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The problem

In this presentation, we will consider the problem of design
optimisation. We will minimise the risk of the cost of a structural
design.

The cost of the structural design is composed of two parts: A fixed
failure cost K which occurs in case of system failure and a cost
function κ(x) which only depends on the chosen design x .

This risk-of-cost minimisation will be done with respect to two different
risk measures: Value-at-risk and conditional value-at-risk.
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The problem ctd.

Conditional value-at-risk is a convex risk measure, which takes into
account not just whether a system functions or fails, but to which
extent it fails.

We connect the value-at-risk and conditional value-at-risk to
environmental contours via functions C(u) and C̄(u).

This connection to the functions C(u) and C̄(u) allow us to get an
alternative characterisation of the risk-minimisation problems.
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Value-at-risk
Let X be some risk, and introduce SX (x) = P(X > x). The α-level
value-at-risk associated with the risk X , denoted by Vα[X ], is given by
S−1

X (α). More formally, we define:

Vα[X ] = S−1
X (α) = inf{x : P(X > x) ≤ α}. (1)

In the special case where X is absolutely continuously distributed, we have:

Vα[X ] = S−1
X (α) = x if and only if P(X > x) = α.

More generally, if SX is strictly decreasing, we have that:

Vα[X ] = x if and only if P(X > x) ≤ α ≤ P(X ≥ x). (2)

Finally, if X is a discrete random variable, we have that:

Vα[X ] = x if and only if P(X > x) ≤ α < P(X ≥ x). (3)
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Value-at-risk (cont.)

Proposition (Monotone transform)

For any strictly increasing continuous function φ we have:

Vα[φ(X )] = S−1
φ(X)(α) = φ(S−1

X (α)) (4)

PROOF: We note that since φ is strictly increasing, it follows by (1) that:

Vα[φ(X )] = inf{y : P(φ(X ) > y) ≤ α}
= inf{y : P(X > φ−1(y)) ≤ α}.

We then substitute y = φ(x) and φ−1(y) = x , and get:

Vα[φ(X )] = inf{φ(x) : P(X > x) ≤ α}
= φ(inf{x : P(X > x) ≤ α})
= φ(S−1

X (α)).
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Value-at-risk (cont.)

Corollary (Linearity)

For a > 0 and b ∈ R we have:

Vα[aX + b] = aVα[X ] + b.

PROOF: The result follows directly from the monotonicity property by noting
that:

φ(X ) = aX + b

is a strictly increasing function for all a > 0 and b ∈ R.
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Value-at-risk and optimal design
Let V = (V1, . . . ,Vn) ∈ V be a vector of environmental variables and let
α ∈ (0,1) be a given probability representing an acceptable level of risk. We
assume that we have determined a function C(u) defined for all unit vectors
u ∈ Rn such that:

P[u′V > C(u)] = α, for all u ∈ Rn. (5)

We also introduce the following notation:

Π(u) = {V ∈ V : u′V = C(u)},

Π+(u) = {V ∈ V : u′V > C(u)},

Π−(u) = {V ∈ V : u′V ≤ C(u)}

Hence, we have:

P[V ∈ Π+(u)] = P[u′V > C(u)] = α, for all u ∈ Rn. (6)
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Value-at-risk and optimal design (cont.)

Next we let x = (x1, . . . , xm) be a vector of design variables for a given system
representing various parameters such as capacity, thickness, strength etc.

Every design is referred to simply by its corresponding vector of design
variables, i.e., x . The set of possible designs is denoted by X .

The performance function of a system is denoted by g, and is assumed to be
a function of both V and x :

g = g(V ,x).

The performance function is used to identify environmental conditions where
the system fails. More specifically, the system fails if and only if g(V ,x) > 0.
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Value-at-risk and optimal design (cont.)

The cost of a system failure is denoted by K . We also introduce a
deterministic function κ = κ(x) representing the cost of the design x , and
assume that:

κ(x) < K for all x ∈ X .

The total cost, denoted H, is then given by:

H(V ,x) = K · I[g(V ,x) > 0] + κ(x).

The α-level value-at-risk of a given design, denoted Vα(H), is given by:

Vα(H) = S−1
H (α),

where SH(h) = 1− FH(h) = P(H > h). Thus, Vα(H) is the (1− α)-percentile
of the distribution of H.

Our main objective is to choose a design x so that Vα(H) is minimised.
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Value-at-risk and optimal design (cont.)

Since κ(x) is deterministic, it follows by the linearity of Vα that:

Vα[H] = Vα[K · I[g(V ,x) > 0]] + κ(x).

We observe that K · I[g(V ,x) > 0] is a discrete random variable with only two
possible values, 0 and K . Its distribution is given by:

P[K · I[g(V ,x) > 0] = K ] = P[g(V ,x) > 0],

P[K · I[g(V ,x) > 0] = 0] = P[g(V ,x) ≤ 0].

By (3) we know that:
Vα[K · I[g(V ,x) > 0]] = y ,

if and only if:

P[K · I[g(V ,x) > 0] > y ] ≤ α < P[K · I[g(V ,x) > 0] ≥ y ]
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Value-at-risk and optimal design (cont.)

In particular, we have P[K · I[g(V ,x) > 0] > K ] = 0 < α implying that:

Vα[K · I[g(V ,x) > 0]] = K ,

if and only if:

P[K · I[g(V ,x) > 0] ≥ K ] = P[g(V ,x) > 0] > α

Furthermore, we have P[K · I[g(V ,x) > 0] ≥ 0] = 1 > α implying that:

Vα[K · I[g(V ,x) > 0]] = 0,

if and only if:

P[K · I[g(V ,x) > 0] > 0] = P[g(V ,x) > 0] ≤ α
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Value-at-risk and optimal design (cont.)

Summarising this we get:

Vα(K · I[g(V ,x) > 0]) =

{
K if P[g(V ,x) > 0] > α

0 if P[g(V ,x) > 0] ≤ α

From this it follows that:

Vα(H) =

{
K + κ(x) if P[g(V ,x) > 0] > α

κ(x) if P[g(V ,x) > 0] ≤ α

Since we have assumed that κ(x) < K for all x ∈ X , it follows that an optimal
design x must be chosen so that:

P[g(V ,x) > 0] ≤ α (7)

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Optimal design STK 4400 12 / 37



uiobmcrop

Value-at-risk and optimal design (cont.)

Theorem (Halfspace condition)

A sufficient condition for (7) to hold is that g(V ,x) ≤ 0 for all V such that
u′V ≤ C(u), where u ∈ Rn is a suitably chosen unit vector.

PROOF: The condition implies that if g(V ,x) > 0, then u′V > C(u).

Hence, by (5) we get that:

P[g(V ,x) > 0] ≤ P[u′V > C(u)] = α.

Hence, we conclude that (7) is satisfied.

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Optimal design STK 4400 13 / 37



uiobmcrop

Value-at-risk and optimal design (cont.)

We then let u ∈ Rn be a unit vector and consider the following
subclass of designs:

X (u) = {x ∈ X : g(V ,x) ≤ 0 for all V ∈ Π−(u)}.

By the halfspace condition theorem we know that the condition (7) is
satisfied for all designs x ∈ X (u).

Hence, an optimal design within the subclass X (u) can be found by
minimising κ(x) with respect to x ∈ X (u).

Different choices of the unit vector u will generate different optimal
designs. However, the choice of u may often be a result of initial
concept decisions related to the system of interest. Thus, it may not be
necessary to consider multiple subclasses of design.
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Example: Structural reliability

We consider a system whose performance depends on the non-negative
environmental variables, V = (V1, . . . ,Vn) ∈ V. The system fails if:

AV > x

where A = Am×n is a matrix, and the design x = (x1, . . . , xm) is a vector of
strengths.

The cost of the design x is given by:

κ(x) = c1x1 + · · ·+ cmxm.

We want to minimise κ(x) subject to P[AV > x ] ≤ α. Since this failure
probability may be difficult to compute, we instead minimise κ(x) subject to:

{V ∈ V : AV > x} ⊆ {V ∈ V : u′V > C(u)}. (8)
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Example: Structural reliability

It follows that if the design x satisfies (8), then:

P[AV > x ] ≤ P[u′V > C(u)] = α.

For a given design x , we can then check if it satisfies (8) by solving the
following LP-problem:

Minimise u′V subject to AV ≥ x . (9)

Let V 0 denote the solution to (9). Then x satisfies (8) if and only if:

u′V 0 > C(u).

By using a suitable iteration method one can then find a design x which
minimises κ(x) subject to (8).
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Conditional value-at-risk

Problem: VaR ignores the size of the outcomes in the tail of the
distribution.

Example

VaR0.05(X) is the x−value such that only 5% of the outcomes of X are
larger (i.e., worse in our context) than this value. Hence, VaR0.05(X)
ignores the size, and hence the consequences, of all values above this
level.

Based on the previous definition of value-at-risk, conditional value at
risk (CVaR) is defined as

CVaRα(X ) :=
1
α

∫ α

0
Vu(X )du (10)

That is, we compute the average of the value-at-risk in the α% worst
cases.
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Conditional value-at-risk ctd.

CVaR is frequently used in mathematical finance, and to some extent
in insurance mathematics.

Note that ρ := CVaR is a convex risk measure, i.e.
(i) (Convexity) ρ(λX + (1−λ)Y ) ≤ λρ(X ) + (1−λ)ρ(Y ) for 0 ≤ λ ≤ 1.
(ii) (Monotonicity) If X ≥ Y , then ρ(X ) ≥ ρ(Y ).
(iii) (Translation invariance) If m ∈ R, then ρ(X + m1) = ρ(X )−m.
NB: The monotonicity property is the other way around from what is
common in financial mathematics because we view large positive
values as bad (failure of system). In finance, greatly negative values
are bad (losses).
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Conditional value at risk ctd.

Proposition
For any strictly increasing continuous function φ we have:

CVaRα[φ(X )] =
1
α

∫ α

0
φ(S−1

X (u))du. (11)

PROOF: From the definition of CVaR (10):

CVaRα[φ(X )] =
1
α

∫ α

0
S−1
φ(X)(u)du

=
1
α

∫ α

0
φ(S−1

X (u))du

where the final equality holds because of equation (4) of the monotone
transform proposition for VaR.
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Jensen’s inequality

Theorem (Jensen’s inequality)

Let (Ω,F ,P) be a probability space (i.e., P(Ω) = 1). Let g : Ω→ R be
a P-integrable function. Also, assume that ϕ : R→ R is a convex
function. Then,

ϕ(

∫
Ω

g(ω)dP(ω)) =

∫
Ω
ϕ(g(ω))dP(ω).

From Jensen’s inequality, we find that for f : [a,b]→ R,

ϕ(
1

b − a

∫ b

a
f (x)dx) ≤ 1

b − a

∫ b

a
ϕ(f (x))dx .
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Conditional value at risk ctd.

Proposition
For any strictly increasing continuous function and convex function φ
we have:

φ(CVaRα[X ]) ≤ CVaRα[φ(X )]. (12)

PROOF:
φ(CVaRα[X ]) = φ( 1

α

∫ α
0 S−1

X (u))

≤ 1
α

∫ α
0 φ(S−1

X (u))du

= 1
α

∫ α
0 S−1

φ(X)(u)du

= CVaRα(φ(X )).

Here, the inequality holds from Jensen’s inequality. The second to last
equality follows because of equation (4) of the monotone transform
proposition for VaR.
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Conditional value-at-risk ctd.

Corollary (Linearity of CVaR)
For a > 0 and b ∈ R we have:

CVaRα[aX + b] = aCVaRα[X ] + b.

PROOF: By using the definition of CVaR and the linearity of VaR, we
see that

CVaRα(aX + b) = 1
α

∫ α
0 Vu(aX + b)du

= 1
α

∫ α
0 {aVu(X ) + b}du

= a( 1
α

∫ α
0 Vu(X )du) + b

= aCVaRα(X ) + b.
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CVaR and optimal design

Parallel to the VaR-case, we would like to choose an optimal design x
such that the conditional value at risk of the total cost is minimized:

CVaR design optimization problem:

min
x

CVaRα(H)

where, as before, H = K · I[g(V ,x) > 0] + κ(x).

α is assumed to be given. The value of α is determined by the firm
based on the required return period of the system.

From the linearity of CVaR

CVaRα(H) = K · CVaR(I[g(V ,x) > 0]) + κ(x).
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CVaR and optimal design ctd.

From the definition of VaR, VaRu is decreasing in u.

Example
Check this for the previously computed VaR:

Assume u1 < u2. If P(I[g(V ,x) > 0]) > u2, then

P(I[g(V ,x) > 0]) > u2 > u1.

Hence, from the previously calculated VaR, we see that
VaRu2 = K =⇒ VaRu1 = K , but not the other way around. Hence,

VaRu2 ≤ VaRu1 .

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Optimal design STK 4400 24 / 37



uiobmcrop

CVaR and optimal design ctd.

Also, note that

CVaRα(I[g(V ,x) > 0]) = 1
α

∫ α
0 VaRu(I[g(V ,x) > 0])du

= 1
α

∫ min{P(I[g(V ,x )>0]),α}
0 1du

≥ VaRα(I[g(V ,x) > 0]).

Here, the second equality follows from the previous computation of
VaR. The inequality follows since the integral is always greater than or
equal 0. Also, if P(I[g(V ,x) > 0]) > α, so

min{P(I[g(V ,x) > 0]), α} = α,

CVaR = 1 (the same as VaR).

This is also true in general, so CVaRα is more conservative than VaRα.
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CVaR and optimal design ctd.

In our case, the previous calculations imply that

CVaRα(H) =

{
K + κ(x) if P[g(V ,x) > 0] > α

K P[g(V ,x )>0]
α + κ(x) if P[g(V ,x) > 0] ≤ α

Note that P[g(V ,x )>0]
α ≤ 1 in the second case above, since

P[g(V ,x) > 0] ≤ α.

Also, note that our assumption that κ(x) < K for all x ∈ X , is no longer
enough to guarantee that the optimal design should be chosen where
P[g(V ,x) > 0] ≤ α.
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CVaR and optimal design ctd.

A sufficient condition to ensure that the optimal design should be
chosen where P[g(V ,x) > 0] ≤ α is:

κ(x1)− κ(x2) ≤ K
α

(α− P[g(V ,x1) > 0]) (13)

for all x1 is such that P[g(V ,x1) > 0] ≤ α and x2 such that
P[g(V ,x2) > 0] > α.

Note that this slightly resembles a Lipschitz condition.
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Halfspaces

Let V = (V1, . . . ,Vn) ∈ V be a vector of environmental variables and let
α ∈ (0,1) be a given probability representing an acceptable level of
risk. Assume, like before, that we have determined a function C(u)
defined for all unit vectors u ∈ Rn such that:

P[u′V > C(u)] = α, for all u ∈ Rn. (14)

Now, define a function, C̄(u), as follows

C̄(u) := E[u′V |u′V > C(u)]. (15)
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Halfspaces

Furthermore, introduce the following notation:

Π̄(u) = {V ∈ V : u′V = C̄(u)},

Π̄+(u) = {V ∈ V : u′V > C̄(u)},

Π̄−(u) = {V ∈ V : u′V ≤ C̄(u)}

Define
Γ(u,V ) := u · V − C̄(u). (16)
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CVaR and optimal design ctd.

For a fixed (but arbitrary) unit vector u, let X̄ (u) denote the set of
designs x such that g(·,x) dominated by Γ(u, ·).
Then, for any x ∈ X̄ (u),

P(g(V ,x) > 0) ≤ P(Γ(u,x) > 0)

= P(u · V − C̄(u) > 0)

= P(u · V > C̄(u))

= P(Π̄+(u))

≤ P(Π+(u))

= α.

where the last inequality follows because C̄(u) > C(u), so by the
definitions of Π̄+(u) and Π+(u), we find that Π̄+(u) ⊆ Π+(u). Hence,

P(Π̄+(u)) ≤ P(Π+(u)).
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CVaR and optimal design ctd.

Therefore, we have proved that if x ∈ X̄ (u), then

P(g(V ,x) > 0) ≤ α. (17)

We summarize this in the following theorem.

Theorem (Domination condition)

A sufficient condition for (17) to hold is that g(·,x) is dominated by a
function Γ(u, ·) of the form (16), where u ∈ Rn is a suitably chosen unit
vector.
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Value-at-risk and optimal design (cont.)

Assume condition (13) is satisfied. Then, we know that the optimal
design should be chosen such that equation (17) holds.

Let u ∈ Rn be a suitably chosen unit vector.

By the domination condition theorem we know that the condition (17) is
satisfied for all designs x ∈ X̄ (u).

Hence, an optimal design is found by minimising

K
P[g(V ,x) > 0]

α
+ κ(x)

with respect to x ∈ X̄ (u).
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Choosing the unit vector u

Different choices of the unit vector u will generate different optimal
designs. However, the choice of u may often be a result of initial
concept decisions related to the system of interest. Thus, it may not be
necessary to consider multiple subclasses of design.

If a firm has N different initial concepts, u1, . . . ,uN under
consideration, the minimisation problem can be solved for each of
these ui ’s, i = 1, . . . ,N.

This results in N potentially optimal designs x1, . . . ,xN .

To find the optimal concept, the firm can simply compare the objective
function values, i.e. Vα(H(xi)) or CVaRα(H(xi)), i = 1, . . . ,N, of these
designs.
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Choosing the unit vector u ctd.

Assume that for a fixed design x , we know that the corresponding
performance function g(·,x) is monotone in some Vi -component,
i = 1, . . . ,n.

Then, roughly speaking, one should choose the unit vector u such that
it follows the monotonicity.

That is, if g is non-decreasing in Vi , so Vi ≤ V̄i implies that
g((Vi ,V ),x) ≤ g((V̄i ,V ),x), then u should be chosen such that
ui ∈ (0,1).

If g is non-increasing in Vi , so Vi ≤ V̄i implies that
g((Vi ,V ),x) ≥ g((V̄i ,V ),x), then u should be chosen such that
ui ∈ (−1,0).
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Choosing the unit vector u ctd.

We make the previous statement more precise: Consider the classical,
C(u), case. The buffered case is parallel.

Assume that there exists V ,Vi ≤ V̄i where the system fails in (V̄i ,V ),
but functions in (Vi ,V ).

Note that this assumption is slightly stricter than g being monotone in
component i . It corresponds to monotonicity as well as criticality of the
i ’th environmental component.

Also, assume for contradiction that we have choose ui ∈ (−1,0).

By assumption, there exists V , Vi and V̄i such that g(Vi ,V ) ≤ 0 and
g(V̄i ,V ) > 0. That is, the system fails in (V̄i ,V ), but functions in
(Vi ,V ).
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Choosing the unit vector u ctd.

There exists a vector u such that the (by scaling) unit vector (ui ,u)
satisfies (V̄i ,V ) ∈ Π−((ui ,u)) and (Vi ,V ) ∈ Π+((ui ,u)).

From the definitions of Π+((ui ,u)),Π−((ui ,u)), this implies that the
system should function in (V̄i ,V ) and fail in (Vi ,V ). But this contradicts
the assumption.

Hence, choosing ui ∈ (−1,0) leads to a contradiction, so ui should be
chosen in the only other way possible, namely such that ui ∈ (0,1).

The arguments in the case where g is non-increasing in Vi is parallel.
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An alternative optimisation problem

So far, we have minimised the risk of the cost of a structural design.

An alternative optimisation problem is to minimise the expected cost
under a risk constraint:

min E [H(x ,V )]

such that

risk(g(x ,V )) ≤ α

Here, the risk-function, which depends on the performance function of
the system, can be either value-at-risk or conditional value-at-risk.

By looking at this optimisation problem, the environmental contour is a
representation of the constraint.
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