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Discrete time optimization under uncertainty

We consider the oil production from a field consisting of n reservoirs that share a
processing facility with a constant process capacity K . The production from each
reservoir is described as a discrete time process:

qik = The production from the ith reservoir in the kth period,
Qik = The cum. production from the ith reservoir after the kth period

=
k∑

j=1

qij

We also define Qi0 = 0.
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Discrete time optimization under uncertainty

The maximum amount of oil that can be produced from the ith reservoir within
the kth period given no other restrictions, is:

fi (Qi,k−1) = Di (Vi − Qi,k−1),

where Vi > 0 and Di ∈ [0, 1] are random variables and denote the recoverable
volume and decline rate of the ith reservoir.

xik = quota assigned to the ith reservoir during the kth period
xk = (x1k , . . . , xnk)

The actual production volumes are then given by:

qik = qik(xik) = min{fi (Qi,k−1), xik},

where the quotas are chosen so that
∑n

i=1 xik = K .
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Discrete time optimization under uncertainty

If xik ≤ fi (Qi,k−1), it follows that qik = xik . If this holds for all reservoirs, all
quotas are fully utilized, and we get that:

n∑
i=1

qik =
n∑

i=1

xik = K .

If xjk > fj(Qj,k−1) for some j , the quota for this reservoir cannot be fully utilized,
i.e., qjk < xjk . Hence, in this case:

n∑
i=1

qik <
n∑

i=1

xik = K .

A good production strategy should aim at utilizing the quotas as much as
possible for all reservoirs.
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Short-term optimization under uncertainty

In order to formulate the optimization problem, we introduce:

Yk = Yk(xk) =
n∑

j=1

qjk(xjk) =
n∑

j=1

min{fj(Qj,k−1), xjk}, k = 1, 2, . . . .

Considering the kth time period, the objective is to choose xk so that E [Yk(xk)]
is maximized subject to the processing capacity constraint:

n∑
i=1

xik = K .

NOTE: By using this approach at each step, the focus is on the upcoming time
period only.

We refer to this optimization problem as the short-term optimization problem,
and the solution will be called the short-term production strategy.
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Short-term optimization under uncertainty

In order to solve the short-term optimization problem, we introduce the Lagrange
function:

ΛS(xk , λ) = ΦS(xk)− λΨ(xk),

where λ denotes the Lagrange multiplier, and where:

ΦS(xk) = E [Yk(xk)],

Ψ(xk) =
n∑

i=1

xik − K .

A stationary point for the Lagrange function is then found by solving the equation:

∇ΦS(xk) = λ∇Ψ(xk),

subject to the restriction that Ψ(xk) = 0.
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Short-term optimization under uncertainty

For i = 1, . . . , n, we get:

∂

∂xik
ΦS(xk) =

∂

∂xik
E [Yk(xk)]

= E [
∂

∂xik

n∑
j=1

min{fj(Qj,k−1), xjk}]

= E [
∂

∂xik
min{fi (Qi,k−1), xik}]

= E [I (fi (Qi,k−1) > xik)]

= P(fi (Qi,k−1) > xik).

where I (·) denotes the indicator function.

NOTE: P(fi (Qi,k−1) > xik) is a decreasing function of xik . This implies that ΦS is
a concave function. Thus, the stationary point will be a maximum point.

A. B. Huseby & K. R. Dahl (UiO) Production optimization STK 4400 7 / 23



Short-term optimization under uncertainty

Finally, we get:

∇Ψ(xk) = (1, . . . , 1).

Combining all this, we get that the optimal solution must satisfy:

P(fi (Qi,k−1) > xik) = λ, i = 1, . . . n,

for some value of λ, as well as the processing capacity constraint:

n∑
i=1

xik = K

NOTE: The short-term strategy attempts to distribute the available processing
capacity between the reservoirs, and hence balance the risk between these.
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Long-term optimization under uncertainty

In the deterministic case the optimal strategy is to make sure that the reservoirs
with lowest decline rates are produced first. As a result, the tail-production will
be dominated by the reservoirs with the highest decline rates. As a result the
remaining volumes will be produced as fast as possible.

In order to improve the results for the stochastic case we introduce a different
approach where more focus is put on the tail-production. In particular, we aim at
finding a strategy where the tail-production can be done as fast as possible.

A. B. Huseby & K. R. Dahl (UiO) Production optimization STK 4400 9 / 23



Long-term optimization under uncertainty

One way of evaluating the tail-production is by calculating its potential center of
mass. We start out by considering the ith reservoir, and assume that we have
completed k − 1 periods of production.

Assuming that the reservoir is produced at maximum speed in all the periods
following the kth period, we get that:

qi,k+1 = Di (Vi − Qi,k−1 − qik),

qi,k+2 = Di (Vi − Qi,k − qi,k+1) = Di ((Vi − Qi,k−1 − qik)− qi,k+1)

= Di ((Vi − Qi,k−1 − qik)− Di (Vi − Qi,k−1 − qik))

= Di (1− Di )(Vi − Qi,k−1 − qik)

qi,k+3 = Di (Vi − Qi,k+1 − qi,k+2) = Di ((Vi − Qi,k − qi,k+1)− qi,k+2)

= Di ((Vi − Qi,k − qi,k+1)− Di (Vi − Qi,k − qi,k+1))

= Di (1− Di )(Vi − Qi,k − qi,k+1) = Di (1− Di )
2(Vi − Qi,k−1 − qik)
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Long-term optimization under uncertainty

For the (k + h)-th period we get that:

qi,k+h = Di (Vi − Qi,k+h−2 − qi,k+h−1) = Di (1− Di )
h−1(Vi − Qi,k−1 − qik)

The potential center of mass for the tail-production after the kth period of the
ith reservoir, expressed as a function of xik , and denoted by Zik(xik), can now be
defined as:

Zik(xik) =
∞∑
h=1

h · qi,k+h

=
∞∑
h=1

h · Di (1− Di )
h−1(Vi − Qi,k−1 − qik(xik))

= Di (Vi − Qi,k−1 − qik(xik))
∞∑
h=1

h · (1− Di )
h−1
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Long-term optimization under uncertainty

In order to determine the infinite sum we introduce:

g(Di ) =
∞∑
h=1

(1− Di )
h =

1− Di

Di
,

where the last equation follows by the formula for the sum of a geometric series.
Hence, by differentiating this equation with respect to Di , it follows that:

g ′(Di ) = −
∞∑
h=1

h(1− Di )
h−1 = −D−2

i

Thus, it follows that:

Zik(xik) = Di (Vi − Qi,k−1 − qik(xik))
∞∑
h=1

h · (1− Di )
h−1

= (Vi − Qi,k−1 − qik(xik)) · D−1
i
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Long-term optimization under uncertainty

The potential center of mass for the tail-production after the kth period of all
reservoirs combined, is defined as:

Zk(xk) =
n∑

j=1

Zjk(xjk) =
n∑

j=1

(Vj − Qj,k−1 − qjk(xjk)) · D−1
j .

We seek a strategy where the expected potential center of mass is as low as
possible, since this implies that the remaining volumes can be produced as fast as
possible.

We refer to this optimization problem as the long-term optimization problem, and
the solution will be called the long-term production strategy.
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Long-term optimization under uncertainty

In order to solve the long-term optimization problem, we again introduce the
Lagrange function:

ΛL(xk , λ) = ΦL(xk)− λΨ(xk),

where λ denotes the Lagrange multiplier, and where:

ΦL(xk) = E [Zk(xk)],

Ψ(xk) =
n∑

i=1

xik − K .

A stationary point for the Lagrange function is then found by solving the equation:

∇ΦL(xk) = λ∇Ψ(xk),

subject to the restriction that Ψ(xk) = 0.
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Long-term optimization under uncertainty

For i = 1, . . . , n we get:

∂

∂xik
ΦL(xk) =

∂

∂xik
E [Zk(xk)]

= E [
∂

∂xik
Zk(xk)]

= E [
∂

∂xik

n∑
j=1

(Vj − Qj,k−1 − qjk(xjk)) · D−1
j ]

= −E [
∂

∂xik
min{fi (Qi,k−1), xik} · D−1

i ]

= −E [I (fi (Qi,k−1) > xik) · D−1
i ].

NOTE: −E [I (fi (Qi,k−1) > xik) · D−1
i ] is a increasing function of xik . This implies

that ΦL is a convex function. Thus, the stationary point will be a minimum point.
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Long-term optimization under uncertainty

Finally, as in the previous case, we get:

∇Ψ(xk) = (1, . . . , 1).

Combining all this, we get that the optimal solution must satisfy:

E [I (fi (Qi,k−1) > xik) · D−1
i ] = −λ, i = 1, . . . , n,

for some value of λ, as well as the processing capacity constraint:

n∑
i=1

xik = K .

NOTE: The long-term strategy tends to give priority to reservoirs with smaller
decline rates.
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Handling the uncertainty

By assessing distributions for the reservoir parameters, the expected values
needed in the calculations of the optimal solutions can be computed.

As the production develops, more information about the production
parameters is gained. Hence, the uncertainty distributions must be updated
(using Bayes’ theorem).

As a result of the updating, Vi and Di typically become stochastically
dependent even when they are independent apriori.

The updated joint distributions of Vi and Di can be simulated using a
combination of rejection sampling and the Metropolis-Hastings algorithm.
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A numerical example

We consider a simple numerical example, where n = 2, and where V1 and V2 are
lognormally distributed apriori, while D1 and D2 are uniformly distributed apriori.

The reservoirs will be producing in 25 periods and processed on a facility with a
capacity of K = 1.2 million barrels of oil per period.

i E [Vi ] SD[Vi ] Vi Dmin
i Dmax

i Di

1 12.0 2.0 12.0 0.20 0.30 0.25
2 12.0 2.0 12.0 0.05 0.15 0.10

Table: Reservoir parameters.

Given the true values of the reservoir parameters, the optimal strategy is a strict
priority rule where the reservoir with the lowest decline rate, i.e., Reservoir 2, is
given top priority.
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Results

Total result Disc. result
Short-term strategy 22.15 20.26
Long-term strategy 22.93 20.92
Deterministic strategy 22.94 20.94

Table: Results of the simulations for the three strategies.
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Production profiles for the short-term strategy

0 5 10 15 20 25

1.25

1.00

0.75

0.50

0.25

0.00

Figure: Production profiles using short-term strategy for Reservoir 1 (red curve),
Reservoir 2 (green curve), and Total production (blue curve)
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Production profiles for the long-term strategy
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Figure: Production profiles using long-term strategy for Reservoir 1 (red curve),
Reservoir 2 (green curve), and Total production (blue curve)
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Production profiles for the deterministic strategy
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Figure: Production profiles using the deterministic strategy for Reservoir 1 (red
curve), Reservoir 2 (green curve), and Total production (blue curve)
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Conclusions

A framework for optimizing oil production from several reservoirs sharing a
common processing facility when the reservoir parameters are not known is
proposed

Both a short-term strategy and a long-term strategy have been analysed

Both strategies are determined using step by step forward optimization
making the calculations simple and efficient compared to full scale stochastic
dynamic optimization

Numerical studies have shown that the long-term strategy is performing
better than the short-term strategy.

Future work:

Multiphase production (i.e., oil/gas/water)
More complex production models
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