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The Rosenblatt transformation

As before we consider a vector (T ,H) of environmental variables.

The Rosenblatt transformation, denoted Ψ, depends on the joint distribution
of (T ,H), and is such that if:

(X ,Y ) = Ψ(T ,H),

then X and Y are independent standard normally distributed.

The normal space = The space containing (X ,Y ).

The environmental space = The space containing (T ,H).
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The Rosenblatt transformation

The transformation of (T ,H) into (X ,Y ) is done in two steps:

Step 1. Transform (T ,H) into (U,V ) such that U and V are
independent and uniformly distributed on [0,1].

Step 2. Transform (U,V ) into (X ,Y )

We let Φ denote the cumulative distribution function of the standard
normal distribution. Thus, if X is standard normally distributed, we
have:

P(X ≤ x) = Φ(x).

The cumulative distribution function of H is denoted FH , while the
conditional distribution function of T given H is denoted FT |H .
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The Rosenblatt transformation (cont.)

Step 1. In this step we let:

U = FH(H),

V = FT |H(T |H).

This implies that for all u, v ∈ [0,1] we have:

P(U ≤ u) = P(FH(H) ≤ u) = P(H ≤ F−1
H (u))

= FH(F−1
H (u)) = u,

P(V ≤ v) = P(FT |H(T |H) ≤ v) = P(T ≤ F−1
T |H(v |H))

= FT |H(F−1
T |H(v |H)|H) = v .

Hence, U and V are independent and uniformly distributed on [0,1].
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The Rosenblatt transformation (cont.)

Step 2. In this step we let:

X = Φ−1(U),

Y = Φ−1(V ).

This implies that for all x , y we have:

P(X ≤ x) = P(Φ−1(U) ≤ x)

= P(U ≤ Φ(x)) = Φ(x),

P(Y ≤ y) = P(Φ−1(V ) ≤ y)

= P(V ≤ Φ(y)) = Φ(y).
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The inverse Rosenblatt transformation

The inverse Rosenblatt transformation, denoted Ψ−1 is such that if X and Y
are independent standard normally distributed, then

(T ,H) = Ψ−1(X ,Y ),

then (T ,H) have the correct environmental distribution.

The transformation of (X ,Y ) into (T ,H) is done in two steps:

Step 1. Transform (X ,Y ) into (U,V ) such that U and V are independent and
uniformly distributed on [0,1].

Step 2. Transform (U,V ) into (T ,H)
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The inverse Rosenblatt transformation (cont.)

Step 1. In this step we let:

U = Φ(X ),

V = Φ(Y ).

This implies that for all u, v ∈ [0,1] we have:

P(U ≤ u) = P(Φ(X ) ≤ u) = P(X ≤ Φ−1(u))

= Φ(Φ−1(u)) = u,

P(V ≤ v) = P(Φ(Y ) ≤ v) = P(Y ≤ Φ−1(v))

= Φ(Φ−1(v)) = v .

Hence, U and V are independent and uniformly distributed on [0,1].

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours – part 3 STK 4400 8 / 48



The inverse Rosenblatt transformation (cont.)

Step 2. In this step we let:

H = F−1
H (U),

T = F−1
T |H(V |H).

This implies that for all h, t we have:

P(H ≤ h) = P(F−1
H (U) ≤ h)

= P(U ≤ FH(h)) = FH(h),

P(T ≤ t |H = h) = P(F−1
T |H(V |h) ≤ t |H = h)

= P(V ≤ FT |H(t |h)|H = h) = FT |H(t |h).
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Estimating C(θ) revisited

Improved estimation method
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Polar coordinates

(x,y)

v

r

If (x , y) ∈ R2, then this point can be represented in polar coordinates (r , v),
where r ≥ 0 and v ∈ (−π, π] are given by:

r =
√

x2 + y2

v = The angle between the x-axis and (x , y)
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Polar coordinates (cont.)
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-2,5

2,5

Figure: The arctan(z)-function

We observe that we have −π
2 < arctan(z) < π

2 . Thus, arctan(z)
represents an angle between the x-axis and a point (x , y), where
z = y/x , and where x > 0.
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Polar coordinates - Quadrant 1

(x,y)

v

r

When (x , y) ∈ Q1, i.e., x > 0 and y > 0, we have:

arctan(
y
x

) = v
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Polar coordinates - Quadrant 2

(x,y)

(-x,-y)

v

v - π

r

When (x , y) ∈ Q2, i.e., x < 0 and y > 0, we have:

arctan(
y
x

) = v − π ⇒ v = arctan(
y
x

) + π
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Polar coordinates - Quadrant 3

(-x,-y)

(x,y)

v

v + π

r

When (x , y) ∈ Q3, i.e., x < 0 and y < 0, we have:

arctan(
y
x

) = v + π ⇒ v = arctan(
y
x

)− π
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Polar coordinates - Quadrant 4

(x,y)

v

r

When (x , y) ∈ Q4, i.e., x > 0 and y < 0, we have:

arctan(
y
x

) = v
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Polar coordinates (cont.)

The function atan2(x , y) is defined as follows:

atan2(x , y) =



arctan( y
x ) if x > 0 and y ≥ 0,

arctan( y
x ) + π if x < 0 and y ≥ 0,

arctan( y
x )− π if x < 0 and y < 0,

arctan( y
x ) if x > 0 and y < 0,

π
2 if x = 0 and y > 0,
−π2 if x = 0 and y < 0,
undefined if x = 0 and y = 0.
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Estimating C(θ) revisited

Assume that X and Y are independent and normally distributed with mean 0
and standard deviation 1. We then let:

R =
√

X 2 + Y 2,

V = atan2(X ,Y ),

Thus that R and V are the polar coordinates of (X ,Y ).

It can be shown that R and V are independent, and:

Z = R2 = X 2 + Y 2 ∼ χ2
2-distributed

V ∼ R[−π, π]-distributed
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Estimating C(θ) revisited (cont.)

The density of Z is given by:

fZ (z) =
1
2

e−z/2, for z > 0,

which is an exponential distribution with rate λ = 1/2.

This implies that:

P(Z > z) = e−z/2

Hence, the probability that (X ,Y ) is located outside a circle with centrum in
origin and with a radius r is equal to e−r2/2.
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Estimating C(θ) revisited (cont.)

To simulate from the distribution of (X ,Y ) we start by generating U
and V , where U ∼ R[0,1] and V ∼ R[−π, π].

We then let Z = −2 ln(U). Now, it is easy to show that Z gets the
density fZ . We also calculate R =

√
Z . Since R and V are the polar

coordinates to (X ,Y ), we find that:

X = R cos(V ) =
√

Z · cos(V ),

Y = R sin(V ) =
√

Z · sin(V ).

We then let (T ,H) = Ψ−1(X ,Y ), where Ψ−1 is the inverse Rosenblatt
transformation for the joint distributions of T and H. This way (T ,H)
gets the correct joint distribution.
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Estimating C(θ) revisited (cont.)

Let θ ∈ [0,2π), and let S(θ) = T cos(θ) + H sin(θ).

For a given exceedance probability pe we wish to estimate C(θ) such that
P(S(θ) > C(θ)) = pe.

By simulating (T ,H) n times, each time calculating the resulting value of S(θ),
we can estimate C(θ) by the order observator S(k)(θ), where k is such that:

1− k
n

=
n − k

n
≈ pe.

If pe is very small, i.e., 0.1%, a large number of simulations are needed in
order to obtain stable estimates.

Most of the simulations yield results close to the central area of the joint
distribution. Very few of the simulated values provide information about the
contour area.

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours – part 3 STK 4400 21 / 48



Alternative Monte Carlo sampling scheme

IDEA: Avoid sampling points from the central area of the joint
distribution, and just sample points close to the contour.

Thus, we would like to simulate (X ,Y ) from the conditional distribution
for (X ,Y ) given that this vector falls outside a circle with radius, say r0.

This is done by sampling (X ,Y ) from the conditional distribution given
that R =

√
X 2 + Y 2 > r0.

Or equivalently, by sampling (X ,Y ) from the conditional distribution for
(X ,Y ) given that Z = X 2 + Y 2 > z0 = r2

0 .
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Alternative Monte Carlo sampling scheme (cont.)

The conditional distribution for Z given that Z > z0 is given by:

P(Z > z|Z > z0) =
P(Z > z

⋂
Z > z0)

P(Z > z0)
=

P(Z > z)

P(Z > z0)
= e−(z−z0)/2.

Hence, given that Z > z0, (Z − z0) is exponentially distributed with λ = 1/2.

Thus, we can simulate from the conditional distribution for Z given Z > z0 by
generating U ∼ R[0,1] and let:

Z = z0 − 2 ln(U) = r2
0 − 2 ln(U).

As before, the angle V is generated from the R[−π, π]-distribution.

Finally, we let X =
√

Z cos(V ) and Y =
√

Z sin(V ), and (T ,H) = Ψ−1(X ,Y ),
where Ψ−1 is the inverse Rosenblatt transformation.
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Alternative Monte Carlo sampling scheme (cont.)

NOTE: The simulations are focused in the area of interest on the outer
edge of the outcome space where we expect that the contour is.

However, we need to correct for this by estimating the percentile
function C(θ) using an adjusted exceedance probability which takes
into acount that we are not simulating from the true joint distributions of
T and H.

We let p′e = P(S(θ) > C(θ)|R > r0) be this adjusted exceedance
probability, and assume that r0 is chosen such that the event
{S(θ) > C(θ)} is contained in the event {R > r0}.

We can achieve this by ensuring that r0 is not too large.
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Alternative Monte Carlo sampling scheme (cont.)

Assuming that the event {S(θ) > C(θ)} is contained in the event
{R > r0}, we have:

p′e = P(S(θ) > C(θ)|R > r0) =
P(S(θ) > C(θ)

⋂
R > r0)

P(R > r0)

=
P(S(θ) > C(θ))

P(R > r0)

=
pe

e−r2
0 /2

= er2
0 /2 · pe,

where we have used that:

P(R > r0) = P(Z > r2
0 ) = e−r2

0 /2.
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Alternative Monte Carlo sampling scheme (cont.)

We can then simulate n times from this conditional distribution and
estimate C(θ) by the order observation S(k ′)(θ), but where k ′ is
determined so that:

1− k ′

n
=

n − k ′

n
≈ p′e = er2

0 /2 · pe.

NOTE: Since r0 > 0, we have er2
0 /2 > 1.

Hence, p′e > pe and k ′ < k . This means that a (much) larger fraction of
the simulated data is used to estimate C(θ).
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Alternative Monte Carlo sampling scheme (cont.)

Ideally, we would like r0 to be as large as possible to maximize the
effect of the importance sampling. At the same time we must ensure
that the event {S(θ) > C(θ)} is contained in the event {R > r0}.

We let O denote a circle centered in the origin with radius r0. Then r0
must be chosen so that the transformed set Ψ−1(O) is contained
inside the contour we want to estimate.

Experiences have shown that we get a stable estimate by choosing
r0 = 0.95 · r , where r is the (1− pe)-percentile in the standard normal
distribution, and pe is the target exceedance probability..
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Estimating a contour without importance sampling
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Estimating a contour with importance sampling

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours – part 3 STK 4400 29 / 48



Transformed contours

Transformed contours
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Transformed contours
As already explained, the Rosenblatt transformation Ψ is such that if:

(T ′,H ′) = Ψ(T ,H),

then T ′ and H ′ are independent standard normally distributed.

We also recall that:

The normal space = The space containing (T ′,H ′).

The environmental space = The space containing (T ,H).

For a given set B′ in the normal space, we let E ′ be the family of all convex
sets F ′ in the normal space such that F ′ ∩ B′ ⊆ ∂B′.

If B′ is convex, it follows by the halfspace failure region proposition that:

E ′∗ = P+(B′).
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Transformed contours (cont.)
Let pe < 0.5 be the desired exceedance probability, and let r > 0 denote the
(1− pe)-percentile in the standard normal distribution.

A contour ∂B′ for (T ′,H ′) is constructed by letting B′ be a circle centered at
the origin and with radius r .

B'

Normal space:

r T'

H'

NOTE: Since T ′ and H ′ are standard normally distributed, it follows that:

P[T ′ > r ] = P[H ′ > r ] = pe.
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Transformed contours (cont.)
If Π+ ∈ P+(B′), it follows by the rotational symmetry property of normal
distribution that:

P[(T ′,H ′) ∈ Π+] = P[T ′ > r ] = pe.

B'
r

Π+

B'
r

T' > r

T'T'

H'H'

Since this is true for all Π+ ∈ P+(B′), we then get:

Pe(B′, E ′) = sup{P[(T ′,H ′) ∈ Π+] : Π+ ∈ P+(B′)} = pe.
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Transformed contours (cont.)

A contour set B is then obtained by transforming the set B′ from
normal space back to the environmental space using the inverse
Rosenblatt transformation.

That is, we let B be given by:

B = Ψ−1(B′) = {(t ,h) = Ψ−1(x , y) : (x , y) ∈ B′}

B = Ψ-1(B' )B'

Normal space: Environmental space:

r
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Exceedance probability of transformed contours

Estimating the exceedance probability of transformed contours
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Convex failure regions in the normal space

In the environmental space we may compute the exceedance probability of
the contour with respect to the family of transformed normal space failure
regions. That is, we let:

E = {F = Ψ−1(F ′) : F ′ ∈ E ′},

For this family of failure regions we get:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}
= sup{P[(T ,H) ∈ Ψ−1(F ′)] : F ′ ∈ E ′}
= sup{P[(T ′,H ′) ∈ F ′] : F ′ ∈ E ′}
= sup{P[(T ′,H ′) ∈ F ′] : F ′ ∈ E ′∗}
= sup{P[(T ′,H ′) ∈ Π+] : Π+ ∈ P+(B′)} = pe.

Hence, the contour ∂B indeed has the desired exceedance probability with
respect to this particular family of failure regions.
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Exceedance probability of transformed contours

PROBLEM 1: We observe that E consists of transformed normal space failure
regions, where the transformation depends on the joint distribution of (T ,H).

Environmental conditions may vary a lot from location to location. If the family
E depends on the joint distribution of (T ,H), E also varies from location to
location.

The true failure region of a given mechanical construction, however, should
be the same irrespective of location.

PROBLEM 2: The transformed normal space failure regions will in general
not be convex.

In the following we instead assume that E is the family of convex sets F such
that F ∩ B ⊆ ∂B.
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Convex failure regions in the environmental space

We recall that the exceedance probability of B with respect to E is defined as:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}.

Since a transformed set B may not itself be convex, the family of maximal
failure regions, E∗ is in general not equal to P+(B). Hence, it turns out to be
difficult to go through all sets F ∈ E∗ in order to identify the set with the
highest probability.

Instead we work with a slightly modified family of failure regions denoted Ẽ ,
defined as follows:

Ẽ = {F̃(u) : u ∈ ∂B},

where F̃(u) is the set of all points v /∈ B that are visible from u.

A point v /∈ B is said to be visible from u if the line between u and v does not
intersect the interior of B.
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Visible points

2.50 6.50 10.50 14.50 18.50 22.50

17.50

14.00

10.50

7.00

3.50

0.00

u

v1
v4

v2

v3

From the point u, the three points v1, v2 and v3 are visible, while the
point v4 is not visible.
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Visibility method

Proposition

Assume that F ∈ E . Then there exists a set F̃ ∈ Ẽ such that F ⊆ F̃ .

PROOF: Let F ∈ E . Then there exists a set F∗ ∈ E∗ such that F ⊆ F∗. Then
there must exist at least one point u ∈ ∂B such that u ∈ F∗. If this is not the
case, this contradicts that F∗ is a maximal failure region.

Now, let v ∈ F∗ be arbitrary. Since F∗ is convex, the line segment between u
and v is contained inside F∗.

Since F∗ ∩ B ⊆ ∂B, the line segment between u and v does not intersect the
interior of B.

Hence, v is visible from u, and since v was chosen arbitrarily, this implies that
all points in F∗ are visible from u.

Thus, by letting F̃ = F̃(u) ∈ Ẽ , we get that:

F ⊆ F∗ ⊆ F̃ .
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Visibility method (cont.)

Corollary

Let B be an environmental contour set. Then we have:

Pe(B, E) ≤ Pe(B, Ẽ)

PROOF: Let F ∈ E . Then by the above proposition there exists a set F̃ ∈ Ẽ
such that F ⊆ F̃ .

Hence, we have:
P[(T ,H) ∈ F ] ≤ P[(T ,H) ∈ F̃ ]

From this it follows that:

Pe(B, E) = sup{P[(T ,H) ∈ F ] : F ∈ E}

≤ sup{P[(T ,H) ∈ F̃ ] : F̃ ∈ Ẽ}

= Pe(B, Ẽ).

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Environmental contours – part 3 STK 4400 41 / 48



Visible points - example 1
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Figure: Estimation of P((T ,H) ∈ F̃(u1)) using simulated visible points
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Visible points - example 2
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Figure: Estimation of P((T ,H) ∈ F̃(u2)) using simulated visible points
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Visibility method (cont.)

It can be shown that if B is convex and ∂B is a differentiable curve, we
get that:

Pe(B, E) = Pe(B, Ẽ).

Thus, in such cases Pe(B, Ẽ) is exact. Furthermore, in general the sets
in Ẽ are almost convex. Thus, Pe(B, Ẽ) is typically a very good upper
bound on the true exceedance probability.

An efficient algorithm for estimating Pe(B, Ẽ) is given in Huseby et al
(2019).
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Numerical example (cont.)
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Figure: Environmental contour for the mixed bivariate distribution.
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Numerical example (cont.)

0.00 72.00 144.00 216.00 288.00 360.00

4.25E-5

3.40E-5

2.55E-5

1.70E-5

8.50E-6

0.00E0

Figure: Estimated probabilities for the sets F̃(ui ), i = 1, . . . ,360 for the
original environmental contour (green), the desired exceedance probability
(red) and an adjusted environmental contour (blue)
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Numerical example (cont.)

Figure: Environmental contour along with simulated outcomes in the sets
F̃(u105) (red scatter) and F̃(u205) (green scatter).
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Numerical example (cont.)
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Figure: Original (red curve) and adjusted (green curve) environmental
contours for the mixed bivariate distribution.
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