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Abstract: In the present paper we study how to optimize oil production from several reservoirs
sharing a common processing facility under uncertainty. The potential oil production from a reservoir
in a given period is described in terms of a difference equation containing several uncertain parameters.
Using Lagrange optimization a step by step production strategy can be determined. This strategy
distributes the available processing capacity so that the expected total production from each period
is maximized. This is done by ensuring that all the reservoirs have the same probability of producing
according to the plan. The resulting strategy, however, is typically not optimal globally. In order
to improve the global performance of the strategy, a different objective function is introduced. As
the production develops, more information about the production parameters is gained. Hence, the
uncertainty distributions need to be updated. This is done using a combination of rejection sampling
and the Metropolis-Hastings algorithm. This updating is taken into account in the optimization
procedure. The methods are illustrated by considering a specific example.
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1. INTRODUCTION

Optimization is an important element in the management of multiple-field oil and gas assets, since
many investment decisions are irreversible and finance is committed for the long term. Recent studies of
production optimization include [1], [2] and [3]. [4] considered the problem of production optimization
in an oil or gas field consisting of many reservoirs sharing the same processing facility. In order to
satisfy the processing limitations of the facility, the production needs to be choked. Thus, at any given
point of time the production from each of the reservoirs are scaled down by suitable choke factors
chosen so that the total production does not exceed the processing capacity. Based on the production
profile models introduced in [5], [6] developed a general model for oil and gas production using a set
of ordinary differential equations. [4] used this approach in order to develop a general framework for
finding a production strategy which is optimal with respect to various types of objective functions. In
[7] this work was extended to cases where the production is uncertain. In [8] a discrete time version
of the same problem was discussed, focussing on a case where the production from a single reservoir
was optimized relative to a certain cost and income function. In the present paper we extend this to
cases with multiple reservoirs.

In each time period the production is limited by two factors: the potential production capacities for
each of the reservoirs, and the total processing capacity, i.e., the total amount of oil that can be
handled at the processing facility. In order to limit the amount of oil that is produced from the
reservoirs during a given time period, processing quotas are assigned to each of the reservoirs at the
beginning of each time period. The sum of these quotas are not allowed to exceed the total processing
capacity. However, if the quota assigned to a reservoir is greater than its potential production capacity,
the quota cannot be fully utilized in that time period. As a result the sum of the produced volumes
for that period may be less than the total processing capacity.

Considering a single time period the quotas for this period should be assigned so that the expected
total production from this period is maximized. If the potential production capacities for the reservoirs
are known, it is easy to ensure this. However, the potential production capacities typically depends



on a number of uncertain reservoir parameters. Thus, in order to choose the optimal quotas, one has
to take this uncertainty into account.

The uncertainty about the reservoir parameters is expressed in terms of a suitable prior distribution.
As the production develops, more information about the production parameters is gained. Hence, the
uncertainty distributions need to be updated. In the present paper we show how this updating can
be accomplished. Moreover, we show how to assign quotas so that the expected total production for
a given time period is maximized.

Unfortunately, assigning quotas maximizing the expected production for each time period may not
necessarily be optimal when all the periods are considered simultaneously. In the paper we indicate
how to establish reasonable strategies for handling this issue.

2. PROBLEM DESCRIPTION

We consider n oil reservoirs, and assume that the production from each reservoir is described as a
discrete time process, where qik denotes the production from the ith reservoir in the kth period,
i = 1, . . . , n and k = 1, 2, . . .. We also introduce the cumulative production from the ith reservoir
adding up the production from the periods 1, . . . , k, denoted Qik, k = 1, 2, . . .. That is, for i = 1, . . . , n
we let:

Qik =

k

j=1

qij k = 1, 2, . . . (1)

For convenience, we also define Qi0 = 0, i = 1, . . . , n.

The amount of oil that can be produced from a reservoir within a period is limited by the characteristics
of the reservoir determined by a set of uncertain parameters. The main reservoir parameters are the
amount of recoverable oil, denoted by Vi, and the so-called decline rate, denoted by Di, i = 1, . . . , n.
The decline rate represents the fraction of remaining oil that can be produced per unit of time. In
general the decline rate may change over time. Still using a production model with a constant decline
rate may serve as a satisfactory approximation in many situations. The maximum amount of oil that
can be produced from the ith reservoir within the kth period given no other restrictions, can then for
i = 1, . . . , n and k = 1, 2, . . . be expressed as:

fi(Qi,k−1) = Di(Vi −Qi,k−1). (2)

We refer to the function fi as the potential production rate function, or PPR function of the ith
reservoir.

Obviously, the amount of recoverable oil is some non-negative number, while the decline rate must be
a number between zero and one. Thus, for i = 1, . . . , n the set of possible values for the vector (Vi, Di)
is given as:

Xi = R+ × [0, 1]. (3)

Moreover, we assume that the distribution of (Vi, Di) has a prior density πi(v, d) defined over the set
Xi, i = 1, . . . , n, and that the vectors (V1, D1), . . . (Vn, Vn) are independent of each other.

In addition to the restrictions imposed by the reservoir itself, the actual production is typically re-
stricted by the available processing capacity. Here we consider the case where the processing facilities
are shared between the n reservoirs and where K denotes the total processing capacity at these facili-
ties. As a result the reservoir manager needs to assign processing quotas for each reservoir at the start
of each period. Thus, we let xik denote the processing quota assigned to the ith reservoir during the
kth production period, i = 1, 2, . . . , n, k = 1, 2, . . .. Moreover, we let xk = (x1k, . . . , xnk), k = 1, 2, . . ..
Hence, for i = 1, . . . , n and k = 1, 2, . . . the actual production volumes are given by:

qik = qik(xik) = min{fi(Qi,k−1), xik}. (4)



We assume that the quotas are chosen so that the following condition is satisfied:

n

i=1

xik = K, k = 1, 2, . . . . (5)

We now consider the kth time period, and note that if xik ≤ fi(Qi,k−1) for i = 1, . . . , n, it follows by
(4) that qik = xik, i = 1, . . . , n. Thus, in this case all the quotas are fully utilized, and by (5) we get
that:

n

i=1

qik = K.

If on the other hand xjk > fj(Qj,k−1) for some j, the quota for this reservoir is not fully utilized.
Hence, in this case:

n

i=1

qik < K.

That is, some of the available processing capacity is not utilized. Obviously, a good production
strategy should aim at minizing the probability of this happening. Still if the reservoir parameters are
uncertain quantities, this will surely happen from time to time.

The main focus in this paper is on cases where the reservoir parameters are uncertain quantities.
However, we close this section by considering briefly how to optimize production in a case where the
reservoir parameters are known. In [4] this problem was investigated in a continuous time setting.
When a continuous time model is used, the difference equations for the PPR-functions is replaced by
differential equations. [4] showed that when all the PPR-functions satisfy linear differential equations,
the optimal production strategy is to use a strict priority rule, where the reservoirs are prioritized
according to their respective decline rates. In particular the reservoir with the lowest decline rate
should be given the highest priority, while the reservoir with the highest decline rate should be given
the lowest priority. It turns out that this result is valid in the discrete time case as well. This result
will be included in an upcoming paper.

3. SHORT-TERM OPTIMIZATION IN THE STOCHASTIC CASE

In this section we present a possible solution to production optimization under uncertainty. A reason-
able approach to this problem is to assign quotas so that the expected total production is maximized.
In order to do so we introduce:

Yk = Yk(xk) =

n

i=1

qik, k = 1, 2, . . . . (6)

Considering the kth time period, the objective is then to choose xk so that E[Yk(xk)] is maximized
subject to the constraint (5). Note that by using this approach at each step, we focus on the upcoming
time period only. Thus, the solution may not be optimal in a long-term perspective. We refer to this
optimization problem as the short-term optimization problem, and the solution will be called the
short-term production strategy.

In order to solve the short-term optimization problem, we introduce the Lagrange function:

ΛS(xk,λ) = ΦS(xk)− λΨ(xk), (7)

where λ denotes the Lagrange multiplier, and where ΦS(xk) = E[Yk(xk)] and Ψ(xk) =
n

i=1 xik −K.
A stationary point for the Lagrange function is then found by solving the equation:

∇ΦS(xk) = λ∇Ψ(xk), (8)



subject to the restriction that Ψ(xk) = 0. It is easy to verify that ΦS is a concave function. Thus,
the stationary point will be a maximum point, which implies that this will indeed be a solution to our
optimization problem. Furthermore, under mild restrictions the derivative of the expectation is equal
to the expected value of the derivative. Thus, for i = 1, . . . , n we get:

∂

∂xik
ΦS(xk) =

∂

∂xik
E[Yk(xk)] (9)

= E[
∂

∂xik
Yk(xk)]

= E[
∂

∂xik
min{fi(Qi,k−1), xik}]

= E[I(fi(Qi,k−1) > xik)]

= P (fi(Qi,k−1) > xik).

where I(·) denotes the indicator function. Moreover, we get:

∇Ψ(xk) = (1, . . . , 1). (10)

By inserting (9) and (10) into (8), we get that the optimal solution must satisfy:

P (fi(Qi,k−1) > xik) = λ, i = 1, . . . n, (11)

for some value of λ, as well as the restriction (5). In order to find a solution to these equations, we
introduce the non-increasing functions F̄ik(xik) = P (fi(Qi,k−1) > xik), i = 1, . . . , n and k = 1, 2, . . ..
Noting that the F̄ik-functions all have values ranging over the interval [0, 1], we also introduce:

xLik = sup{x : F̄ik(xik) = 1}, i = 1, . . . , n, k = 1, 2, . . . ,

xHik = inf{x : F̄ik(xik) = 0}, i = 1, . . . , n, k = 1, 2, . . . .

Note that since potential production rates obviously are non-negative numbers, we must have:

0 ≤ xLik ≤ xHik ≤ ∞, i = 1, . . . , n, k = 1, 2, . . . .

In the following discussion we assume that F̄ik is continuous and strictly decreasing1 on the interval
[xLik, x

H
ik], i = 1, . . . , n, k = 1, 2, . . .. We may then define an inverse mapping:

F̄−1
ik : [0, 1] → [xLik, x

H
ik], i = 1, . . . , n, k = 1, 2, . . . .

Using this inverse mapping we may express x1k, . . . , xnk in terms of λ and insert the results into (5):

n

i=1

F̄−1
ik (λ) = K, k = 1, 2, . . . . (12)

The task is thus reduced to solving (12) with respect to the single remaining unknown λ. As soon as
λ is found, the resulting quotas x1k, . . . , xnk are determined by using the inverse mapping. In order
to solve (12) we consider three different cases:

Case 1.
n

i=1 x
H
ik < K. In this case (12) does not have a solution. Still it is possible to find a

solution to the original set of equations (11) subject to the restriction (5) simply by letting:

xik =
K · xHikn
j=1 x

H
jk

, i = 1, . . . , n. (13)

It is easy to verify that (13) indeed satisfies the restriction (5). Moreover, since xik ≥ xHik, i = 1, . . . , n,
and since the F̄ik-functions are non-increasing, it follows that F̄ik(xik) = F̄ik(x

H
ik) = 0, i = 1, . . . n.

1If this is not the case, the calculations need to be modified slightly, but we skip these details here.



Case 2.
n

i=1 x
L
ik > K. As in the previous case (12) does not have a solution. In this case a solution

to the original set of equations (11) subject to the restriction (5) can be found by letting:

xik =
K · xLikn
j=1 x

L
jk

, i = 1, . . . , n. (14)

Again it is easy to verify that (14) satisfies the restriction (5). Moreover, since xik ≤ xLik, i = 1, . . . , n,
and since the F̄ik-functions are non-increasing, it follows that F̄ik(xik) = F̄ik(x

L
ik) = 1, i = 1, . . . n.

Case 3.
n

i=1 x
L
ik ≤ K ≤

n
i=1 x

H
ik. In this case it follows by the assumption that the F̄ik’s are

continuous and strictly decreasing that (12) has a unique solution. The solution can be found either
analytically, or by a simple numerical method like e.g., the well-known bisection method. In particular
since the set of possible λ-values is limited to the set [0, 1], finding the solution with a sufficient
precision is easy.

4. LONG-TERM OPTIMIZATION IN THE STOCHASTIC CASE

We start this section by noting that the short-term production strategy found in the previous attempts
to balance the risk of not being able to utilize the assigned quotas between the n reservoirs. Thus,
compared to the optimal strict priority strategy for the deterministic case the short-term strategy
behaves quite differently. Motivated by this we now introduce a different approach for the stochastic
case where the long-term perspective is given more weight.

In the deterministic case the optimal strategy is to make sure that the reservoirs with lowest decline
rates are produced first. As a result, the tail-production will be dominated by the reservoirs with the
highest decline rates. Thus, the remaining volumes will be produced as fast as possible.

One way of evaluating the tail-production is by calculating its potential center of mass. In order to
define this concept, we start out by considering the ith reservoir, and assume that we have completed
k− 1 periods of production. Using the notation introduced in the previous section, the production in
the kth period is qik. Assuming that the reservoir is produced at maximum speed in all the periods
following the kth period, we get that:

qi,k+1 = Di(Vi −Qi,k−1 − qik),

qi,k+2 = Di(Vi −Qi,k − qi,k+1) = Di(1−Di)(Vi −Qi,k−1 − qik),

...

qi,k+h = Di(Vi −Qi,k+h−2 − qi,k+h−1) = Di(1−Di)
h−1(Vi −Qi,k−1 − qik).

The potential center of mass for the tail-production after the kth period of the ith reservoir, expressed
as a function of xik, and denoted by Zik(xik), is defined as:

Zik(xik) =

∞

h=1

h · qi,k+h

=

∞

h=1

h ·Di(1−Di)
h−1(Vi −Qi,k−1 − qik(xik))

= (Vi −Qi,k−1 − qik(xik)) ·D−1
i .

Furthermore, the potential center of mass for the tail-production after the kth period of all reservoirs
combined, expressed as a function of xk, and denoted by Zk(xk), is defined as:

Zk(xk) =

n

i=1

Zik(xik)

=

n

i=1

(Vi −Qi,k−1 − qik(xik)) ·D−1
i .



In order to optimize the tail-production, we seek a strategy such that expected potential center of
mass is as low as possible, since this implies that the remaining volumes can be produced as fast
as possible. We refer to this optimization problem as the long-term optimization problem, and the
solution will be called the long-term production strategy.

In order to solve the long-term optimization problem, we again introduce the Lagrange function:

ΛL(xk,λ) = ΦL(xk) + λΨ(xk), (15)

where λ in this case conveniently denotes the negative Lagrange multiplier, and where ΦL(xk) =
E[Zk(xk)] and Ψ(xk) =

n
i=1 xik −K. A stationary point for the Lagrange function is then found by

solving the equation:
−∇ΦL(xk) = λ∇Ψ(xk), (16)

subject to the restriction that Ψ(xk) = 0. It is easy to verify that ΦL is a convex function. Thus,
the stationary point will be a minimum point, which implies that this will indeed be a solution to our
optimization problem. Under the same mild restrictions as in the short-term case the derivative of
the expectation is equal to the expected value of the derivative. Thus, for i = 1, . . . , n we get:

− ∂

∂xik
ΦL(xk) = − ∂

∂xik
E[Zk(xk)] (17)

= −E[
∂

∂xik
Zk(xk)]

= E[
∂

∂xik
min{fi(Qi,k−1), xik} ·D−1

i ]

= E[I(fi(Qi,k−1) > xik) ·D−1
i ].

Moreover, ∇Ψ(xk) is, as before, given by (10). By inserting (17) and (10) into (16), we get that the
optimal solution must satisfy:

E[I(fi(Qi,k−1) > xik) ·D−1
i ] = λ, i = 1, . . . n, (18)

for some value of λ, as well as the restriction (5). In order to find a solution to these equations, we
use the same procedure as we used for the short-term problem. Thus, we introduce the non-increasing
functions Ḡik(xik) = E[I(fi(Qi,k−1) > xik) ·D−1

i ], i = 1, . . . , n and k = 1, 2, . . .. We observe that Ḡik

has values ranging over the interval [0, µi], where µi = E[D−1
i ], i = 1, . . . , n and k = 1, 2, . . .. Since we

are looking for solution vectors, xk so that the Ḡik-functions become equal, we need to limit our search
for λ-values to the interval [0, µ], where µ = min{µ1, . . . , µn}. Keeping this in mind, we introduce:

xLik = sup{x : Ḡik(xik) = µ}, i = 1, . . . , n, k = 1, 2, . . . ,

xHik = inf{x : Ḡik(xik) = 0}, i = 1, . . . , n, k = 1, 2, . . . .

As in the short-term problem, we must have:

0 ≤ xLik ≤ xHik ≤ ∞, i = 1, . . . , n, k = 1, 2, . . . .

Proceeding as we did previously, we assume that Ḡik is continuous and strictly decreasing on the
interval [xLik, x

H
ik], i = 1, . . . , n, k = 1, 2, . . ., and define an inverse mapping:

Ḡ−1
ik : [0, µ] → [xLik, x

H
ik], i = 1, . . . , n, k = 1, 2, . . . .

Using this inverse mapping we express x1k, . . . , xnk in terms of λ and insert the results into (5):

n

i=1

Ḡ−1
ik (λ) = K, k = 1, 2, . . . . (19)



Thus, again we reduce the problem to solving (19) with respect to the single remaining unknown λ
from which the resulting quotas x1k, . . . , xnk are determined by using the inverse mapping. In order
to solve (19) we again need to consider three different cases:

Case 1.
n

i=1 x
H
ik < K. In this case (19) does not have a solution. Still it is possible to find a

solution to the original set of equations (18) subject to the restriction (5) simply by letting:

xik =
K · xHikn
j=1 x

H
jk

, i = 1, . . . , n. (20)

It is easy to verify that (20) indeed satisfies the restriction (5). Moreover, since xik ≥ xHik, i = 1, . . . , n,
and since the Ḡik-functions are non-increasing, it follows that Ḡik(xik) = Ḡik(x

H
ik) = 0, i = 1, . . . n.

Case 2.
n

i=1 x
L
ik > K. As in the previous case (19) does not have a solution. However, contrary to

the short-term problem, we cannot find a solution to the original set of equations simply by scaling
down all the xiks, as this may alter the values of some of the Ḡiks. Instead we focus on the reservoir
(or reservoirs) having the smallest µi-value, i.e., µ. Say e.g., that the index of this reservoir is j.
For this particular reservoir we may safely scale down its quota xjk without increasing the value of
Ḡjk(xjk), since this value is already at its maximum value. Note that this reservoir most likely also
has the highest decline rate, so it makes perfect sense to save the oil in this reservoir for later periods.

If


i ∕=j x
L
ik ≤ K, it is possible to find a solution to the original set of equations (18) subject to the

restriction (5) by choosing xjk to be a sufficiently small non-negative number. If on the other hand
i ∕=j x

L
ik > K, there exists no solution to the original set of equations. In order to proceed, we

temporarily eliminate the jth reservoir from the problem, and run the algorithm on the remaining
reservoirs. That is, we replace µ by the smallest value of µi in the reduced set of reservoirs. Using this
new µ-value, we recalculate xL1k, . . . , x

L
nk (skipping xjk since this is currently eliminated from the set).

Since the new µ-value is greater than the old µ-value, the revised values of xL1k, . . . , x
L
nk will typically

be smaller than the previous values. If the sum of these values are smaller than or equal to K, the
optimal quotas can be found using the method described in Case 3 below. If on the other hand the
sum is still greater than K, we reduce the quota for the reservoir with the smallest µ-value. This
process of gradually eliminating reservoirs continues until we find a combination of quotas whose sum
is equal to K.

Case 3.
n

i=1 x
L
ik ≤ K ≤

n
i=1 x

H
ik. By the assumption that the Ḡik’s are continuous and strictly

decreasing it follows that (19) has a unique solution. As in the short-term problem the solution can be
found either analytically, or by a simple numerical method like e.g., the well-known bisection method.
In particular since the set of possible λ-values is limited to the set [0, µ], finding the solution with a
sufficient precision is easy.

By assessing probability distributions for the reservoir parameters, we estimate the F̄ik-functions, Ḡik-
functions as well as their respective inverses. When k = 1 it may sometimes be possible to derive these
functions analytically. As the production develops, however, more information about the production
parameters is gained. Hence, the uncertainty distributions need to be updated. As a consequence of
this updating, the uncertain reservoir parameters Vi and Di typically become stochastically dependent
of each other even in cases where the two are independent apriori. This makes it very difficult to obtain
analytical solutions. In order to find a solution to this issue, all the functions are estimated using Monte
Carlo methods. In particular the updated joint distributions of Vi and Di can be simulated using a
combination of rejection sampling and the Metropolis-Hastings algorithm. The methodology for doing
this is described in [8], so we skip the details here.

We now consider the kth period and assume that we have generated a random sample of size N from
the updated joint distribution of Vi and Di. We denote this sample by (Vi1, Di1), . . . , (ViN , DiN ). By



the definitions of F̄ik and Ḡik it follows that these functions can be estimated by:

F̄ est
ik (xik) =

1

N

N

s=1

I(Dis(Vis −Qi,k−1) > xik), i = 1, . . . , n, k = 1, 2, . . . , (21)

Ḡest
ik (xik) =

1

N

N

s=1

I(Dis(Vis −Qi,k−1) > xik) ·D−1
is , i = 1, . . . , n, k = 1, 2, . . . , (22)

respectively.

5. A NUMERICAL EXAMPLE

We illustrate the results of the previous sections by considering a simple numerical example with just
two reservoirs, i.e., n = 2. Moreover, we assume that the reservoirs will be producing over 25 periods
of time and processed on a facility with a capacity of K = 1.2 million barrels of oil per period.

The volumes, V1 and V2, associated with these reservoirs are both 12 million barrels of oil, while the
decline rates D1 and D2, are 0.25 and 0.10 respectively. As these parameters are uncertain apriori,
however, we assess prior probability distributions for all these quantities. The volumes are assumed to
be lognormally distributed with expectation 12.0 and standard deviation 2.0, while the decline rates
are assumed to be uniformly distributed over the intervals [0.20, 0.30] and [0.05, 0.15] respectively.
This is summarized in Table 1. In addition to this, we assume that all reservoir parameters are
stochastically independent of each other apriori.

Table 1: Reservoir parameters.

i E[Vi] SD[Vi] Vi Dmin
i Dmax

i Di

1 12.0 2.0 12.0 0.20 0.30 0.25
2 12.0 2.0 12.0 0.05 0.15 0.10

In the simulation we compare three different strategies. Strategy 1 is the short-term strategy described
in Section 3, while Strategy 2 is the long-term strategy described in Section 4. In addition to this we
also consider a third strategy where we assume that the true values of all the reservoir parameters are
known. As explained in Section 2 the optimal strategy in this situation is a strict priority rule where
the reservoir with the lowest decline rate, i.e., Reservoir 2, is given top priority. This is of course not
a realistic scenario, but this strategy is useful as a comparison to the other two.

Table 2: Results of the simulations for the three strategies.

Total result Disc. result

Strategy 1 22.15 20.26
Strategy 2 22.93 20.92
Strategy 3 22.94 20.94

In Table 2 we have listed the results of the simulations. The left-hand column contains the total
volumes for the three strategies, while the right-hand column contains the corresponding discounted
results obtained using a discount rate of 1 %. We observe that the long-term strategy (Strategy 2) is
almost as good as the strict priority strategy (Strategy 3), while the short-term strategy (Strategy 1)
produces noticable worse results.

We have also included three plots, Figure 1, Figure 2 and Figure 3, showing the production profiles of
the three strategies. In all three plots the blue curve represents the total production, i.e., the sum of
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Figure 1: Production profiles using short-term strategy under uncertainty for Reservoir 1 (red curve),
Reservoir 2 (green curve), and Total production (blue curve)
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Figure 2: Production profiles using long-term strategy under uncertainty for Reservoir 1 (red curve),
Reservoir 2 (green curve), and Total production (blue curve)
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Figure 3: Production profiles using optimal strategy with no uncertainty for Reservoir 1 (red curve),
Reservoir 2 (green curve), and Total production (blue curve)

the production from both reservoirs, while the red and green curves represent the production profiles
of Reservoir 1 and 2 respectively.

Considering Figure 1, the plot representing the short-term strategy, we observe that Reservoir 1 is



produced at a relatively high level in the beginning, while Reservoir 2 starts out a little lower. Since
this strategy maximizes the probability of utilizing all the processing capacity, it makes sense to
produce more from Reservoir 1, since this is the better reservoir.

Turning to Figure 2, we observe that using the long-term strategy, Reservoir 1 is produced at a very
low level in the beginning. This is because that in order to obtain the best long-term results, the
reservoirs with high decline rates should be saved as long as possible. In a short-term perspective,
this strategy is more risky since there is a higher probability that Reservoir 2 may not be able to
utilize as much of the processing capacity. As a result we see that there are a couple of dips in the
toal production in the second and fourth periods. While these dips are unfortunate in a short-term
perspective, such dips also have the side-effect that more information about the reservoir parameters
are gained, and hence the uncertainty is reduced. In the long-term perspective this is an advantage. In
fact, except for these dips, the long-term strategy produces production profiles that are very similar to
the profiles of the optimal strategy shown in Figure 3. In particular, using the long-term strategy the
plateau production is maintained in 15 periods, i.e., two periods more than if the short-term strategy
is used. After that there is a steep decline in the production reflecting that the tail-production has a
low center of mass.

6. CONCLUSIONS

In the present paper we have presented a framework for optimizing oil production from several reser-
voirs sharing a common processing facility when the reservoir parameters are not known. Using La-
grange optimization we have derived both a short-term strategy and a long-term strategy. However,
both these strategies are determined using a step by step forward optimization procedure making the
calculations simple and efficient compared to a full scale stochastic dynamic optimization. Numerical
studies have shown that the long-term strategy is performing better than the short-term strategy. In
fact in the numerical example shown in Section 5, the long-term strategy is almost as good as the
optimal deterministic strategy. In an upcoming paper we will look further into this problem, and
consider other more complex production models as well.
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