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Continuous-Time Markov Chains

A continuous-time Markov chain with stationary transition probabilities and state
space X is a stochastic process such that:

The times spent in the different states are independent random variables.

The amount of time spent in state i ∈ X is exponentially distributed with
mean µi .

When the process leaves state i , it enters state j with some transition
probability Pij where:



j∈X
Pij = 1, for all i ∈ X

The transitions follow a discrete-time Markov chain.

If the amount of time spent in state i ∈ X has a general distribution with
mean µi , the process is called a semi-Markov process.
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Component processes - binary case

t

1

0

Xi(t)

W1,1 W1,0 W2,1 W2,0 W3,1
(i) (i) (i) (i) (i)

The state of the ith component is described by the stochstic process Xi (t). For
repairable components the component state jumps up and down between the
functioning state, 1, and the failed state 0.

For k = 1, 2, . . . we introduce the waiting times:

W
(i)
k,1 = The kth lifetime of component i

W
(i)
k,0 = The kth repair time of component i
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Component processes - binary case (cont.)

Since there are only two possible states, the transition probability matrix for the
built-in Markov chain is given by:

P =


0 1
1 0



If all the waiting times are independent and exponentially distributed, the
component process Xi (t) is a Markov process.

In the general case where the waiting times are independent but can have
arbitrary distributions, the component process is a semi-Markov process.
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Component processes - multistate case

t

1
2
3

0

Xi(t)

W1,3
(i) W1,2

(i) W1,1
(i) W1,0

(i) W2,3
(i) W2,2

(i)

First life cycle

T
(i)
1,3 = W

(i)
1,3

T
(i)
1,2 = W

(i)
1,3 +W

(i)
1,2

T
(i)
1,1 = W

(i)
1,3 +W

(i)
1,2 +W

(i)
1,1

T
(i)
1,0 = W

(i)
1,3 +W

(i)
1,2 +W

(i)
1,1 +W

(i)
1,0
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Component processes - multistate case (cont.)

Assuming a deterministic life-cycle the transition probability matrix for the
built-in Markov chain is given by:

P =





0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





If all the waiting times are independent and exponentially distributed, the
component process Xi (t) is a Markov process.

In the general case where the waiting times are independent but can have
arbitrary distributions, the component process is a semi-Markov process.
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Component processes with non-deterministic life-cycles

We now consider systems where the components have non-deterministic
life-cycles. Thus, assuming that the state space of component i ∈ C is
Si = {0, 1, . . . , ri}, the transition probability matrix for the built-in Markov chain
of component i is:

P(i) =





P
(i)
00 P

(i)
01 · · · P

(i)
0,ri

P
(i)
10 P

(i)
11 · · · P

(i)
1,ri

...
...

. . .
...

P
(i)
ri ,0 P

(i)
ri ,1 · · · P

(i)
ri ,ri





Using the notation:

X+
i (t) = The next state of component i at time t

we have that:

P(X+
i (t) = v |Xi (t) = u) = P(i)

uv , u, v ∈ Si .
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Component processes with non-deterministic life-cycles

Assuming that the state space of component i ∈ C is Si = {0, 1, . . . , ri}, the
backwards transition probability matrix for the built-in Markov chain of
component i is denoted by :

Q(i) =





Q
(i)
00 Q

(i)
01 · · · Q

(i)
0,ri

Q
(i)
10 Q

(i)
11 · · · Q

(i)
1,ri

...
...

. . .
...

Q
(i)
ri ,0 Q

(i)
ri ,1 · · · Q

(i)
ri ,ri





Using the notation:

X−
i (t) = The previous state of component i at time t

we have that:

P(X−
i (t) = v |Xi (t) = u) = Q(i)

uv , u, v ∈ Si .
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Criticality in multistate systems

The notion of criticality can be generalized without any changes:

Component i is n-critical at time t if:

φ(Xi (t),X (t)) ∕= φ(X+
i (t),X (t)).

Component i is p-critical at time t if:

φ(X−
i (t),X (t)) ∕= φ(Xi (t),X (t)).

NOTE: In the general case, given the state Xi (t), the states X+
i (t) and X−

i (t)
are random variables.
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Multistate importance

The importance measures can also be generalized without any changes:

The n-Birnbaum measure of importance of component i at time t, denoted
I
(i)
NB(t), is the probability that component i is n-critical at time t:

I
(i)
NB(t) = P[φ(Xi (t),X (t)) ∕= φ(X+

i (t),X (t))].

The p-Birnbaum measure of importance of component i at time t, denoted
I
(i)
PB(t), is the probability that component i is p-critical at time t:

I
(i)
PB(t) = P[φ(X−

i (t),X (t)) ∕= φ(Xi (t),X (t))].
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Multistate importance (cont.)

The importance measures can now be calculated by conditioning on the current
and next (or previous) state of component i as follows:

I
(i)
NB(t) =



u,v∈Si

P[φ(u,X (t)) ∕= φ(v ,X (t))] · P[Xi (t) = u] · P(i)
uv (1)

I
(i)
PB(t) =



u,v∈Si

P[φ(u,X (t)) ∕= φ(v ,X (t))] · P[Xi (t) = u] · Q(i)
uv (2)

NOTE: The new mathematical expressions must to take into account that a more
general probability model is used for the component processes u and v . Thus, we
must compute double sums with one term per pair of states instead of single
sums.
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Asymptotic importance

We henceforth focus on the asymptotic properties of the processes and ommit the
time t from the notation. For component i ∈ C we denote the stationary
probabilities of the built-in Markov chain by π

(i)
u , u ∈ Si . We then have the

following well-known relation between the transition matrices P(i) and Q(i):

Q(i)
uv =

π
(i)
v

π
(i)
u

P(i)
vu , u, v ∈ Si . (3)

NOTE: If the stationary distribution of the built-in Markov chain is uniform, i.e.,
if π(i)

u = 1/(ri + 1), for all u ∈ Si , we have:

Q(i) = (P(i))T , i ∈ C .
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Uniform stationary distributions

An irreducible aperiodic finite Markov chain has a uniform stationary distribution
if and only if P(i) is a doubly stochastic matrix, i.e., all row sums and column
sums are equal to 1.

Since the row sums are always equal to one in any transition matrix, P(i) is a
doubly stochastic matrix if and only if:

(1, . . . , 1)P(i) = (1, . . . , 1)

To prove the claim we start out by assuming that P(i) is doubly stochastic, and
let π(i) = (π

(i)
0 , . . . ,π

(i)
ri ). Then we know that π(i) is uniquely determined by the

following equations:

π(i)P(i) = π(i)

as well as π
(i)
0 + · · ·+ π

(i)
ri = 1.
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Uniform stationary distributions (cont.)

We then let π̃u = (1 + ri )
−1, for u = 0, 1, . . . , ri . That is, π̃ is a uniform

distribution on Si , and we have:

π̃ = (1 + ri )
−1(1, . . . , 1).

Since P(i) is doubly stochastic, it follows that:

π̃P(i) = (1 + ri )
−1(1, . . . , 1)P(i) = (1 + ri )

−1(1, . . . , 1) = π̃

Moreover, we obviously have:

π̃0 + · · ·+ π̃ri = (1 + ri )
−1 · (1 + ri ) = 1.

Hence, π̃ satisfies the equations for the stationary distribution, and since these
equations have a unique solution, it follows that we must have π(i) = π̃. That is,
π(i) is indeed a uniform distribution.
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Uniform stationary distributions (cont.)

Assume conversely that π(i) is a uniform distribution, i.e., π(i)
u = (1 + ri )

−1, for
u = 0, 1, . . . , ri . That is, we have:

π(i) = (1 + ri )
−1(1, . . . , 1).

Since π(i) is the stationary distribution, π(i) satisfies the following equation:

π(i)P(i) = π(i)

Inserting π(i) = (1 + ri )
−1(1, . . . , 1) into this equation, we get:

(1 + ri )
−1(1, . . . , 1)P(i) = (1 + ri )

−1(1, . . . , 1)

Multiplying both sides of the latter equation by (1 + ri ), we get that:

(1, . . . , 1)P(i) = (1, . . . , 1)

which proves that P(i) is indeed doubly stochastic.
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Asymptotic importance (cont.)

To proceed we again introduce the times spent in each state between the
transitions:

W
(i)
ku = The kth waiting time in state u for component i .

We assume that all the waiting times are independent, and that for all
components i ∈ C and states u ∈ Si the waiting times W

(i)
1u ,W

(i)
2u , . . . are

identically distributed with finite mean µ
(i)
u .

Then it follows from standard renewal theory that the stationary distribution of Xi

is given by:

P[Xi = u] =
π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

, u ∈ Si , i ∈ C . (4)

A. B. Huseby (UiO) Multistate systems - part 2 STK 4400 16 / 37



Asymptotic importance (cont.)

Combining Eq. (4) with Eq. (1) and Eq. (2) we get the following expressions for
the stationary importance measures:

I
(i)
NB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

· P(i)
uv (5)

I
(i)
PB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

· Q(i)
uv (6)
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Comparing importance measures

Theorem (4.1)

Assume that µ(i)
0 = · · · = µ

(i)
ri . Then I

(i)
NB = I

(i)
PB .

Proof: If µ(i)
0 = · · · = µ

(i)
ri , the stationary distribution given in Eq. (4) is simplified

to:

P[Xi = u] =
π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

= π(i)
u , u ∈ Si , i ∈ C .

Inserting this into Eq. (5) and Eq. (6), we get:

I
(i)
NB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π(i)
u · P(i)

uv

I
(i)
PB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π(i)
u · Q(i)

uv
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Comparing importance measures (cont.)

We then consider the expression for Q(i)
uv given in Eq. (3):

Q(i)
uv =

π
(i)
v

π
(i)
u

P(i)
vu , u, v ∈ Si .

Inserting this into the the expression for I (i)PB we get:

I
(i)
PB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π(i)
u · Q(i)

uv

=


u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π(i)
u · π

(i)
v

π
(i)
u

P(i)
vu

=


u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π(i)
v · P(i)

vu

=


u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π(i)
u · P(i)

uv = I
(i)
NB
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Comparing importance measures (cont.)

Theorem (4.2)

Assume that the transition matrix P(i) is doubly stochastic. Then we have:

I
(i)
NB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · µ
(i)
u


v∈Si

µ
(i)
v

· P(i)
uv

I
(i)
PB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · µ
(i)
u


v∈Si

µ
(i)
v

· P(i)
vu
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Comparing importance measures (cont.)

Proof: If the transition matrix P(i) is doubly stochastic, we have shown that the
stationary distribution of the built-in Markov chain is uniform. Hence, the
stationary distribution given in Eq. (4) is simplified to:

P[Xi = u] =
π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

=
µ
(i)
u


v∈Si

µ
(i)
v

, u ∈ Si , i ∈ C . (7)

Moreover, the transition matrix Q(i) is equal to (P(i))T . That is:

Q(i)
uv = P(i)

vu , for all u, v ∈ Si . (8)
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Comparing importance measures (cont.)

Hence, by inserting Eq. (7) and Eq. (8) into Eq. (5) and Eq. (6) we get:

I
(i)
NB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

· P(i)
uv

=


u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · µ
(i)
u


v∈Si

µ
(i)
v

· P(i)
uv

I
(i)
PB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

· Q(i)
uv

=


u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · µ
(i)
u


v∈Si

µ
(i)
v

· P(i)
vu
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Comparing importance measures (cont.)

NOTE: Recall that:

I
(i)
NB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · P[Xi = u] · P(i)
uv

I
(i)
PB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · P[Xi = u] · Q(i)
uv

Hence, it follows that in general I (i)NB and I
(i)
PB depends both on the stationary

distribution of Xi as well as the transition matrices P(i) and Q(i).

Thus, if two components have equal stationary distributions, they may still have
different importance.

Similarly, if two components have equal transition probabilities, they may still
have different importance.
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Comparing importance measures (cont.)

EXAMPLE: We consider a multistate system (C ,φ) where C = {1, 2}, and where
S1 = S2 = {0, 1, 2}. We also let fi (u) = u, u = 0, 1, 2, i = 1, 2.

The structure function is given by:

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))) = min(X1(t),X2(t))

The transition matrices of the built-in Markov chains are:

P(1) =




0.1, 0.3, 0.6
0.6, 0.1, 0.3
0.3, 0.6, 0.1



 , P(2) =




0.7, 0.1, 0.2
0.2, 0.7, 0.1
0.1, 0.2, 0.7



 ,

while the mean waiting times are:

µ
(i)
0 = 2.5, µ

(i)
1 = 3.5, µ

(i)
2 = 4.0, i = 1, 2.
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Comparing importance measures (cont.)

Both P(1) and P(2) are doubly stochastic, implying that the stationary
distributions of the built-in Markov chains are uniform.

Hence, we may calculate importance using Theorem 4.2. In particular, the
stationary distributions can be calculated using the simplified formula given in
Eq. (7), and we get for i = 1, 2:

P[Xi = 0] =
µ
(i)
0

v∈Si
µ
(i)
v

=
2.5

2.5 + 3.5 + 4.0
= 0.25

P[Xi = 1] =
µ
(i)
1

v∈Si
µ
(i)
v

=
3.5

2.5 + 3.5 + 4.0
= 0.35

P[Xi = 2] =
µ
(i)
2

v∈Si
µ
(i)
v

=
4.0

2.5 + 3.5 + 4.0
= 0.40
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Comparing importance measures (cont.)

To calculate I
(i)
NB we need to compute the sum:1

I
(i)
NB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · P[Xi = u] · P(i)
uv

Since, however, we obviously have:

P[φ(u,X2) ∕= φ(v ,X2)] = 0 whenever u = v ,

only the terms where u ∕= v need to be included.

Moreover, by symmetry we of course also have:

P[φ(u,X2) ∕= φ(v ,X2)] = P[φ(v ,X2) ∕= φ(u,X2)].

1The corresponding results for I (i)PB are obtained in a similar fashion and are
approximately the same in this case.
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Comparing importance measures (cont.)

Hence, we get the following 3 · 3 − 3 = 6 non-zero probabilities for component 1:

P[φ(0,X2) ∕= φ(1,X2)] = P[X2 = 1] + P[X2 = 2] = 0.35 + 0.40 = 0.75,
P[φ(0,X2) ∕= φ(2,X2)] = P[X2 = 1] + P[X2 = 2] = 0.35 + 0.40 = 0.75,

P[φ(1,X2) ∕= φ(0,X2)] = P[φ(0,X2) ∕= φ(1,X2)] = 0.75,
P[φ(1,X2) ∕= φ(2,X2)] = P[X2 = 2] = 0.40,

P[φ(2,X2) ∕= φ(0,X2)] = P[φ(0,X2) ∕= φ(2,X2)] = 0.75,
P[φ(2,X2) ∕= φ(1,X2)] = P[φ(1,X2) ∕= φ(2,X2)] = 0.40.
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Comparing importance measures (cont.)

Moreover, since these probabilities only depend on the stationary distribution of
component 2, and both components have the same stationary distribution, we get
exactly the same probabilities for component 2.

Thus, we have all the quantities needed in order to compute the importance
measures using the formula for I (i)NB given in Theorem 4.2, and we eventually get:

I
(1)
NB = 0.55425, I

(2)
NB = 0.18475
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Comparing importance measures (cont.)

NOTE: Component 1 (0.55425) is more important than component 2 (0.18475),
even though they both have the same stationary distributions.

We recall that:

I
(i)
NB =



u,v∈Si

P[φ(u,X ) ∕= φ(v ,X )] · P[Xi = u] · P(i)
uv

and that:

P(1) =




0.1, 0.3, 0.6
0.6, 0.1, 0.3
0.3, 0.6, 0.1



 , P(2) =




0.7, 0.1, 0.2
0.2, 0.7, 0.1
0.1, 0.2, 0.7



 ,

For component 1 most of the weight from the transition probabilities are put on
terms where u ∕= v , and for these terms P[φ(u,X2) ∕= φ(v ,X2)] > 0.

For component 2 most of the weight from the transition probabilities are put on
terms where u = v , and for these terms P[φ(X1, u) ∕= φ(X1, v)] = 0.
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Expected physical criticality for semi-Markov processes

The importance measures based on expected physical criticality can also be
generalized without any changes:

The n*-Birnbaum measure of importance of component i at time t, denoted
I
∗(i)
NB (t), is defined by:

I
∗(i)
NB (t) = E |φ(Xi (t),X (t))− φ(X+

i (t),X (t))|.

The p*-Birnbaum measure of importance of component i at time t, denoted
I
∗(i)
PB (t), is defined by:

I
∗(i)
PB (t) = E |φ(X−

i (t),X (t))− φ(Xi (t),X (t))|.
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Expected physical criticality for semi-Markov processes (c.)

To calculate the n*-Birnbaum measure and the p*-Birnbaum measure, we again
condition on the current and next (or previous) state of component i as follows:

I
∗(i)
NB (t) =



u,v∈Si

E |φ(u,X (t))− φ(v ,X (t))| · P[Xi (t) = u] · P(i)
uv (9)

I
∗(i)
PB (t) =



u,v∈Si

E |φ(u,X (t))− φ(v ,X (t))| · P[Xi (t) = u] · Q(i)
uv (10)
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Expected physical criticality for semi-Markov processes (c.)

Focussing on the asymptotic properties and using the same arguments as we did
for I (i)NB and I

(i)
PB , we get the following analogues to Eq. (5) and Eq. (6):

I
∗(i)
NB =



u,v∈Si

E |φ(u,X )− φ(v ,X )| · π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

· P(i)
uv (11)

I
∗(i)
PB =



u,v∈Si

E |φ(u,X )− φ(v ,X )| · π
(i)
u µ

(i)
u


v∈Si

π
(i)
v µ

(i)
v

· Q(i)
uv (12)

A. B. Huseby (UiO) Multistate systems - part 2 STK 4400 32 / 37



Expected physical criticality for semi-Markov processes (c.)

The following results can easily be proved using exactly the same arguments as
we used for the corresponding results for I (i)NB and I

(i)
PB :

Theorem (4.4)

Assume that µ(i)
0 = · · · = µ

(i)
ri . Then I

∗(i)
NB = I

∗(i)
PB .

Theorem (4.5)

Assume that the transition matrix P(i) is doubly stochastic. Then we have:

I
∗(i)
NB =



u,v∈Si

E |φ(u,X )− φ(v ,X )| · µ
(i)
u


v∈Si

µ
(i)
v

· P(i)
uv

I
∗(i)
PB =



u,v∈Si

E |φ(u,X )− φ(v ,X )| · µ
(i)
u


v∈Si

µ
(i)
v

· P(i)
vu
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Expected physical criticality for semi-Markov processes (c.)

EXAMPLE: We consider the same multistate system (C ,φ) where C = {1, 2},
and where S1 = S2 = {0, 1, 2}. We assume that fi (u) = u, u = 0, 1, 2, i = 1, 2.

The structure function is given by:

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))) = min(X1(t),X2(t))

The transition matrices of the built-in Markov chains are:

P(1) =




0.1, 0.3, 0.6
0.6, 0.1, 0.3
0.3, 0.6, 0.1



 , P(2) =




0.7, 0.1, 0.2
0.2, 0.7, 0.1
0.1, 0.2, 0.7



 ,

while the mean waiting times are:

µ
(i)
0 = 2.5, µ

(i)
1 = 3.5, µ

(i)
2 = 4.0, i = 1, 2.
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Expected physical criticality for semi-Markov processes (c.)

To compute I
∗(1)
NB we start out by determining E |φ(u,X2)− φ(v ,X2)| for all

u, v ∈ S1, noting that:

E |φ(u,X2)− φ(v ,X2)| = 0 if u = v

This implies that only the terms where u ∕= v need to be included. Moreover, by
symmetry we have:

E |φ(u,X2)− φ(v ,X2)| = E |φ(v ,X2)− φ(u,X2)|.
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Expected physical criticality for semi-Markov processes (c.)

Hence, we get the following 3 · 3 − 3 = 6 non-zero expectations for component 1:

E |φ(0,X2)− φ(1,X2)| = 1 · P[X2 = 1] + 1 · P[X2 = 2] = 0.75,
E |φ(0,X2)− φ(2,X2)| = 1 · P[X2 = 1] + 2 · P[X2 = 2] = 1.15,

E |φ(1,X2)− φ(0,X2)| = E |φ(0,X2)− φ(1,X2)| = 0.75,
E |φ(1,X2)− φ(2,X2)| = 1 · P[X2 = 2] = 0.40,

E |φ(2,X2)− φ(0,X2)| = E |φ(0,X2)− φ(2,X2)| = 1.15,
E |φ(2,X2)− φ(1,X2)| = E |φ(1,X2)− φ(2,X2)| = 0.40.
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Expected physical criticality for semi-Markov processes (c.)

Moreover, since these expectations only depend on the stationary distribution of
component 2, and both components have the same stationary distribution, we get
exactly the same probabilities for component 2.

Thus, we have all the quantities needed in order to compute the importance
measures using the formula for I ∗(i)NB given in Theorem 4.5, and we eventually get:

I
∗(1)
NB = 0.66225, I

∗(2)
NB = 0.22075

For component 1 most of the weight from the transition probabilities are put on
terms where u ∕= v , and for these terms E |φ(u,X2)− φ(v ,X2)| > 0.

For component 2 most of the weight from the transition probabilities are put on
terms where u = v , and for these terms E |φ(X1, u)− φ(X1, v)| = 0.
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