Environmental contours - part 1

Arne Bang Huseby and Kristina Rognlien Dahl

University of Oslo, Norway

STK 4400

< 回 ト < 三 ト < 三

STK 4400

1/43

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours – part 1

Environmental contours

 Let (*T*, *H*) ∈ ℝ² be a vector of environmental variables representing e.g., the *sea state* at some point of time *t*. In this presentation we let:

T = Wave period at time t

H = Significant wave height at time t

- The distribution of (*T*, *H*) is assumed to be absolutely continuous with respect to the Lebesgues measure in ℝ²
- An *environmental contour* is then defined as the boundary of a set $\mathcal{B} \subseteq \mathbb{R}^2$, and denoted $\partial \mathcal{B}$.

Environmental contours (cont.)

- During the design phase of some structure of interest the environmental contour can be used to identify conditions which the structure should be able to withstand
- If $(T, H) \in \mathcal{B}$, the structure should *function normally*
- The environmental contour
 ∂B represents the most severe or extreme conditions that the structure should be able to handle
- The points in ∂B represent possible *design requirements* for the structure.

Failure regions

- The failure region *F* ⊆ ℝ² of a structure is the set of states of the environmental variables where the structure fails.
- The exact shape of the failure region of a structure is typically be unknown at this stage.
- It may still be possible to argue that the failure region belongs to a certain family denoted by *E*.
- A contour $\partial \mathcal{B}$ will be evaluated with respect to the family \mathcal{E} .
- The family \mathcal{E} depends on \mathcal{B} in such a way that $\mathcal{F} \cap \mathcal{B} \subseteq \partial \mathcal{B}$ for all $\mathcal{F} \in \mathcal{E}$.
- If the size of B is increased (i.e., the structure is strengthened), the family of possible failure regions, E, is reduced, and hence also the failure probability.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Environment contour and failure region

A (10) A (10) A (10)

The exceedance probability of \mathcal{B} with respect to \mathcal{E} is defined as:

$$P_e(\mathcal{B},\mathcal{E}) = \sup\{P[(T,H) \in \mathcal{F}] : \mathcal{F} \in \mathcal{E}\}.$$

NOTE: The exceedance probability is an upper bound on the failure probability of the structure assuming that the true failure region is a member of the family \mathcal{E} .

For a given target exceedance probability $p_e \in (0, 0.5)$ our goal is to find a minimal set B such that:

$$P_e(\mathcal{B},\mathcal{E}) \le p_e$$
 (1)

If the set \mathcal{B} satisfies (1), then $\partial \mathcal{B}$ is said to be a *valid* environmental contour.

< 回 > < 三 > < 三 >

Maximal failure regions

A failure region $\mathcal{F} \in \mathcal{E}$ is said to be *maximal* if there does not exist a region $\mathcal{F}' \in \mathcal{E}$ such that $\mathcal{F} \subset \mathcal{F}'$.

The family of maximal regions in \mathcal{E} is denoted by \mathcal{E}^* . If $\mathcal{F}_1, \mathcal{F}_2 \in \mathcal{E}$ and $\mathcal{F}_1 \subseteq \mathcal{F}_2$, we obviously have:

$$P[(T,H) \in \mathcal{F}_1] \leq P[(T,H) \in \mathcal{F}_2].$$

From this it follows that:

$$P_e(\mathcal{B},\mathcal{E}) = \sup\{P[(T,H) \in \mathcal{F}] : \mathcal{F} \in \mathcal{E}\}\$$
$$= \sup\{P[(T,H) \in \mathcal{F}] : \mathcal{F} \in \mathcal{E}^*\}.$$

A B A B A B A

Convex failure regions

It is often natural to assume that a failure region is convex:

This means that if the structure fails at two distinct points (t_1, h_1) and (t_2, h_2) , then it also fails for all states on the line segment between these points.

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

Environmental contours - part 1

Supporting hyperplanes and halfspaces

- Π is a supporting hyperplane of ${\cal B}$
- Π^+ is a supporting halfspace of \mathcal{B}
- Π^- is a halfspace opposite to a supporting halfspace of ${\cal B}$

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

In the following we only consider contour sets \mathcal{B} which are *compact* and *convex*. Furthermore, we assume that all the sets in \mathcal{E} are *convex*.

For a given compact and convex set \mathcal{B} we introduce the following families of sets:

 $\mathcal{P}(\mathcal{B}) =$ The family of supporting hyperplanes of \mathcal{B} ,

< 回 > < 回 > < 回 >

STK 4400

10/43

 $\mathcal{P}^+(\mathcal{B}) =$ The family of supporting halfspaces of \mathcal{B} ,

 $\mathcal{P}^{-}(\mathcal{B}) =$ The family of halfspaces opposite to supporting halfspaces of \mathcal{B}

Proposition (Halfspace failure region)

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and convex set, and let \mathcal{E} be the family of convex sets such that $\mathcal{F} \cap \mathcal{B} \subseteq \partial \mathcal{B}$ for all $\mathcal{F} \in \mathcal{E}$. Then $\mathcal{E}^* = \mathcal{P}^+(\mathcal{B})$, and hence:

$$P_{e}(\mathcal{B},\mathcal{E}) = \sup_{\Pi^{+}\in\mathcal{P}^{+}(\mathcal{B})} \{ P[(T,H)\in\Pi^{+}] \}.$$
(2)

Moreover, the set \mathcal{B} can be expressed as:

$$\mathcal{B} = \bigcap_{\Pi^{-} \in \mathcal{P}^{-}(\mathcal{B})} \Pi^{-}.$$
 (3)

The families $\mathcal{P}(\mathcal{B})$, $\mathcal{P}^+(\mathcal{B})$ and $\mathcal{P}^-(\mathcal{B})$ can be expressed in a more explicit form.

In order to explain how this can be done, we start out by letting $\theta \in [0, 2\pi)$, and define:

$$B(\mathcal{B},\theta) = \sup_{(t,h)\in\mathcal{B}} [t\cos(\theta) + h\sin(\theta)]$$
(4)

We also introduce :

$$\Pi(\mathcal{B},\theta) = \{(t,h) : t\cos(\theta) + h\sin(\theta) = B(\mathcal{B},\theta)\}$$

$$\Pi^{+}(\mathcal{B},\theta) = \{(t,h) : t\cos(\theta) + h\sin(\theta) \ge B(\mathcal{B},\theta)\},$$

$$\Pi^{-}(\mathcal{B},\theta) = \{(t,h) : t\cos(\theta) + h\sin(\theta) \le B(\mathcal{B},\theta)\}.$$

A D A D A D A

Since \mathcal{B} is assumed to be compact, it follows that \mathcal{B} is bounded, and thus, $B(\mathcal{B}, \theta)$ must be finite. Moreover, by the definition of $B(\mathcal{B}, \theta)$ it follows that:

$$t\cos(\theta) + h\sin(\theta) \le B(\mathcal{B}, \theta), \text{ for all } (t, h) \in \mathcal{B}.$$

Finally, since \mathcal{B} is compact, \mathcal{B} is closed as well. Thus, there must exist at least one point $(t_0, h_0) \in \mathcal{B}$ such that:

$$t_0 \cos(\theta) + h_0 \sin(\theta) = B(\mathcal{B}, \theta)$$

From this it follows that:

```
egin{aligned} & \Pi(\mathcal{B},	heta)\in\mathcal{P}(\mathcal{B}) \ & \Pi^+(\mathcal{B},	heta)\in\mathcal{P}^+(\mathcal{B}) \ & \Pi^-(\mathcal{B},	heta)\in\mathcal{P}^-(\mathcal{B}) \end{aligned}
```


Assume conversely that $\Pi \in \mathcal{P}(\mathcal{B})$, and let Π^+ and Π^- be the corresponding supporting and opposite halfspaces separated by Π . Then Π , Π^+ and Π^- can be expressed as follows:

$$\Pi = \{(t, h) : ta_1 + ha_2 = b\},\$$

$$\Pi^+ = \{(t, h) : ta_1 + ha_2 \ge b\},\$$

$$\Pi^- = \{(t, h) : ta_1 + ha_2 \le b\}$$

for suitable real numbers a_1 , a_2 and b.

Without loss of generality we may assume that a_1 and a_2 are *normalized* such that $a_1^2 + a_2^2 = 1$.

Then it follows that there exists a $\theta \in [0, 2\pi)$ such that:

$$a_1 = \cos(\theta)$$
 and $a_2 = \sin(\theta)$

A (10) A (10)

Since Π^+ is a supporting halfspace of \mathcal{B} , we must have:

$$t\cos(\theta) + h\sin(\theta) \le b$$
, for all $(t, h) \in \mathcal{B}$,
 $t_0\cos(\theta) + h_0\sin(\theta) = b$, for some $(t_0, h_0) \in \mathcal{B}$,

From this it follows that:

$$b = \sup_{(t,h)\in\mathcal{B}} [t\cos(\theta) + h\sin(\theta)] = B(\mathcal{B},\theta),$$

implying that:

 $\Pi = \Pi(\mathcal{B}, \theta)$ $\Pi^{+} = \Pi^{+}(\mathcal{B}, \theta)$ $\Pi^{-} = \Pi^{-}(\mathcal{B}, \theta)$

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

The following proposition summarizes these findings:

Proposition (Parametric families)

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and convex set. Then we have:

$$\mathcal{P}(\mathcal{B}) = \{\Pi(\mathcal{B}, \theta) : \theta \in [0, 2\pi)\},$$

 $\mathcal{P}^+(\mathcal{B}) = \{\Pi^+(\mathcal{B}, \theta) : \theta \in [0, 2\pi)\},$
 $\mathcal{P}^-(\mathcal{B}) = \{\Pi^-(\mathcal{B}, \theta) : \theta \in [0, 2\pi)\}.$

A

- E - N

By combining the previous results we also obtain the following: Proposition

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and convex set, and let \mathcal{E} be the family of convex sets such that $\mathcal{F} \cap \mathcal{B} \subseteq \partial \mathcal{B}$ for all $\mathcal{F} \in \mathcal{E}$. Then we have:

$$P_{\theta}(\mathcal{B},\mathcal{E}) = \sup_{\theta \in [0,2\pi)} \{ P[(T,H) \in \Pi^{+}(\mathcal{B},\theta)] \}.$$
(5)

Moreover, the set \mathcal{B} can be expressed as:

$$\mathcal{B} = \bigcap_{\theta \in [0, 2\pi)} \Pi^{-}(\mathcal{B}, \theta)$$
 (6

An immediate consequence of this result is that the function *B* induces an *ordering* of compact and convex sets.

That is, we have the following result:

Proposition (Ordering of convex contours)

Let \mathcal{B}_1 and \mathcal{B}_2 be two compact and convex sets, and assume that:

 $B(\mathcal{B}_1, \theta) < B(\mathcal{B}_2, \theta)$ for all $\theta \in [0, 2\pi)$.

Then $\mathcal{B}_1 \subset \mathcal{B}_2$.

PROOF: If $B(\mathcal{B}_1, \theta) \leq B(\mathcal{B}_2, \theta)$ for all $\theta \in [0, 2\pi)$, this implies that: $\Pi^{-}(\mathcal{B}_1, \theta) \subseteq \Pi^{-}(\mathcal{B}_2, \theta)$ for all $\theta \in [0, 2\pi)$.

Hence, by the intersection formula we get that:

$$\mathcal{B}_{1} = \bigcap_{\theta \in [0,2\pi)} \Pi^{-}(\mathcal{B}_{1},\theta) \subseteq \bigcap_{\theta \in [0,2\pi)} \Pi^{-}(\mathcal{B}_{2},\theta) = \mathcal{B}_{2} \qquad \blacksquare$$

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours – part 1

A (10) A (10)

Another consequence of the previous results is that a compact and convex set $\mathcal{B} \subset \mathbb{R}^2$, and its boundary $\partial \mathcal{B}$ are *uniquely determined* by the function $B(\mathcal{B}, \theta)$.

In order to study the relation between $B(B, \theta)$ and ∂B further, the following result, first proved by Minkowski in 1896, is relevant:

Proposition (Minkowski)

Let \mathcal{B} be a closed convex set. Then for every point $\mathbf{x} \in \partial \mathcal{B}$ there exists a supporting hyperplane $\Pi \in \mathcal{P}(\mathcal{B})$ such that $\mathbf{x} \in \Pi$.

In our context this implies that:

Proposition (Parametric Minkowski)

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact convex set. Then for every point $(t_0, h_0) \in \partial \mathcal{B}$ there exists a $\theta \in [0, 2\pi)$ such that $(t_0, h_0) \in \Pi(\mathcal{B}, \theta)$.

The last proposition indicates that it may be possible to construct a mapping from angles $\theta \in [0, 2\pi)$ to the points in $\partial \mathcal{B}$.

In the general case, however, the relation between angles and boundary points is not straightforward.

By the definition of $B(\mathcal{B}, \theta)$ it follows that for a given $\theta \in [0, 2\pi)$ there exists at least one point $(t_0, h_0) \in \mathcal{B}$ such that:

$$t_0\cos(\theta) + h_0\sin(\theta) = B(\mathcal{B},\theta), \tag{7}$$

and this point must also be on the boundary of \mathcal{B} .

However, (t_0, h_0) may not be the only boundary point which satisfies (7).

Example (A polygon shaped contour)

Consider a case where \mathcal{B} is a convex polygon.

If, for a given θ , the vector $(\cos(\theta), \sin(\theta))$ is orthogonal to, and pointing away from one of sides of \mathcal{B} , then the hyperplane $\Pi(\mathcal{B}, \theta)$ intersects with all the points on this side.

On the other hand, for any $\theta' \neq \theta$, the corresponding supporting hyperplane $\Pi(\mathcal{B}, \theta')$ does not intersect with any of the points on this side (except possibly the endpoints).

Hence, it is not possible to define a mapping where each angle $\theta \in [0, 2\pi)$ is mapped to a unique point $(t_0, h_0) \in \partial \mathcal{B}$.

In order to avoid such problems we assume that \mathcal{B} is *strictly convex*:

Definition

A set \mathcal{B} is strictly convex if for any pair of distinct points $(t_1, h_1), (t_2, h_2) \in \mathcal{B}$, all the points on the line segment between (t_1, h_1) and (t_2, h_2) (except possibly the endpoints (t_1, h_1) and (t_2, h_2)) belong to the interior of \mathcal{B} .

NOTE: If \mathcal{B} is a convex polygon and $(t_1, h_1), (t_2, h_2) \in \mathcal{B}$ are to adjacent corners of this polygon, then the entire line segment between (t_1, h_1) and (t_2, h_2) lies at the boundary of \mathcal{B} .

Thus, a convex polygon is not a strictly convex set.

A B A A B A

The following proposition essentially states that for strictly convex sets there exists a well-defined mapping from angles to boundary points.

Proposition

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and strictly convex set. Then for every angle $\theta \in [0, 2\pi)$ there exists a unique point $(t(\theta), h(\theta)) \in \partial \mathcal{B}$ such that $(t(\theta), h(\theta)) \in \Pi(\mathcal{B}, \theta)$.

PROOF: By the definition of $\Pi(\mathcal{B}, \theta)$ we know that there exists at least one point $(t_1, h_1) \in \partial \mathcal{B}$ such that $(t_1, h_1) \in \Pi(\mathcal{B}, \theta)$.

Assume, for a contradiction that there exists another boundary point (t_2, h_2) , different from (t_1, h_1) , which also belongs to the hyperplane $\Pi(\mathcal{B}, \theta)$.

Since $\Pi(\mathcal{B}, \theta)$ is convex, all the points on the line segment between (t_1, h_1) and (t_2, h_2) also belong to $\Pi(\mathcal{B}, \theta)$.

However, since \mathcal{B} is assumed to be strictly convex, the points on the line segment between (t_1, h_1) and (t_2, h_2) are elements of the interior of \mathcal{B} , which contradicts that $\Pi(\mathcal{B}, \theta)$ is a supporting hyperplane of \mathcal{B} .

Hence, we conclude that $(t_1, h_1) \in \partial \mathcal{B}$ is the only boundary point which intersects with $\Pi(\mathcal{B}, \theta)$, and we define $(t(\theta), h(\theta))$ to be this point

・ロト ・ 四ト ・ ヨト ・ ヨト

If the function $B(\mathcal{B}, \cdot)$ is differentiable, the mapping from angles to boundary points is given by the following explicit formula:

Proposition (Parameter representation of a contour)

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and strictly convex set, and assume that $B(\mathcal{B}, \cdot)$ defined by (4) is differentiable. Then the boundary of \mathcal{B} can be expressed as:

$$\partial \mathcal{B} = \{(t(\theta), h(\theta)) : \theta \in [0, 2\pi)\}$$

where:

$$\begin{pmatrix} t(\theta) \\ h(\theta) \end{pmatrix} = \begin{bmatrix} B(\mathcal{B}, \theta) & -B'(\mathcal{B}, \theta) \\ B'(\mathcal{B}, \theta) & B(\mathcal{B}, \theta) \end{bmatrix} \cdot \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}.$$

(8)

PROOF: Let $\theta \in [0, 2\pi)$ and let $\delta > 0$ be small, and consider the intersection between the two supporting hyperplanes $\Pi(\mathcal{B}, \theta)$ and $\Pi(\mathcal{B}, \theta + \delta)$, denoted (t, h).

This point is found by solving the equations:

$$t\cos(\theta) + h\sin(\theta) = B(\mathcal{B}, \theta),$$

$$t\cos(\theta + \delta) + h\sin(\theta + \delta) = B(\mathcal{B}, \theta + \delta).$$

with the solution:

$$t = \frac{\sin(\theta + \delta)B(\mathcal{B}, \theta) - \sin(\theta)B(\mathcal{B}, \theta + \delta)}{\sin(\delta)}$$
$$h = \frac{-\cos(\theta + \delta)B(\mathcal{B}, \theta) + \cos(\theta)B(\mathcal{B}, \theta + \delta)}{\sin(\delta)}$$

A D A D A D A

As $\delta \to 0$ the intersection point (t, h) will converge to a point in $\Pi(\mathcal{B}, \theta)$ which we denote by $(t(\theta), h(\theta))$.

Using l'Hôpital's rule it is easy to see that $(t(\theta), h(\theta))$ is given by:

$$\begin{pmatrix} t(\theta) \\ h(\theta) \end{pmatrix} = \begin{bmatrix} B(\mathcal{B}, \theta) & -B'(\mathcal{B}, \theta) \\ B'(\mathcal{B}, \theta) & B(\mathcal{B}, \theta) \end{bmatrix} \cdot \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}.$$

where $B'(\mathcal{B}, \theta)$ denotes the derivative of $B(\mathcal{B}, \theta)$.

As θ runs through all angles in $[0, 2\pi)$, the point $(t(\theta), h(\theta))$ will move along the boundary of the set \mathcal{B} . Thus, the environmental contour can be expressed as:

$$\partial \mathcal{B} = \{ (t(\theta), h(\theta)) : \theta \in [0, 2\pi) \}.$$
(9)

A necessary condition for convexity

Later on, the set \mathcal{B} will be constructed by first estimating the function $B(\mathcal{B}, \cdot)$, and then reconstruct \mathcal{B} using the formula for the boundary $\partial \mathcal{B}$.

IMPORTANT: The function $B(\mathcal{B}, \cdot)$ cannot be *any arbitrary function*. Since the set \mathcal{B} is convex, $B(\mathcal{B}, \cdot)$ must satisfy a certain condition.

GOAL: Derive a necessary condition on $B(\mathcal{B}, \cdot)$. This condition will then be used in the estimation process.

In order to derive this condition it is convenient to extend the function $B(\mathcal{B}, \cdot)$ to a function defined for all $\theta \in \mathbb{R}$.

Since the trigonometric functions $\cos(\cdot)$ and $\sin(\cdot)$ are periodic, the extended version of $B(\mathcal{B}, \cdot)$ is periodic as well and have the property that $B(\mathcal{B}, \theta) = B(\mathcal{B}, \theta \pm 2n\pi)$ for all $n \in \mathbb{N}$.

In order to investigate this further we assume that the $B(\mathcal{B}, \cdot)$ is two times differentiable, and consider the derivative of $(t(\theta), h(\theta))$:

$$\begin{split} t'(\theta) &= [B(\mathcal{B},\theta)\cos(\theta) - B'(\mathcal{B},\theta)\sin(\theta)]' \\ &= B'(\mathcal{B},\theta)\cos(\theta) - B(\mathcal{B},\theta)\sin(\theta) \\ &- B''(\mathcal{B},\theta)\sin(\theta) - B'(\mathcal{B},\theta)\cos(\theta) \\ &= -[B(\mathcal{B},\theta) + B''(\mathcal{B},\theta)]\sin(\theta) \\ h'(\theta) &= [B'(\mathcal{B},\theta)\cos(\theta) + B(\mathcal{B},\theta)\sin(\theta)]' \\ &= B''(\mathcal{B},\theta)\cos(\theta) - B'(\mathcal{B},\theta)\sin(\theta) \\ &+ B'(\mathcal{B},\theta)\sin(\theta) + B(\mathcal{B},\theta)\cos(\theta) \\ &= [B(\mathcal{B},\theta) + B''(\mathcal{B},\theta)]\cos(\theta). \end{split}$$

That is, we have:

$$\begin{pmatrix} t'(\theta) \\ h'(\theta) \end{pmatrix} = [B(\mathcal{B}, \theta) + B''(\mathcal{B}, \theta)] \cdot \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}.$$
 (10)

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

Lemma (Translated contour sets)

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and strictly convex set, and let:

$$\tilde{\mathcal{B}} = \{ (\tilde{t}, \tilde{h}) = (t - t_0, h - h_0) : (t, h) \in \mathcal{B} \}$$
(11)

Image: A matrix

for some point $(t_0, h_0) \in \mathbb{R}^2$. Then $B(\tilde{\mathcal{B}}, \theta)$ is given by:

$$\textit{\textit{B}}(ilde{\mathcal{B}}, heta)=\textit{\textit{B}}(\mathcal{B}, heta)-\textit{t}_0\cos(heta)-\textit{h}_0\sin(heta),$$

for all $\theta \in \mathbb{R}$. Moreover, assuming that $B(\mathcal{B}, \cdot)$ is two times differentiable, we have:

$$B'(\tilde{\mathcal{B}},\theta) = B'(\mathcal{B},\theta) + t_0 \sin(\theta) - h_0 \cos(\theta),$$

$$B''(\tilde{\mathcal{B}},\theta) = B''(\mathcal{B},\theta) + t_0 \cos(\theta) + h_0 \sin(\theta).$$

PROOF: We definition of the *B*-function we have:

$$\begin{split} B(\tilde{\mathcal{B}},\theta) &= \sup_{(\tilde{t},\tilde{h})\in\tilde{\mathcal{B}}} \{\tilde{t}\cos(\theta) + \tilde{h}\sin(\theta)\} \\ &= \sup_{(t,h)\in\tilde{\mathcal{B}}} \{(t-t_0)\cos(\theta) + (h-h_0)\sin(\theta)\} \\ &= \sup_{(t,h)\in\tilde{\mathcal{B}}} \{t\cos(\theta) + h\sin(\theta)\} - t_0\cos(\theta) - h_0\sin(\theta) \\ &= B(\mathcal{B},\theta) - t_0\cos(\theta) - h_0\sin(\theta) \end{split}$$

Hence, we also get:

$$B'(\tilde{\mathcal{B}},\theta) = B'(\mathcal{B},\theta) + t_0 \sin(\theta) - h_0 \cos(\theta),$$

$$B''(\tilde{\mathcal{B}},\theta) = B''(\mathcal{B},\theta) + t_0 \cos(\theta) + h_0 \sin(\theta).$$

Lemma

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and strictly convex set, and assume that $B(\mathcal{B}, \cdot)$ is two times differentiable. Then there exists a $\theta_0 \in (0, 2\pi)$ such that:

 $B(\mathcal{B},\theta_0)+B''(\mathcal{B},\theta_0)>0.$

PROOF: Let (t_0, h_0) be an interior point of \mathcal{B} . Then by definition of the *B*-function we have:

$$t_0 \cos(heta) + h_0 \sin(heta) < B(\mathcal{B}, heta) \quad ext{ for all } heta \in [0, 2\pi)$$

We then let:

$$ilde{\mathcal{B}} = \{(ilde{t}, ilde{h}) = (t - t_0, h - h_0) : (t, h) \in \mathcal{B}\}$$

Hence, by the Translation contour set lemma we have:

$$B(\tilde{\mathcal{B}}, \theta) = B(\mathcal{B}, \theta) - t_0 \cos(\theta) - h_0 \sin(\theta) > 0$$
 for all $\theta \in [0, 2\pi)$

Since $B(\tilde{\mathcal{B}}, \theta)$ extended to a function defined for all $\theta \in \mathbb{R}$, is periodic, it follows that the extended version of $B'(\tilde{\mathcal{B}}, \theta)$ is periodic as well.

In particular that $B'(\tilde{\mathcal{B}}, 0) = B'(\tilde{\mathcal{B}}, 2\pi)$.

Hence, by the mean value theorem, there exists a $\theta_0 \in (0, 2\pi)$ such that $B''(\tilde{\mathcal{B}}, \theta_0) = 0$.

A (10) A (10)

From this it follows that:

$$B(ilde{\mathcal{B}}, heta_0)+B''(ilde{\mathcal{B}}, heta_0)>0$$

By the Translation contour set lemma we also that:

$$\begin{split} B(\tilde{\mathcal{B}},\theta_0) + B''(\tilde{\mathcal{B}},\theta_0) &= B(\mathcal{B},\theta_0) - t_0 \cos(\theta) - h_0 \sin(\theta) \\ &+ B''(\mathcal{B},\theta_0) + t_0 \cos(\theta) + h_0 \sin(\theta) \\ &= B(\mathcal{B},\theta_0) + B''(\mathcal{B},\theta_0). \end{split}$$

By combining the above we get that:

$$B(\mathcal{B}, \theta_0) + B''(\mathcal{B}, \theta_0) > 0$$

and thus the result is proved

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

< 🗇 🕨 < 🖃 🕨

As θ runs through $[0, 2\pi)$, the point $(t(\theta), h(\theta))$ runs counterclockwise through the boundary $\partial \mathcal{B}$.

The derivative $(t'(\theta), h'(\theta))$ is the tangent vector to $\partial \mathcal{B}$ at $(t(\theta), h(\theta))$.

A. B. Huseby and K. R. Dahl (Univ. of Oslo)

Environmental contours - part 1

The set \mathcal{B} is convex if the angle between $(t'(\theta), h'(\theta))$ and $(t'(\theta + \Delta), h'(\theta + \Delta))$ is positive for any $\theta \in [0, 2\pi)$ and small $\Delta > 0$.

In order to check this, we define:

$$oldsymbol{v}(heta)=(t'(heta),h'(heta),0), \quad heta\in [0,2\pi),$$

and calculate:

$$oldsymbol{v}(heta) imes oldsymbol{v}(heta+\Delta) = egin{bmatrix} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ t'(heta) & h'(heta) & 0 \ t'(heta+\Delta) & h'(heta+\Delta) & 0 \ \end{pmatrix}$$

 $= (0, 0, t'(\theta) \cdot h'(\theta + \Delta) - h'(\theta) \cdot t'(\theta + \Delta))$

< 回 > < 回 > < 回 >

By the *right-hand rule* of the cross-product the angle between $(t'(\theta), h'(\theta), 0)$ and $(t'(\theta + \Delta), h'(\theta + \Delta), 0)$ is positive if and only if:

$$t'(heta) \cdot h'(heta + \Delta) - h'(heta) \cdot t'(heta + \Delta) > 0.$$

We recall that:

$$egin{pmatrix} t'(heta)\ h'(heta)\end{pmatrix} = \left[m{B}(\mathcal{B}, heta) + m{B}''(\mathcal{B}, heta)
ight] \cdot egin{pmatrix} -\sin(heta)\ \cos(heta)\end{pmatrix}.$$

Inserting this we get:

$$\begin{split} t'(\theta) \cdot h'(\theta + \Delta) &- h'(\theta) \cdot t'(\theta + \Delta) \\ &= [B(\mathcal{B}, \theta) + B''(\mathcal{B}, \theta)] \cdot [B(\mathcal{B}, \theta + \Delta) + B''(\mathcal{B}, \theta + \Delta)] \\ &\cdot (-\sin(\theta)\cos(\theta + \Delta) + \cos(\theta)\sin(\theta + \Delta)) \\ &= [B(\mathcal{B}, \theta) + B''(\mathcal{B}, \theta)] \cdot [B(\mathcal{B}, \theta + \Delta) + B''(\mathcal{B}, \theta + \Delta)] \cdot \sin(\Delta). \end{split}$$

Since $\Delta > 0$ is small, we have $sin(\Delta) > 0$.

A > + = + + =

Hence, the angle between $(t'(\theta), h'(\theta))$ and $(t'(\theta + \Delta), h'(\theta + \Delta))$ is positive if and only if:

 $[B(\mathcal{B},\theta) + B''(\mathcal{B},\theta)] \cdot [B(\mathcal{B},\theta + \Delta) + B''(\mathcal{B},\theta + \Delta)] > 0$

for all $\theta \in [0, 2\pi)$ and small $\Delta > 0$.

This condition holds if and only if the sign of $B(\mathcal{B}, \theta) + B''(\mathcal{B}, \theta)$ is the same for all $\theta \in [0, 2\pi)$.

By the last Lemma there exists at least one $\theta_0 \in (0, 2\pi)$ such that:

$$B(\mathcal{B},\theta_0)+B''(\mathcal{B},\theta_0)>0.$$

This implies that we must have:

 $B(\mathcal{B}, heta)+B''(\mathcal{B}, heta)>0, \quad ext{ for all } heta\in [0,2\pi)$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Hence, we have shown the following important result:

Theorem (Convexity condition)

Let $\mathcal{B} \subset \mathbb{R}^2$ be a compact and strictly convex set, and assume that $B(\mathcal{B}, \cdot)$ is two times differentiable. Then we have:

$$B(\mathcal{B},\theta) + B''(\mathcal{B},\theta) > 0 \text{ for all } \theta \in [0,2\pi).$$
(12)

Given a periodic function B which does not satisfy (12), it is easy to modify this function so that the condition is satisfied.

Proposition (Convexity correction)

Let $C(\cdot)$ be a periodic function with period 2π which is two times differentiable. Assuming that both *C* and *C''* are bounded, there exists a constant C_0 such that the function $\tilde{C}(\cdot) = C_0 + C(\cdot)$ satisfies (12).

A (10) A (10)

PROOF: We let:

$$c = \inf_{\theta \in [0, 2\pi)} [C(\theta) + C''(\theta)]$$

Since both *C* and *C*["] are bounded, *c* must be finite. If c > 0, $C(\cdot)$ satisfies (12). We may then let $C_0 = 0$. Hence, $\tilde{C}(\cdot) = C(\cdot)$, and thus, $\tilde{C}(\cdot)$ obviously satisfies (12) as well.

On the other hand, if $c \le 0$, we let C_0 be some number greater than -c. Since $\tilde{C}'' = C''$, it follows that for all $\theta \in [0, 2\pi)$ we have:

$$egin{aligned} ilde{m{C}}(heta) + ilde{m{C}}''(heta) &= m{C}_0 + m{C}(heta) + m{C}''(heta) \ &> -m{c} + m{C}(heta) + m{C}''(heta) \ &\geq -m{c} + m{c} = m{0}. \end{aligned}$$

Hence, we conclude that $\tilde{C}(\cdot)$ satisfies (12)

伺 ト イヨ ト イヨト