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The main idea

Introduce a new concept for verification of the safety of
mechanical structures: Buffered environmental contours.

Generalization of environmental contours which provides more
information about tail behavior and the level of failure.

Why? Enables safer and more controlled classification of
mechanical structures.
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The performance function

Define a performance function

g(x,V)

depending on some design variables x = (x1, x2, . . . , xm)′ and
some environmental quantities V = (V1,V2, . . . ,Vn)′ ∈ V,
where V ⊆ Rn.

g(x,V) is called the state of the structure.

If g(x,V) > 0, the structure is failed, while if g(x,V) ≤ 0, the
structure is functioning.
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The failure region, the failure probability and the
reliability

For a given x the set F(x) = {v ∈ V : g(x, v) > 0} is called the
failure region of the structure.

The failure probability, pf (x), is the probability that the
structure is failed:

pf (x) := P(g(x,V) > 0).

The reliability, R(x), of the system is the probability that the
system is functioning:

R(x) := 1− pf (x)
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The buffered failure probability

Recall: The α-quantile, qα(x), of the distribution of the random
variable g(x,V) is the value of the inverse of its cdf at α.

The α-superquantile of g(x,V), q̄α(x) is

q̄α(x) = E [g(x,V)|g(x,V) > qα(x)].

Let F denote the cdf of g(x,V). Then, Rockafellar and
Royset [4] define the buffered failure probability, p̄f (x), as

p̄f (x) = P(g(x,V) > qα(x)) = 1− F (qα(x)),

where α is chosen so that q̄α(x) = 0.
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Example: Calculating the buffered failure probability
for Gaussian with mean −2.5, standard deviation 1.5
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Figure: Buffered failure probability calculation where: pf (x) = 0.048,
qα(x) = −0.743, α = F (qα(x)) = 0.879, and p̄f (x) = 1− α = 0.121.
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Properties of the buffered failure probability

For an α corresponding to a buffered failure probability, one can
show by contradiction that qα(x) ≤ 0.

It follows that α = F (qα(x)) ≤ F (0). Thus,

p̄f (x) = 1− α ≥ 1− F (0) = pf (x).

Hence, the buffered failure probability is more conservative than
the failure probability.

Rockafellar and Royset [4] list several advantages of the
buffered failure probability compared to the failure probability:

Computational efficiency
Better suited for design optimization algorithms
Contains more information about the tail behavior of the
distribution of g(x,V).
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The purpose of environmental contours

Used in early design stage (when F is unknown) to determine
which designs are safe.

At this early stage it is often not possible to express a precise
functional relationship between x and the performance of the
structure: Skip x, so g(V), F , pf (F) = P(V ∈ F).

F is unknown, but can argue that F belongs to a family, E , of
failure regions.

Goal: Make sure that P(V ∈ F) is acceptable for all F ∈ E .
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The purpose of environmental contours

How? Introduce B ⊆ Rn chosen such that for any failure region
F which does not overlap with B, the failure probability
P(V ∈ F) is small.

Also,

F ∩ B ⊆ ∂B for all F ∈ E ,

where ∂B is the boundary of B.

This boundary is then referred to as an environmental contour.

Environmental contours have been studied by Winterstein et
al. [6], Baarholm et al. [1] and Fontaine et al. [2].
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Example: An environmental contour

V1

V2

B ∂B

F

Environmental contour

Failure region

Figure: An environmental contour ∂B and a failure region F .
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The exceedence probability

Define the exceedence probability of B wrt. E as:

Pe(B, E) := sup{pf (F) : F ∈ E}.

For a given target probability Pe the objective is to choose an
environmental contour ∂B such that:

Pe(B, E) = Pe .
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Construction of contours via Monte Carlo

We consider a method for constructing environmental contours
via Monte Carlo introduced in Huseby et al. [3].

Let U be the set of all unit vectors in Rn, and let u ∈ U .

Introduce a function C (u):

C (u) := inf{C : P(u′V > C ) ≤ Pe}

So, C (u) is the (1− Pe)-quantile of the distribution of u′V.
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Monte Carlo estimation of C (u)

C (u) can be estimated by using Monte Carlo simulation:
Let V1, . . . ,VN be a random sample from the distribution
of V.
Choose u ∈ U , and let Yr (u) = u′Vr , r = 1, . . . ,N.
Sort these in ascending order: Y(1) ≤ Y(2) ≤ · · · ≤ Y(N).
Since C (u) is the (1− Pe)-quantile in the distribution, a
natural estimator is:

Ĉ (u) = Y(k), where k is chosen s.t.
k

N
≈ 1− Pe .
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Definition of the environmental contour

For each u ∈ U , introduce the halfspaces:

Π−(u) = {v : u′v ≤ C (u)},
Π+(u) = {v : u′v > C (u)}.

Define the environmental contour as the boundary ∂B of the
convex set B given by:

B :=
⋂
u∈U

Π−(u)

Can show that the exceedence probability of B with respect to
E is given by:

Pe(B, E) = Pe ,
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The purpose of buffered environmental contours

Introduce a new concept called buffered environmental contours.

Combines the ideas behind buffered failure probabilities and
environmental contours.

For a given performance function g its failure probability, pf ,
can be computed based on the failure region of g alone.

In contrast, computing the buffered failure probability, p̄f ,
requires more detailed information about the distribution of g .

Indicate this by expressing p̄f as a function of g , denoted p̄f (g).
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Construction of buffered contours via Monte Carlo

Let Pe be a given target probability. To introduce buffering, we
let:

C̄ (u) := E[u′V|u′V > C (u)].

C̄ (u) can be estimated by using Monte Carlo simulation:
Let V1, . . . ,VN be a random sample from the distribution
of V.
Choose u ∈ U and let Yr (u) = u′Vr , r = 1, . . . ,N.
Sort these in ascending order: Y(1) ≤ Y(2) ≤ · · · ≤ Y(N).
As before, estimate C (u) by

Ĉ (u) = Y(k), where k is chosen s.t.
k

N
≈ 1− Pe .
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Construction of buffered contours via Monte Carlo

Estimate C̄ (u) by computing the average value of the
sampled values which are greater than Y(k):

ˆ̄C (u) =
1

N − k

∑
r>k

Y(r).

For each u ∈ U , introduce the halfspaces:

Π̄−(u) = {v : u′v ≤ C̄ (u)},
Π̄+(u) = {v : u′v > C̄ (u)},

Finally, define the buffered environmental contour as the
boundary ∂B̄ of the convex set B̄ given by:

B̄ :=
⋂
u∈U

Π̄−(u)
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The buffered environmental contour is more
conservative

It follows from the previous definitions that B ⊂ B̄.

Thus, given that the same target probability Pe is used to
construct both contours, the buffered environmental contour is
more conservative than the classical environmental contour.

Next step: Identify a family G of performance functions defined
relative to the set B̄ such that p̄f (g) ≤ Pe for all g ∈ G.
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A set of safe performance functions

Need more control over the distributions of the performance
functions. Therefore, introduce a performance function Γ(u, ·)
given by:

Γ(u,V) = u′V − C̄ (u)

Can prove that p̄f (Γ(u, ·)) = Pe for all u ∈ U , so the
performance function Γ(u, ·) has the desired buffered failure
probability Pe for all u.

Let G be the family of all performance functions g for which
there exists a u ∈ U such that g(v) ≤ Γ(u, v) for all v ∈ V (so
the Γ(u, ·)-functions are maximal elements in this family).

Theorem
For all g ∈ G we have p̄f (g) ≤ Pe .

19/27



Main idea

Structural
design

Buffered
failure
probability

Environmental
contours

Buffered en-
vironmental
contours

Numerical
example:
Waves

The buffered exceedence probability

We introduce the buffered exceedence probability of B̄ with
respect to G defined as:

P̄e(B̄,G) := sup{p̄f (g) : g ∈ G}.

By the definition of G it follows that Γ(u, ·) ∈ G for all u ∈ U .
Hence:

P̄e(B̄,G) = sup{p̄f (g) : g ∈ G}

= sup{p̄f (Γ(u, ·)) : u ∈ U} = Pe ,

Thus, we conclude that the contour ∂B̄ has the correct buffered
exceedence probability with respect to G.
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Waves in North West Australia

We illustrate the proposed method with a numerical example
introduced in Vanem and Bitner-Gregersen [5]:

Consider joint long-term models for significant wave height, H,
and wave period, T .

The joint model (conditioned on the value of significant wave
height):

fT ,H(t, h) = fH(h)fT |H(t|h)

Simultaneous distributions have been fitted to data assuming:
A three-parameter Weibull distribution for the significant
wave height, H,
A lognormal conditional distribution for the wave period,
T .
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Two different types of waves: Swell and wind sea

The parameters are fitted based on a data set from North West
Australia.

Consider data for two different cases: swell and wind sea.

(a) Swell (b) Wind sea
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Environmental contours for swell and wind sea

We use a return period of 25 years. The models are fitted using
sea states representing periods of 1 hour =⇒ The desired
exceedence probability is:

Pe =
1

25 · 365.25 · 24
= 4.5631 · 10−6.

The environmental contours are estimated via the methods in
Huseby et al. [3].

For the buffered environmental contours, Ĉ (u) is replaced by
ˆ̄C (u) for all u ∈ U .
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Swell
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Figure: Buffered environmental contour (black) and classical
environmental contour (gray) for North West Australia Swell with
return period 25 years.
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Wind sea
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Figure: Buffered environmental contour (black) and classical
environmental contour (gray) for North West Australia Wind Sea
with return period 25 years.
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Conclusions

We have introduced buffered environmental contours.

For the same target probability Pe , the buffered environmental
contour is more conservative than the classical contours.

For manageable damages, a higher target probability might be
OK =⇒ In real-life applications a buffered environmental
contour may not be so conservative.
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