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Classical environmental contours are used in structural design in order to obtain upper bounds on the failure
probabilities of a large class of designs. Buffered environmental contours, first introduced in Dahl and Huseby
(2018), serve the same purpose, but with respect to the so-called buffered failure probability. In contrast to classical
environmental contours, buffered environmental contours do not just take into account failure vs. functioning, but
also to which extent the system is failing. This is important to take into account whenever the consequences of
failure are relevant. For instance, if we consider a power network, it is important to know not just that the power
supply is failed, but how many consumers are affected by the failure. In this paper, we study the connections
between environmental contours, both classical and buffered, and optimal structural design. We connect the
classical environmental contours to the risk measure value-at-risk. Similarly, the buffered environmental contours
are naturally connected to the convex risk measure conditional value-at-risk. We study the problem of minimizing
the risk of the cost of building a particular design. This problem is studied both for value-at-risk and conditional-
value-at-risk. By using the connection between value-at-risk and the classical environmental contours, we derive a
representation of the design optimization problem expressed via the environmental contour. A similar representation
is derived by using the connection between conditional value-at-risk and the buffered environmental contour. From
these representations, we derive a sufficient condition which must hold for an optimal design. This is done both in
the classical and the buffered case. Finally, we apply this methodology to a system reliability design problem.

Keywords: Structural reliability analysis, environmental contour, structural design, failure probability, buffered
failure probability, design optimization.

1. Introduction
In this paper, we will consider the problem of
design optimization. We will minimize the risk
of the cost of a structural design. The cost of
the structural design is composed of two parts:
A fixed failure cost K which occurs in case of
system failure and a cost function κ(x) which
only depends on the chosen design x. This risk-
of-cost minimization will be done with respect
to two different risk measures: Value-at-risk and
conditional value-at-risk. Conditional value-at-
risk is a convex risk measure, which takes into
account not just whether a system functions or
fails, but to which extent it fails. We connect the
value-at-risk and conditional value-at-risk to envi-
ronmental contours via functions C(u) and C̄(u).
This connection to the functions C(u) and C̄(u)
allows us to get an alternative characterisation of
the risk-minimization problems.

The structure of the paper is as follows: In
Section 2, we recall the definition of value-at-risk
and derive som properties of this risk measure. In
Section 3, we recall the concept of environmental

contours and buffered environmental contours. In
Section 4, we derive an alternative characteriza-
tion of the design optimization problem of mini-
mizing the value-at-risk of the cost of a structure
by connecting this problem to environmental con-
tours. In Section 5, we apply this methodology
to a system reliability design problem. Value-
at-risk ignores the tail of the distribution of the
structure function, therefore we recall the defini-
tion of another risk measure, conditional value-at-
risk (CVaR), in Section 6. We also derive some
properties of CVaR. In Section 7, we minimize the
conditional value-at-risk of the cost of a structure.
We derive an alternative characterization of this
problem by connecting it to buffered environmen-
tal contours. Finally, in Section 8, we discuss
a criterion for selecting a set of initial design
concepts related to the system of interest.

2. Value-at-risk and some properties
Let X be a random variable, representing risk.
Define SX(x) := P (X > x). Let α ∈ (0, 1)
be a given probability representing an acceptable
level of risk. In the context of structural design,
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the value of α can for instance be determined by
the firm based on the required return period of the
system. See Dahl and Huseby (2018) for further
details. The α-level value-at-risk associated with
the riskX , denoted by Vα[X], is given by S−1

X (α).
More formally, we define:

Vα[X] = S−1
X (α) = inf{x : P (X > x) ≤ α}.

(1)
value-at-risk is frequently used for risk manage-
ment in banks and insurance companies. For more
about value-at-risk as a risk measure, see e.g.
Jorion (2000) and Best and Best (1998).

If SX is strictly decreasing, it is easy to show
that:

Vα[X] = x if and only if

P (X > x) ≤ α ≤ P (X ≥ x). (2)

In particular, when SX is strictly decreasing, the
following holds true:

If P (X > x) = α, then Vα[X] = x. (3)

Finally, if X is a discrete random variable, we
have that:

Vα[X] = x if and only if

P (X > x) ≤ α < P (X ≥ x). (4)

We now show some properties of value-at-risk
which are needed to derive an alternative charac-
terization of our design optimization problem in
Section 4.

Prop 2.1 (Monotone transform). For a strictly
increasing continuous function φ : R → R we
have:

Vα[φ(X)] = S−1
φ(X)(α) = φ(S−1

X (α)) (5)

Proof: We note that since φ is strictly increasing,
it follows by Eq. (1) that:

Vα[φ(X)] = inf{y : P (φ(X) > y) ≤ α}
= inf{y : P (X > φ−1(y)) ≤ α}.

We then substitute y = φ(x) and φ−1(y) = x, and
get:

Vα[φ(X)] = inf{φ(x) : P (X > x) ≤ α}
= φ(inf{x : P (X > x) ≤ α})
= φ(S−1

X (α)).

�
Value-at-risk is linear, as shown in the follow-

ing result.

Corollary 2.1 (Linearity). For a > 0 and b ∈ R
we have:

Vα[aX + b] = aVα[X] + b.

Proof: The result follows directly from the
monotonicity property by noting that:

φ(X) = aX + b

is a strictly increasing function for all a > 0 and
b ∈ R.

�

3. Environmental contours
The classical approach to environmental contours
was first introduced in Rosenblatt (1952). A
Monte Carlo approach to environmental contours
was considered in Huseby et al. (2013), Huseby
et al. (2015a) and Huseby et al. (2015b)a.

In probabilistic structural design, it is com-
mon to define a performance function g(V ,x)
depending on some deterministic design variables
x = (x1, x2, . . . , xm)′ representing various pa-
rameters such as capacity, thickness, strength
etc. and some random environmental quantities
V = (V1, V2, . . . , Vn)′ ∈ V , where V ⊆ Rn.
The performance function is defined such that if
g(V ,x) > 0, the structure is failed, while if
g(V ,x) ≤ 0, the structure is functioning. More-
over, for a given x the set F = {v ∈ V :
g(V ,x) > 0} is called the failure region of the
structure. An important part of the probabilistic
design process is to make sure that P (V ∈ F)
is acceptable for all failure regions F of interest,
denoted E .

In order to avoid failure regions with unac-
ceptable probabilities, it is necessary to put some
restrictions on the family of failure regions. This
is done by introducing a set B ⊆ Rn chosen so
that for any relevant failure region F which do not
overlap with B, the failure probability P (V ∈ F)
is small. The family E is chosen relative to B so
that F ∩B ⊆ ∂B for all F ∈ E , where ∂B denotes
the boundary of B. This boundary is then referred
to as an environmental contour. See Figure 1.

Following Huseby et al. (2017) we define the
exceedence probability of B with respect to E as:

Pe(B, E) := sup{pf (F) : F ∈ E}. (6)

For a given target probability α the objective is to
choose an environmental contour ∂B such that:

Pe(B, E) = α

The exceedence probability represents an upper
bound on the failure probability of the structure
assuming that the true failure region is a member
of the family E . Of particular interest are cases
where one can argue that the failure region of a
structure is convex. That is, cases where E is the
class of all convex sets which do not intersect with
the interior of B.

aThis section is based on Dahl and Huseby (2018). We include
it here for the sake of completeness.
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Fig. 1. An environmental contour ∂B and a failure region F .

3.1. Monte Carlo contours
There are many possible ways of constructing
environmental contours. In this paper we connect
the design optimization problem to the Monte
Carlo based approach to environmental contours,
first introduced in Huseby et al. (2013), and im-
proved in Huseby et al. (2015a) and Huseby et al.
(2015b).

Let U be the set of all unit vectors in Rn, and
let u ∈ U . We then introduce a function C(u)
defined for all u ∈ U as:

C(u) := inf{C : P (u′V > C) ≤ α} (7)

Thus, C(u) is the (1 − α)-quantile of the dis-
tribution of u′V . Given the distribution of V ,
the function C(u) can be estimated by using
Monte Carlo simulation, see e.g. Dahl and Huseby
(2018).

Then, from the previous definitions:

P [u′V > C(u)] = α.

We will use this equality to connect the optimal
design problem to environmental contours, via the
quantile function C(u).

3.2. Buffered environmental contours
Similarly, so called buffered environmental con-
tours, first introduced in Dahl and Huseby (2018),
can be estimated via a function:

C̄(u) := E[u′V |u′V > C(u)]. (8)

Buffered environmental contours are constructed
similarly to classical environmental contours, with
the exception that the failure probability of interest
is the buffered failure probability. For any prob-
ability level α, the α-superquantile of g(V ,x),
q̄α(x), is defined as:

q̄α(x) = E[g(V ,x)|g(V ,x) > qα(x)]. (9)

That is, the α-superquantile is the conditional ex-
pectation of g(V ,x) when we know that its value
is greater than or equal the α-quantile. Then, the
buffered failure probability, p̄f , first introduced by
Rockafellar and Royset Rockafellar and Royset
(2010), is defined as

p̄f (x) = 1− α, (10)

where α is chosen so that q̄α(x) = 0. From these
definitions, it follows that

p̄f (x) = P (g(V ,x) > qα(x)) = 1− F (qα(x))
(11)

where F denotes the distribution of the structure
function g. Buffered environmental contours can
be constructed via Monte Carlo similar to classi-
cal contours. We study the relation between the
design optimization problem with respect to con-
ditional value-at-risk and buffered environmental
contours in Section 7.

4. Value-at-risk and optimal design
We will now connect the optimal design problem
with respect to value-at-risk to the quantile func-
tion C(u). Then, we use this connection to derive
an alternative characterization of the optimization
problem. Some key references on design opti-
mization and structural design are Parkinson et al.
(1993) and Cruse (1997).

Let V = (V1, . . . , Vn) ∈ V be a vector of
environmental variables and let α ∈ (0, 1) be a
given probability representing an acceptable level
of risk. We assume that we have determined a
function C(u) defined for all unit vectors u ∈ Rn
such that:

P [u′V > C(u)] = α, for all u ∈ Rn. (12)

We also introduce the following notation:

Π(u) = {V ∈ V : u′V = C(u)},

Π+(u) = {V ∈ V : u′V > C(u)},

Π−(u) = {V ∈ V : u′V ≤ C(u)}
Hence, for all u ∈ Rn we have:

P [V ∈ Π+(u)] = P [u′V > C(u)] = α. (13)

Remark 4.1 (Connection to MC contours).
Note that this is the same framework as what
is frequently used in connection to Monte Carlo
environmental contours, see Section 3 as well as
Dahl and Huseby (2018). The function C corre-
sponds to the quantile function used to construct
environmental contours, see Eq. (7).

Let the cost of system failure be denoted by K.
We introduce a deterministic function κ = κ(x)
representing the cost of the design x, and assume
that:

κ(x) < K for all x ∈ X .



April 14, 2020 9:40 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book DahlHuseby˙EnvContourDesign

4 K. R. Dahl and A. B. Huseby

Note that this assumption implies that for any
design of interest, system failure costs more than
rebuilding the system. This means that system
failure has other financial consequences than just
having to rebuild the system. This will typically
be the case in practise, for instance for telecom-
munication networks, subway networks or power
production companies.

The total cost, denoted H , is given by:

H(V ,x) = K · I[g(V ,x) > 0] + κ(x).

where I[·] denotes the indicator function. The
α-level value-at-risk of a given design, denoted
Vα(H), is given by:

Vα(H) = S−1
H (α),

where SH(h) = 1− FH(h) = P (H > h). Thus,
Vα(H) is the (1−α)-percentile of the distribution
of H . Our main objective is to choose a design x
so that to minimize the value-at-risk of H , i.e.

min
x∈X

Vα
(
H(V ,x)

)
Since κ(x) is deterministic, it follows by the lin-
earity of Vα that:

Vα[H] = Vα[K · I[g(V ,x) > 0]] + κ(x).

We observe that K · I[g(V ,x) > 0] is a discrete
random variable with only two possible values, 0
and K. Its distribution is given by:

P [K · I[g(V ,x) > 0] = K] = P [g(V ,x) > 0],

P [K · I[g(V ,x) > 0] = 0] = P [g(V ,x) ≤ 0].

By Eq. (4) we know that:

Vα[K · I[g(V ,x) > 0]] = y,

if and only if:

P [K · I[g(V ,x) > 0] > y] ≤ α
< P [K · I[g(V ,x) > 0] ≥ y]

In particular, we have

P [K · I[g(V ,x) > 0] > K] = 0 < α.

This implies that:

Vα[K · I[g(V ,x) > 0]] = K,

if and only if:

P [K · I[g(V ,x) > 0] ≥ K]

= P [g(V ,x) > 0] > α

Furthermore, we have

P [K · I[g(V ,x) > 0] ≥ 0] = 1 > α.

This implies that:

Vα[K · I[g(V ,x) > 0]] = 0,

if and only if:

P [K · I[g(V ,x) > 0] > 0]

= P [g(V ,x) > 0] ≤ α.
Summarizing this, we get:

Vα(K · I[g(V ,x) > 0])

=

{
K if P [g(V ,x) > 0] > α
0 if P [g(V ,x) > 0] ≤ α

(14)
From this it follows that:

Vα(H) =

{
K + κ(x) if P [g(V ,x) > 0] > α
κ(x) if P [g(V ,x) > 0] ≤ α

(15)
Since we have assumed that κ(x) < K for all
x ∈ X , it follows that an optimal design x must
be chosen so that:

P [g(V ,x) > 0] ≤ α (16)

Theorem 4.1 (Halfspace condition VaR). A suf-
ficient condition for Eq. (16) to hold is that
g(V ,x) ≤ 0 for all V such that u′V ≤ C(u),
where u ∈ Rn is a suitably chosen unit vector.

Proof: The condition implies that if g(V ,x) >
0, then u′V > C(u). Hence, by Eq. (12) we get
that:

P [g(V ,x) > 0] ≤ P [u′V > C(u)] = α.

Therefore, we conclude that Eq. (16) is satisfied.
�

We then let u ∈ Rn be a unit vector and
consider the following subclass of designs:

X (u) =

{x ∈ X : g(V ,x) ≤ 0 for all V ∈ Π−(u)},

i.e., designs such that the systems function for
all V ∈ Π−(u). By the halfspace condition,
Theorem 4.1, we know that Eq. (16) is satisfied
for all designs x ∈ X (u). Hence, an optimal
design within the subclass X (u) can be found
by minimising κ(x) with respect to x ∈ X (u).
Different choices of the unit vector u will generate
different optimal designs. However, the choice of
u may often be a result of initial concept decisions
related to the system of interest. Thus, it may
not be necessary to consider multiple subclasses
of design.

5. System reliability optimization
In this section, we show how the proposed
methodology can be used to optimize system re-
liability. Thus, we consider a system with n
components. The design x = (x1, . . . , xn) is a
vector representing the strengths of the individual
components. The performance of the system is
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affected by a vector V = (V1, . . . , Vn) of envi-
ronmental variables such that component i is func-
tioning if Vi ≤ xi, and failed if Vi > xi. The com-
ponent state vector, denoted Y = (Y1, . . . , Yn)
is defined by letting Yi = 1 if Vi ≤ xi and
zero otherwise, i = 1, . . . , n. The system state is
determined by the structure function, φ = φ(Y )
where φ(Y ) = 1 if the system is functioning and
zero otherwise. Given the minimal cut sets of the
system, K1, . . . ,Kk, the performance function of
the system can be expressed as:

g(V ,x) =

k∐
j=1

∏
i∈Kj

I(Vi > xi)

The jth cut set defines a cut set failure region
Fj(x) given by:

Fj(x) =
⋂
i∈Kj

{V : Vi > xi}, j = 1, . . . , k.

The failure region of the system is the union of
these cut set regions. This region is typically
not convex. Moreover, in general calculating the
failure probability of such a system is NP-hard.
However, if we can find a design x and a unit
vector u(x) so that for j = 1, . . . , k we have:

Fj(x) ⊆ {V : u(x)′V > C(u(x))} (17)

then P (g(V ,x) > 0) ≤ α. Hence, for a given
design cost function κ(x), the reliability optimiza-
tion problem can then be stated as follows:

Minimize κ(x) subj. to: Eq. (17).

Example 5.1. Consider a 2-out-of-3 system with
minimal cut sets K1 = {1, 2}, K2 = {1, 3},
K3 = {2, 3}. The cut set failure regions of this
system are:

F1(x) = {V : V1 > x1, V2 > x2}
F2(x) = {V : V1 > x1, V3 > x3}
F3(x) = {V : V2 > x2, V3 > x3}

The smallest convex set containing F1, F2 and F3
is the halfspace F(x) given by:

F(x) = {V :
V1

x1
+
V2

x2
+
V3

x3
> 2}.

We then introduce a(x) = (x−1
1 , x−1

2 , x−1
3 )′, and

let u(x) = a(x)/|a(x)|. Thus, u(x) is a unit
vector, and we may express the set F(x) as:

F(x) = {V : u(x)′V > 2/|a(x)|}.
Hence, by choosing the design x so that:

2/|a(x)| = C(u(x)),

or equivalently:

|a(x)| = 2

C(u(x))
, (18)

it follows that P (g(V ,x) > 0) ≤ α. Hence, the
optimization problem becomes:

Minimize κ(x) subj. to: Eq. (18).

Assuming that we have estimated C(u) for a
suitable collection of unit vectors u, this problem
can easily be solved using standard non-linear
optimization methods.

6. Conditional value-at-risk
So far, we have used value-at-risk as a design
criterion. The problem with this is that VaR ig-
nores the size of the outcomes in the tail of the
distribution.

Example 6.1 (Value-at-risk ignores the tail).
VaR0.05(X) is the x−value such that only 5%
of the outcomes of X are larger (i.e., worse in
our context) than this value. Hence, VaR0.05(X)
ignores the size, and hence the consequences, of
all values above this level.

Based on the previous definition of value-at-
risk, conditional value-at-risk (CVaR), denoted by
Cα, is defined as:

Cα(X) :=
1

α

∫ α

0

Vu(X)du (19)

That is, we compute the average of the value-
at-risk in the α% worst cases. Coherent risk
measures, which conditional value-at-risk is an
example of, were first introduced in Artzner et al.
(1999). CVaR is frequently used in mathematical
finance, and to some extent in insurance math-
ematics. Rockafellar et al. (2000) and Uryasev
(2000) study optimization techniques in connec-
tion to CVaR.

Note that CVaR is also a convex risk measure:

(i) (Convexity) For 0 ≤ λ ≤ 1:

Cα(λX + (1− λ)Y )

≤ λCα(X) + (1− λ)Cα(Y ).

(ii) (Monotonicity) If X ≥ Y , then

Cα(X) ≥ Cα(Y ).

(iii) (Translation invariance) If m ∈ R, then:

Cα(X +m1) = Cα(X)−m.

Remark 6.1. The monotonicity property is the
other way around from what is common in finan-
cial mathematics because we view large positive
values as bad (failure of system). In finance,
greatly negative values are bad (losses).
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Prop 6.1. For any strictly increasing continuous
function φ : R→ R we have:

Cα[φ(X)] =
1

α

∫ α

0

φ(Vu(X))du. (20)

Proof: From the definition of CVaR Eq. (19):

Cα[φ(X)] =
1

α

∫ α

0

S−1
φ(X)(u)du

=
1

α

∫ α

0

φ(S−1
X (u))du

=
1

α

∫ α

0

φ(Vu(X))du

where the second equality holds because of Eq. (5)
of Proposition 2.1 for VaR.

�
In order to prove a monotone transform prop-

erty of conditional value-at-risk, we need the fol-
lowing well-known inequality, included here for
the sake of completeness:

Theorem 6.1 (Jensen’s inequality). Let
(Ω,F , P ) be a probability space. Let g : Ω → R
be a P -integrable function. Also, assume that
ϕ : R→ R is a convex function. Then,

ϕ(

∫
Ω

g(ω)dP (ω)) ≤
∫

Ω

ϕ(g(ω))dP (ω).

From Jensen’s inequality, we find that for f :
[a, b]→ R, ϕ : R→ R convex, we have

ϕ
( 1

b− a

∫ b

a

f(x)dx
)
≤ 1

b− a

∫ b

a

ϕ(f(x))dx.

By using this, we can prove the following
monotone transform property of CVaR:

Prop 6.2 (Monotone transform of CVaR).
Assume that φ : R → R is a strictly increasing,
continuous and convex function. Then,

φ(Cα[X]) ≤ Cα[φ(X)]. (21)

Proof:
φ(Cα[X]) = φ( 1

α

∫ α
0
S−1
X (u))

≤ 1
α

∫ α
0
φ(S−1

X (u))du

= 1
α

∫ α
0
S−1
φ(X)(u)du

= Cα(φ(X)).

Here, the inequality holds from Jensen’s inequal-
ity. The second to last equality follows because of
Eq. (5) of the monotone transform proposition for
VaR.

�

Conditional value-at-risk is linear, as shown in
the following result:

Corollary 6.1 (Linearity of CVaR). For a > 0
and b ∈ R we have:

Cα[aX + b] = aCα[X] + b.

Proof: By using the definition of CVaR and the
linearity of VaR, we see that

Cα(aX + b) = 1
α

∫ α
0
Vu(aX + b)du

= 1
α

∫ α
0
{aVu(X) + b}du

= a( 1
α

∫ α
0
Vu(X)du) + b

= aCα(X) + b.

�

7. Conditional value-at-risk and optimal
design

Parallel to the VaR-case, we would like to choose
an optimal design x such that the conditional
value at risk of the total cost is minimized:

min
x∈X

Cα(H(V ,x))

where, as before, H(V ,x) = K · I[g(V ,x) >
0] + κ(x). From the linearity of CVaR (see
Corollary 6.1),

Cα(H) = K · Cα(I[g(V ,x) > 0]) + κ(x).

Note that Vu is decreasing in u from its defini-
tion. Also, note that

Cα(I[g(V ,x) > 0])

= 1
α

∫ α
0
Vu(I[g(V ,x) > 0])du

= 1
α

∫min{P (g(V ,x)>0),α}
0

1du

= 1
α min{P (g(V, x) > 0), α}

≥ Vα(I[g(V ,x) > 0]).
(22)

Here, the second equality follows from Eq. (14)-
Eq. (15). The inequality follows from the formula
for Vα(I[g(V ,x) > 0]) in Eq. (14). Also, if
P (g(V ,x) > 0) > α, we see that

min{P (g(V ,x) > 0), α} = α. (23)

Hence Cα = 1 (the same as Vα in this case). The
property in Eq. (22) is also true in general: Condi-
tional value-at-risk, Cα, is more conservative than
value-at-risk, Vα.

Now, consider two cases: Let case 1 be the case
where

P [g(V ,x) > 0] > α,
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and case 2 be the case where

P [g(V ,x) > 0] ≤ α.

The calculations leading to Eq. (22)-Eq. (23) im-
ply that

Cα(H) =

{
K + κ(x) in case 1

K P [g(V ,x)>0]
α + κ(x) in case 2.

(24)
Note that 0 ≤ P [g(V ,x) > 0]/α ≤ 1 in case 2
above (since P [g(V ,x) > 0] ≤ α). Also, note
that our assumption that κ(x) < K for all x ∈ X ,
is no longer enough to guarantee that the optimal
design should be chosen such that P [g(V ,x) >
0] ≤ α.

By considering the difference between the two
cases in Eq. (24), we find that a sufficient con-
dition to ensure that the optimal design satisfies
P [g(V ,x) > 0] ≤ α is:

κ(x2)− κ(x1) ≤ K

α
(α− P [g(V ,x2) > 0])

(25)
for all x2 such that P [g(V ,x2) > 0] ≤ α and x1
(that is, case 2) such that P [g(V ,x1) > 0] > α
(i.e., case 1). Note that this slightly resembles a
Lipschitz condition for the cost function κ(·).

Assume, like before, that we have determined a
function C(u) defined for all unit vectors u ∈ Rn
such that Eq. (7) holds. Now, define a function,
C̄(u), as follows

C̄(u) := E[u′V |u′V > C(u)]. (26)

Furthermore, introduce the following notation:

Π̄(u) = {V ∈ V : u′V = C̄(u)},

Π̄+(u) = {V ∈ V : u′V > C̄(u)},

Π̄−(u) = {V ∈ V : u′V ≤ C̄(u)}

and define

Γ(u,V ) := u · V − C̄(u). (27)

Remark 7.1 (Connection to buffered contours).
Note that this is the same framework as what is
used in connection to buffered environmental con-
tours, see Dahl and Huseby (2018). The function
C̄ corresponds to the superquantile function used
to construct buffered environmental contours, see
Eq. (7).

For a fixed (but arbitrary) unit vector u, let
X̄ (u) denote the set of designs x such that g(·,x)

dominated by Γ(u, ·). Then, for any x ∈ X̄ (u),

P (g(V ,x) > 0) ≤ P (Γ(u,x) > 0)

= P (u · V − C̄(u) > 0)

= P (u · V > C̄(u))

= P (V ∈ Π̄+(u))

≤ P (V ∈ Π+(u)) = α.

where the last inequality follows because C̄(u) >
C(u), so by the definitions of Π̄+(u) and Π+(u),
we find that Π̄+(u) ⊆ Π+(u). Therefore, we
have proved that if x ∈ X̄ (u), then

P (g(V ,x) > 0) ≤ α. (28)

We summarize this in the following theorem.

Theorem 7.1 (Domination condition CVaR).
A sufficient condition for Eq. (28) to hold is that
g(·,x) is dominated by a function Γ(u, ·) of the
form Eq. (27), where u ∈ Rn is a suitably chosen
unit vector.

If Eq. (25) is satisfied, we know that the optimal
design should be chosen such that Eq. (28) holds.
Let u ∈ Rn be a suitably chosen unit vector. By
the domination condition for CVaR, Theorem 7.1,
we know that Eq. (28) is satisfied for all designs
x ∈ X̄ (u). Hence, an optimal design is found by
minimising

K · P [g(V ,x) > 0]

α
+ κ(x)

with respect to x ∈ X̄ (u).

8. Choosing the unit vector u

Different choices of the unit vector u will gen-
erate different optimal designs. The choice of u
may often be a result of initial concept decisions
related to the system. If a firm has N different
initial concepts, u1, . . . ,uN under consideration,
the minimization problem can be solved for each
of these ui’s, i = 1, . . . , N . This results in N
potentially optimal designs x1, . . . ,xN .

To find the optimal concept, the firm can
compare the objective function values, i.e.
Vα(H(V ,xi)) or Cα(H(V ,xi)), i = 1, . . . , N ,
of these designs. Assume that for a fixed de-
sign x, we know that the corresponding perfor-
mance function g(·,x) is monotone in some Vi-
component, i = 1, . . . , n. Then one should
choose the unit vector u such that it ”follows the
monotonicity”. That is, if g is non-decreasing
in Vi, so Vi ≤ V̄i implies that g((Vi,V ),x) ≤
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g((V̄i,V ),x), then u should be chosen such that
ui ∈ (0, 1)b.

If g is non-increasing in Vi, so Vi ≤ V̄i implies
that g((Vi,V ),x) ≥ g((V̄i,V ),x), then u should
be chosen such that ui ∈ (−1, 0).

We make the previous statement more precise:
Consider the VaR case. The CVaR case is parallel.
Assume that there exists V , Vi ≤ V̄i where the
system fails in (V̄i,V ), but functions in (Vi,V ).
Note that this assumption is slightly stricter than
g being monotone in component i. It corresponds
to monotonicity as well as criticality of the i’th
environmental component. Also, assume for con-
tradiction that ui ∈ (−1, 0). By assumption,

g
(
(Vi,V ),x

)
≤ 0 and g

(
(V̄i,V ),x

)
> 0.

That is, the system fails in (V̄i,V ), but functions
in (Vi,V ). There exists a vector u such that the
(by scaling) unit vector (ui,u) satisfies (V̄i,V ) ∈
Π−((ui,u)) and (Vi,V ) ∈ Π+((ui,u)).

From the definitions of Π+((ui,u)) and
Π−((ui,u)), this implies that the system should
function in (V̄i,V ) and fail in (V̄i,V ). But this
contradicts the assumption. Hence, choosing ui ∈
(−1, 0) leads to a contradiction, so ui should be
chosen in the only other way possible, namely
such that ui ∈ (0, 1). The arguments in the case
where g is non-increasing in Vi is parallel.

9. Conclusions and further work
So far, we have minimized the risk of the cost of
a structural design wrt. VaR and CVaR. An alter-
native design optimization problem is to minimize
the expected cost under a risk constraint:

Minimize E[H(V ,x)] subj. to R(g(V ,x)) ≤ α.

Here, the risk-function, R, which depends on
the performance function of the system, can be
either value-at-risk or conditional value-at-risk.
By looking at this optimization problem, the en-
vironmental contour becomes a representation of
the constraint. This problem and its connection
to environmental contours are the topic of future
works.
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