before mixing. Submodel 1 (red curve), Submodel
2 (green curve), Submodel 3 (blue curve), Submodel 4 (pink
curve) and Submodel 5 (yellow curve).

Figure 2 shows the resulting environmental
contour for the mixture model. We observe that
this contour to a certain extent inherits features
from the submodel contours. Still the relation
between this contour and the submodel contours
is not trivial.

0.00 5.00 10.00 15.00 20.00 25.00

22.50

18.00

13.50

9.00

4.50

0.00

Fig. 2. Environmental contour for the mixed bivariate distri-
bution.

By using Monte Carlo simulation and (8) we
estimate probabilities for the sets F̃(ui), i =
1, . . . ,m where m = 360 as we let ui run along
the contour. The resulting probabilities are repre-
sented by the green curve in Figure 3. The desired
exceedance probability, 1.37 · 10−5 is shown as
the red curve in the same diagram. We see that
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the probabilities for the sets vary a lot. In some
areas the green curve is way below the red curve.
At the peaks, however, the estimated probabilities
are much larger than the desired probability. More
specifically, the estimated probability for F̃(u105)
is 3.74 ·10−5, while the corresponding number for
F̃(u205) is 4.19·10−5. In Figure 4 we have shown
the simulated outcomes for F̃(u105) and F̃(u205)
along with the environmental contour.

0.00 72.00 144.00 216.00 288.00 360.00

4.25E-5

3.40E-5

2.55E-5

1.70E-5

8.50E-6

0.00E0

Fig. 3. Estimated probabilities for the sets F̃(ui), i =
1, . . . , 360 for the original environmental contour (green
curve) and the adjusted environmental contour (blue curve).
Desired exceedance probability (red curve).

Fig. 4. Environmental contour along with simulated out-
comes in the sets F̃(u105) (red scatter) and F̃(u205) (green
scatter).

In order to adjust the environmental contour
so that it gets the desired exceedance probabil-
ity, we multiply the desired return period of 25
years by a factor and calculate the resulting ex-
ceedance probability. Using an iterative procedure

this factor is adjusted until the desired exceedance
probability is reached. The correct factor for this
particular case turns out to be 3.28. Thus, when
the environmental contour is constructed using the
inverse Rosenblatt transformation, we need to use
a return period of 3.28 · 25 = 82 years in order to
get the desired exceedance probability.

In Figure 3 we have shown the resulting prob-
abilities (the blue curve) along with the original
probabilities (the green curve). We see that the
blue curve is below the red curve all the way.
The resulting adjusted environmental contour is
shown in Figure 5 (green curve) along with the
original contour (red curve). We observe that the
adjusted environmental contour is clearly larger
than the original contour. At the same time the
blue curve in Figure 3 is mostly way below the red
curve representing the desired probability. This
indicates that the adjusted environmental contour
may be too conservative in most areas. This,
however, is a price one has to pay when using the
inverse Rosenblatt transformation.

0.00 5.00 10.00 15.00 20.00 25.00

22.50

18.00

13.50

9.00

4.50

0.00

Fig. 5. Original (red curve) and adjusted (green curve) envi-
ronmental contours for the mixed bivariate distribution.

7. Conclusions
In the present paper we have presented a numeri-
cal method making it possible to apply the inverse
Rosenblatt transformation to mixtures of distribu-
tions. Moreover, we have shown how the prob-
abilistic properties of the resulting environmental
contour can be evaluated using a tight upper bound
on the exceedance probability. This upper bound
can be computed very efficiently using a combi-
nation of importance sampling and geometrical
methods. For convex contours the upper bound is
equal to the exact exceedance probability. More-
over, the convexity can be utilised in order to make
the calculations even more efficient.

In the paper we also discuss some numerical
issues related to sampling from the tail area. Han-
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dling these issues in a numerically stable way is
very important in relation to importance sampling.
Thus, the proposed solutions are relevant when a
given contour is evaluated as well as in the pro-
cess of constructing a contour using Monte Carlo
simulation as suggested in Huseby et al. (2015a)
and Huseby et al. (2015b).

The proposed methods are illustrated by con-
sidering an example where the joint distribution
of the environmental variables is a mixture of
five individual distributions. We also show how
an environmental contour can be adjusted to get
the desired exceedance probability by using an
iterative algorithm. As a result of this adjustment,
however, the contour becomes very conservative
except at a few points along the border. Thus, in
real-life applications such adjustments should be
combined with an assessment of which parts of
the contour that are critical for the given structure.
More specifically, one should consider the sets
F̃(ui), and assess how likely it is that the true
failure region of a given structure matches any
of these. Alternatively, one could construct an
adjusted contour where the adjustments are done
only in certain critical areas.
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