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Continuous-Time Markov Chains

A continuous-time Markov chain with stationary transition probabilities and state
space X is a stochastic process such that:

The times spent in the different states are independent random variables.

The amount of time spent in state i ∈ X is exponentially distributed with
mean µi .

When the process leaves state i , it enters state j with some transition
probability Pij where:

Pii = 0, for all i ∈ X
󰁛

j∈X
Pij = 1, for all i ∈ X

The transitions follow a discrete-time Markov chain.

If the amount of time spent in state i ∈ X has a general distribution with
mean µi , the process is called a semi-Markov process.
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Binary systems

A binary system is an ordered pair (C ,φ) where:

C = {1, . . . , n} is the component set.

Xi (t) = I (Component i is functioning at time t), i ∈ C

X (t) = (X1(t), . . . ,Xn(t)) = The component state vector

φ(t) = I (The system is functioning at time t)

The function φ is called the structure function of the system, and we assume that:

φ(t) = φ(X (t))

We also assume that φ(X (t)) is non-decreasing in X .
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Component processes

t

1

0

Xi(t)

W1,1 W1,0 W2,1 W2,0 W3,1
(i) (i) (i) (i) (i)

The state of the ith component is described by the stochstic process Xi (t). For
repairable components the component state jumps up and down between the
functioning state, 1, and the failed state 0.

For k = 1, 2, . . . we introduce the waiting times:

W
(i)
k,1 = The kth lifetime of component i

W
(i)
k,0 = The kth repair time of component i
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Component processes (cont.)

We assume that all the waiting times for all the components are independent, and
that for j = 0, 1:

W
(i)
1,j ,W

(i)
2,j , . . . are identically distributed with mean µ

(i)
j < ∞.

We also introduce the reliability of the ith component at time t:

pi (t) = P(Xi (t) = 1), i ∈ C .

By renewal theory it can be shown that:

lim
t→∞

pi (t) = pi =
µ
(i)
1

µ
(i)
1 + µ

(i)
0

, i ∈ C .
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Component processes (cont.)

If all the waiting times are exponentially distributed, the component process Xi (t)
is a Markov process, and the transition probability matrix for the built-in Markov
chain is given by:

P =

󰀗
0 1
1 0

󰀘

In the general case where the waiting times can have arbitrary distributions, the
component process is a semi-Markov process.
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System reliability

The reliability of the system at time t is given by:

h(t) = P(φ(t) = 1) = P(φ(X (t)) = 1) = h(p(t)),

where p(t) = (p1(t), . . . , pn(t)).

By renewal theory it can be shown that:

lim
t→∞

h(t) = h(p),

where p = limt→∞ p(t) = (p1, . . . , pn).

Finding efficient methods for calculating h(p(t)) or h(p) is a main topic within
the field of reliability theory. For complex systems the reliability can be estimated
using Monte Carlo simulation.
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Importance Measures

Two main reasons for calculating importance of components in a system:

Importance measures permit the analyst to determine which components
merit the most additional research and development to improve overall
system reliability.

Importance measures may be used in diagnostics as a way of ranking
components with respect to how likely they are to have caused problems.
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Criticality

A component, i ∈ C , is said to be critical for the system at time t if:

φ(0i ,X (t)) ∕= φ(1i ,X (t)).

Now introduce the following notation:

X+
i (t) = The next state of component i at time t

X−
i (t) = The previous state of component i at time t

Since each component only has two possible states, we have:

X+
i (t) = X−

i (t) =

󰀫
0 for Xi (t) = 1
1 for Xi (t) = 0

NOTE: For t = 0, the notion of a previous state is not defined. However,
assuming that X (0) = 1, we avoid this problem by simply defining X−

i (0) = 0.
A. B. Huseby (UiO) Multistate systems - part 1 STK 4400 9 / 48



Criticality, cont.

It follows that component i is critical for the system at time t if:

φ(Xi (t),X (t)) ∕= φ(X+
i (t),X (t)). (1)

or alternatively:
φ(X−

i (t),X (t)) ∕= φ(Xi (t),X (t)). (2)

That is, component i is critical at time t if changing the component to its next
state would result in a system state change as well.

Alternatively, component i is critical at time t if changing the component to its
previous state would result in a system state change as well.
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The Birnbaum measure of component importance

The Birnbaum measure of importance of component i ∈ C at time t, denoted
I
(i)
B (t), is the probability that the component is critical at time t.

Using our notation we have:

I
(i)
B (t) = P[φ(Xi (t),X (t)) ∕= φ(X+

i (t),X (t))]

= P[φ(X−
i (t),X (t)) ∕= φ(Xi (t),X (t))]
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Reliability importance examples (cont.)

Let (C ,φ) be a 2-out-of-3 system. It is then easy to show that:

φ(X (t)) = X1(t)X2(t) + X1(t)X3(t) + X2(t)X3(t)− 2X1(t)X2(t)X3(t)

In order to find I
(1)
B (t), we note that:

φ(11,X (t)) = X2(t) + X3(t)− X2(t)X3(t)

φ(01,X (t)) = X2(t)X3(t)

Hence, we get that:

I
(1)
B (t) = P[φ(X1(t),X (t)) ∕= φ(X+

1 (t),X (t))]

= P[φ(11,X (t)) ∕= φ(01,X (t))]

= P[φ(11,X (t))− φ(01,X (t)) = 1]

= P[X2(t) + X3(t)− 2X2(t)X3(t) = 1]

= p2(t) + p3(t)− 2p2(t)p3(t)
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Reliability importance examples (cont.)

By similar arguments we get that:

I
(2)
B (t) = p1(t) + p3(t)− 2p1(t)p3(t)

I
(3)
B (t) = p1(t) + p2(t)− 2p1(t)p2(t)

EXAMPLE p1(t) = 0.5 + z , p2(t) = 0.5, p3(t) = 0.5 − z , where 0 < z < 0.5.

I
(1)
B (t) = p2(t) + p3(t)− 2p2(t)p3(t)

= 0.5 + (0.5 − z)− 2 · 0.5 · (0.5 − z) = 0.5

I
(2)
B (t) = p1(t) + p3(t)− 2p1(t)p3(t)

= (0.5 + z) + (0.5 − z)− 2(0.5 + z)(0.5 − z) = 0.5 + 2z2

I
(3)
B (t) = p1(t) + p2(t)− 2p1(t)p2(t)

= (0.5 + z) + 0.5 − 2 · (0.5 + z) · 0.5 = 0.5
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Multistate systems

A multistate system is an ordered pair (C ,φ) where:

C = {1, . . . , n} is the component set.

φ = φ(t) = The state of the system at time t

In a multistate system the components have multiple states:

Si = {0, 1, . . . , ri} = The state set of component i , i ∈ C .

We also introduce the component state processes:

Xi (t) = The state of component i at time t, i ∈ C

X (t) = (X1(t), . . . ,Xn(t))

Just as in the binary case we assume that the structure function φ can be
expressed as:

φ(t) = φ(X (t)).
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Component processes

At this stage we simplify the model by assuming that the components are
repairable and have the following life cycles:

Each component starts out by being in the top state ri :

Xi (0) = ri , i ∈ C .

At random points of time 0 < T
(i)
1,ri < T

(i)
1,ri−1 < · · · < T

(i)
1,0 the component

degrades through the entire state set until it reaches state 0:

Xi (T
(i)
1,ri ) = ri−1 Xi (T

(i)
1,ri−1) = ri−2 · · · Xi (T

(i)
1,1) = 0.

At time T
(i)
1,0 the component is repaired or replaced, and a new life cycle starts.

For this life cycle the state changes occur at times: T
(i)
2,ri < T

(i)
2,ri−1 < · · · < T

(i)
2,0,

etc.
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Component processes (cont.)

t

1
2
3

0

Xi(t)

W1,3
(i) W1,2

(i) W1,1
(i) W1,0

(i) W2,3
(i) W2,2

(i)

First life cycle

T
(i)
1,3 = W

(i)
1,3

T
(i)
1,2 = W

(i)
1,3 +W

(i)
1,2

T
(i)
1,1 = W

(i)
1,3 +W

(i)
1,2 +W

(i)
1,1

T
(i)
1,0 = W

(i)
1,3 +W

(i)
1,2 +W

(i)
1,1 +W

(i)
1,0
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Component processes (cont.)

We assume that all the waiting times for all the components are independent, and
that for j ∈ Si :

W
(i)
1,j ,W

(i)
2,j , . . . are identically distributed with mean µ

(i)
j < ∞.

We also introduce the probability distribution of the ith component at time t:

pi,j(t) = P(Xi (t) = j), i ∈ C , j ∈ Si

By renewal theory it can be shown that:

lim
t→∞

pi,j(t) = pi,j =
µ
(i)
j

󰁓
y∈Si

µ
(i)
y

, i ∈ C , j ∈ Si
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Component processes (cont.)

If all the waiting times are exponentially distributed, the component process Xi (t)
is a Markov process, and the transition probability matrix for the built-in Markov
chain is given by:

P =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

In the general case where the waiting times can have arbitrary distributions, the
component process is a semi-Markov process.
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Physical component states

For i ∈ C we introduce the functions:

fi : Si → R = The physical state of component i .

Thus, the physical state of component i at time t is fi (Xi (t)), i ∈ C .

The functions f1, . . . , fn provide a convenient and intuitive way of encoding
physical properties into a model.

EXAMPLE: Let component i be a pipeline. Then the physical state of the
component at a given point of time may be the capacity of the pipeline at this
point of time.
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Physical component states, cont.

NOTE: A physical property of a component may be any real number (not just
integers). In most cases, however, such properties will be non-negative numbers.

NOTE: The functions f1, . . . , fn do not need to be nondecreasing. By omitting
this restriction, additional useful modeling flexibility is gained.

This allows e.g., for the inclusion of burn-in phases, maintenance as well as
minimal or partial repairs of a components as part of its life cycle before it
reaches its failure state.
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Physical system states

It is common in multistate reliability theory to define φ such that it takes values
in a set of non-negative integers.

Here, however, we avoid this extra layer of abstraction, and let the structure
function represent the physical state of the system.

Moreover, we assume that φ has the following form:

φ(X (t)) = φ(f1(X1(t)), . . . , fn(Xn(t)))

Since the structure function represents a physical quantity, it is easier both to
model and to interpret than if it had to be encoded more abstractly in terms of
non-negative integers.
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EXAMPLE: Flow network

1

2

3

4

5 6

7
S T

fi (Xi (t)) = Capacity of component i , i = 1, . . . , 7.

Minimal cut sets: K1 = {1, 2}, K2 = {1, 5, 7}, K3 = {2, 3, 4}, K4 = {4, 5, 7},
K5 = {2, 3, 6}, K6 = {6, 7}

φ(X (t)) = min
1≤j≤6

󰁛

i∈Kj

fi (Xi (t)).
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Importance measures

For multistate systems there are many ways of defining importance measures.
There is no such thing as the best importance measure.

Traditional uses of importance measures include:

In design: Identifying components that should be improved

In diagnostics: Identifying the components that are most likely to have failed

Other uses of importance measures:

Understanding the structural and probabilistic properties of a system

Understanding how each component affects various aspects of system
performance
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Criticality in multistate systems

We introduce the following notation:

X+
i (t) = The next state of component i at time t

X−
i (t) = The previous state of component i at time t

Given the life cycles of the components, these quantities are well defined, and we
have:

X+
i (t) =

󰀫
Xi (t)− 1 for Xi (t) > 0
ri for Xi (t) = 0

X−
i (t) =

󰀫
Xi (t) + 1 for Xi (t) < ri

0 for Xi (t) = ri

NOTE: In the binary case X+
i (t) = X−

i (t). For components with more than two
possible states, however, X+

i (t) and X−
i (t) are not equal.
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Criticality in multistate systems, cont.

We say that component i is n-critical at time t if:

φ(Xi (t),X (t)) ∕= φ(X+
i (t),X (t)).

Thus, component i is n-critical at time t if changing the component to its next
state would result in a system state change as well.

We say that component i is p-critical at time t if:

φ(X−
i (t),X (t)) ∕= φ(Xi (t),X (t)).

Thus, component i is p-critical at time t if changing the component to its
previous state would result in a system state change as well.
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Multistate importance

The n-Birnbaum measure of importance of component i at time t, denoted
I
(i)
NB(t), is the probability that component i is n-critical at time t:

I
(i)
NB(t) = P[φ(Xi (t),X (t)) ∕= φ(X+

i (t),X (t))].

The p-Birnbaum measure of importance of component i at time t, denoted
I
(i)
PB(t), is the probability that component i is p-critical at time t:

I
(i)
PB(t) = P[φ(X−

i (t),X (t)) ∕= φ(Xi (t),X (t))].

NOTE: In the binary case we have I
(i)
NB(t) = I

(i)
PB(t) = I

(i)
B (t). In the multistate

case, however, we may have I
(i)
NB(t) ∕= I

(i)
PB(t).
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Multistate importance, cont.

Assuming independent component state processes and conditioning on the state
of component i at time t we get:

I
(i)
NB(t) =

ri󰁛

j=1

P[φ(ji ,X (t)) ∕= φ((j − 1)i ,X (t))] · P[Xi (t) = j ]

+ P[φ(0i ,X (t)) ∕= φ((ri )i ,X (t))] · P[Xi (t) = 0]

I
(i)
PB(t) =

ri−1󰁛

j=0

P[φ((j + 1)i ,X (t)) ∕= φ(ji ,X (t))] · P[Xi (t) = j ]

+ P[φ(0i ,X (t)) ∕= φ((ri )i ,X (t))] · P[Xi (t) = ri ]

Changing the summation index in the last expression we get:

I
(i)
PB(t) =

ri󰁛

j=1

P[φ(ji ,X (t)) ∕= φ((j − 1)i ,X (t))] · P[Xi (t) = j − 1]

+ P[φ(0i ,X (t)) ∕= φ((ri )i ,X (t))] · P[Xi (t) = ri ]
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Multistate importance, cont.

We observe that P[Xi (t) = j ] in the formula for I (i)NB(t) is replaced by
P[Xi (t) = j − 1] in the formula for I (i)PB(t), j = 1, . . . , ri .

Moreover, P[Xi (t) = 0] in the formula for I (i)NB(t) is replaced by P[Xi (t) = ri ] in in
the formula for I (i)PB(t).

From this it follows that in the special case where the component state processes
are independent and:

P[Xi (t) = 0] = P[Xi (t) = 1] = · · · = P[Xi (t) = ri ],

we will have I
(i)
NB(t) = I

(i)
PB(t).

In general, however, the two importance measures will not be equal, and may
even result in different rankings.
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Example 1

Consider a multistate system (C ,φ) where C = {1, 2}.

Both components have three possible states: S1 = S2 = {0, 1, 2}.

In this case the component states are identical to the physical states:

fi (j) = j , j ∈ Si and i ∈ C .

The structure function is given by:

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))).

Finally, we assume that the component state variables are independent, and that
for a given t we have:

P[X1(t) = j ] = pj > 0, j ∈ S1.

P[X2(t) = j ] = qj > 0, j ∈ S2.
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Example 1, cont.

Since fi (j) = j , for j ∈ Si and i ∈ C , the structure function can be written as:

φ(X1(t),X2(t)) = min(X1(t),X2(t)).

With the life cycle : 2 → 1 → 0 → 2 · · · , we then get:

P[φ(0,X2(t)) ∕= φ(2,X2(t))] = P[X2(t) ≥ 1] = q1 + q2,

P[φ(1,X2(t)) ∕= φ(0,X2(t))] = P[X2(t) ≥ 1] = q1 + q2

P[φ(2,X2(t)) ∕= φ(1,X2(t))] = P[X2(t) = 2] = q2,

P[φ(X1(t), 0) ∕= φ(X1(t), 2)] = P[X1(t) ≥ 1] = p1 + p2,

P[φ(X1(t), 1) ∕= φ(X1(t), 0)] = P[X1(t) ≥ 1] = p1 + p2,

P[φ(X1(t), 2) ∕= φ(X1(t), 1)] = P[X1(t) = 2] = p2.
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Example 1, cont.

Hence, since: p0 + p1 + p2 = q0 + q1 + q2 = 1, we get

I
(1)
NB (t) = p0(q1 + q2) + p1(q1 + q2) + p2q2 = (p0 + p1 + p2)(q1 + q2)− p2q1

= q1 + q2 − p2q1,

I
(2)
NB (t) = q0(p1 + p2) + q1(p1 + p2) + q2p2 = (q0 + q1 + q2)(p1 + p2)− p1q2

= p1 + p2 − p1q2,

I
(1)
PB (t) = p2(q1 + q2) + p0(q1 + q2) + p1q2 = q1 + q2 − p1q1,

I
(2)
PB (t) = q2(p1 + p2) + q0(p1 + p2) + q1p2 = p1 + p2 − p1q1.

We observe that I (1)PB (t) > I
(2)
PB (t) if and only if q1 + q2 > p1 + p2.

However, if q1 + q2 > p1 + p2, p1 < p2 and q2 < q1, it is possible to obtain the
opposite ranking with respect to the n-Birnbaum measure.
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Example 1, cont.

Assume e.g., that p1 = 0.20, p2 = 0.35, q1 = 0.40 and q2 = 0.20. Then we have:

q1 + q2 = 0.60 > p1 + p2 = 0.55

p2q1 = 0.14 > p1q2 = 0.04

p1q1 = 0.08

Hence, we get:

I
(1)
NB (t) = q1 + q2 − p2q1 = 0.46,

I
(2)
NB (t) = p1 + p2 − p1q2 = 0.51,

I
(1)
PB (t) = q1 + q2 − p1q1 = 0.52,

I
(2)
PB (t) = p1 + p2 − p1q1 = 0.47.

That is, I (1)NB (t) < I
(2)
NB (t) while I

(1)
PB (t) > I

(2)
PB (t).

A. B. Huseby (UiO) Multistate systems - part 1 STK 4400 32 / 48



Example 1, cont.

For i ∈ C , j ∈ Si , and k = 1, 2, . . . we introduce:

W
(i)
kj = kth waiting time in state j for component i ,

We assume that all waiting times are independent and exponentially distributed
with:

E [W
(1)
kj ] =

󰀻
󰁁󰀿

󰁁󰀽

4.5 for j = 0
2.0 for j = 1
3.5 for j = 2

E [W
(2)
kj ] =

󰀻
󰁁󰀿

󰁁󰀽

4.0 for j = 0
4.0 for j = 1
2.0 for j = 2

Asymptotically, we get that p1 = 0.20, p2 = 0.35, q1 = 0.40 and q2 = 0.20, and
hence again:

I
(1)
NB = 0.46, I

(2)
NB = 0.51, I

(1)
PB = 0.52, I

(2)
PB = 0.47
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Discrete Event Simulation

Let (C ,φ) be a binary monotone system with component state processes:
{X1(t)}, . . . , {Xn(t)}.

Ei1,Ei2, . . . are the events affecting the process {Xi (t)}

Ti1,Ti2, . . . are the corresponding points of time for these events

Assuming that all lifetimes and repair times have absolutely continuous
distributions, all the events happen at distinct points of time almost surely, i.e.,
all the Tij s are distinct numbers.

We assume that the events are sorted with respect to their respective points of
time, so that Ti1 < Ti2 < · · · .
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Discrete Event Simulation (cont.)

At the system level the event set is the union of all the component event sets.

Let E (1),E (2), . . . denote the system events sorted with respect to their
respective points of time

Let T (1) < T (2) < · · · be the corresponding points of time

Each system event corresponds to a unique component event, organised in a
dynamic queue sorted with respect to the points of time of the events:
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Program flow

Event
queue

{X (t)}1

{X (t)}2 {φ(t)}

{X (t)}n

•
•
•

The components post initial events to the event queue

The event queue processes events in chronological order, and notifies the
components when the events occur. As soon as an event is processed, it is
removed from the queue.

The component updates its state, posts a new event to the queue, and
notifies the system about the state change

A. B. Huseby (UiO) Multistate systems - part 1 STK 4400 36 / 48



Sampling events

Although the system state and component states stay constant between events, it
is of interest to sample the state values at predefined points of time. Thus, we
introduce yet another type of event, called a sampling events spread out evenly on
the timeline.

Let e1, e2, . . . denote the sampling events

Let t1 < t2 < · · · are the corresponding points of time

Typically tj = j ·∆ for some suitable ∆ > 0, j = 1, 2, . . ..

The sampling events are placed into the queue in the same way as for the
ordinary events.
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Example 1, cont.
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Importance based on expected physical criticality

The n*-Birnbaum measure of importance of component i at time t, denoted
I
∗(i)
NB (t), is the expected effect of changing i to its next state at time t:

I
∗(i)
NB (t) = E

󰀏󰀏φ(Xi (t),X (t))− φ(X+
i (t),X (t))

󰀏󰀏 .

The p*-Birnbaum measure of importance of component i at time t, denoted
I
∗(i)
PB (t), is the expected effect of changing i to its previous state at time t:

I
∗(i)
PB (t) = E

󰀏󰀏φ(X−
i (t),X (t))− φ(Xi (t),X (t))

󰀏󰀏 .

NOTE: In the binary case all the different measures are the same:

I
∗(i)
NB (t) = I

(i)
NB(t) = I

∗(i)
PB (t) = I

(i)
PB(t) = I

(i)
B (t).
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Example 2

Consider a multistate system (C ,φ) where C = {1, 2}, and where S1 = {0, 1}
and S2 = {0, 1, 2}.

Moreover, we assume that:

f1(j) = 2j , j ∈ S1,

f2(j) = j , j ∈ S2.

As before, the structure function is given by:

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))).

Finally, we again assume that the component state processes are independent,
and that for a given t we have:

P[X1(t) = j ] = pj > 0, j ∈ S1,

P[X2(t) = j ] = qj > 0, j ∈ S2.
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Example 2, cont.

Component 1 has the life cycle: 1 → 0 → 1 · · · , implying that:

E |φ(0,X2(t))− φ(1,X2(t))| = q1 · 1 + q2 · 2 = q1 + 2q2

E |φ(1,X2(t))− φ(0,X2(t))| = q1 · 1 + q2 · 2 = q1 + 2q2

Component 2 has the life cycle: 2 → 1 → 0 → 2 · · · , implying that:

E |φ(X1(t), 0)− φ(X1(t), 2)| = 2p1

E |φ(X1(t), 1)− φ(X1(t), 0)| = p1

E |φ(X1(t), 2)− φ(X1(t), 1)| = p1

Hence, it follows that:

I
∗(1)
NB (t) = p0 · (q1 + 2q2) + p1 · (q1 + 2q2) = q1 + 2q2

I
∗(2)
NB (t) = q0 · 2p1 + q1 · p1 + q2 · p1 = (1 + q0)p1
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Example 2, cont.

We also have:

E [f1(X1(t))] = p0 · 0 + p1 · 2 = 2p1

E [f2(X2(t))] = q0 · 0 + q1 · 1 + q2 · 2 = q1 + 2q2.

We then assume that E [f1(X1(t))] = E [f2(X2(t))]. This implies that:

I
∗(1)
NB (t) = q1 + 2q2 = 2p1

I
∗(2)
NB (t) = (1 + q0)p1

Hence, since we must have q0 < 1, we conclude that I ∗(1)NB (t) > I
∗(2)
NB (t).
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Example 2, cont.

We recall that:

E |φ(0,X2(t))− φ(1,X2(t))| = q1 · 1 + q2 · 2 = q1 + 2q2

E |φ(1,X2(t))− φ(0,X2(t))| = q1 · 1 + q2 · 2 = q1 + 2q2

and:

E |φ(X1(t), 0)− φ(X1(t), 2)| = 2p1

E |φ(X1(t), 1)− φ(X1(t), 0)| = p1

E |φ(X1(t), 2)− φ(X1(t), 1)| = p1

Hence, it follows that:

I
∗(1)
PB (t) = p1 · (q1 + 2q2) + p0 · (q1 + 2q2) = q1 + 2q2

I
∗(2)
PB (t) = q2 · 2p1 + q0 · p1 + q1 · p1 = (1 + q2)p1
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Example 2, cont.

We also have:

E [f1(X1(t))] = p0 · 0 + p1 · 2 = 2p1

E [f2(X2(t))] = q0 · 0 + q1 · 1 + q2 · 2 = q1 + 2q2.

We then assume that E [f1(X1(t))] = E [f2(X2(t))]. This implies that:

I
∗(1)
PB (t) = q1 + 2q2 = 2p1

I
∗(2)
PB (t) = (1 + q2)p1

Hence, since we must have q2 < 1, we conclude that I ∗(1)PB (t) > I
∗(2)
PB (t).
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Example 2, cont.

For i ∈ C , j ∈ Si , and k = 1, 2, . . . we introduce:

W
(i)
kj = kth waiting time in state j for component i ,

We assume that all waiting times are independent and exponentially distributed
with:

E [W
(1)
kj ] =

󰀫
3.0 for j = 0
3.0 for j = 1

E [W
(2)
kj ] =

󰀻
󰁁󰀿

󰁁󰀽

2.0 for j = 0
2.0 for j = 1
2.0 for j = 2

Asymptotically, we get that p0 = p1 = 1
2 while q0 = q1 = q2 = 1

3 , and hence:

I
∗(1)
NB = 1.0, I

∗(2)
NB = 2

3 , I
∗(1)
PB = 1.0, I

∗(2)
PB = 2

3
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Example 2, cont.
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