
STK4400 –
Week 2

K. R. Dahl &
A. B. Huseby

STK4400 – Week 2

K. R. Dahl & A. B. Huseby

Department of Mathematics
University of Oslo, Norway



STK4400 –
Week 2

K. R. Dahl &
A. B. Huseby

Optimization, Lagrange duality and convex duality



STK4400 –
Week 2

K. R. Dahl &
A. B. Huseby

Optimization

Optimization is the mathematical theory of maximization and
minimization problems.

Useful in many applications, for example in logistic problems,
finding the best spot to set up a wind-farm, and in
mathematical finance.

Example (finance): Consider an investor who wants to
maximize her utility, given various constraints (for instance her
salary).

How can we solve this problem?



STK4400 –
Week 2

K. R. Dahl &
A. B. Huseby

Basic optimization problem

Let X be a vector space, f : X → R̄, g : X → Rn and S ⊆ X .

Consider an optimization problem of the form

min f (x)
subject to

g(x) ≤ 0 (componentwise)
x ∈ S .

(1)

In problem (1), f is called the objective function.

Furthermore, g(x) ≤ 0, x ∈ S are called the constraints of the
problem.
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Transforming an optimization problem

A useful technique when dealing with optimization problems is
transforming the problem.

Example: A constraint of the form h(x) ≥ y (for h : X → Rn,
y ∈ Rn) is equivalent to y − h(x) ≤ 0, which is of the form
g(x) ≤ 0 with g(x) = y − h(x).

Similarly, any maximization problem can be turned into a
minimization problem (and visa versa) by using that
inf f (x) = − sup(−f (x)).

Any equality constraint can be transformed into two inequality
constraints: h(x) = 0 is equivalent to h(x) ≤ 0 and h(x) ≥ 0.
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Extreme value theorem

One of the most important theorems of optimization is the
extreme value theorem (see Munkres [?]).

Theorem (The extreme value theorem)

If f : X → R is a continuous function from a compact set into
the real numbers, then there exist points a, b ∈ X such that
f (a) ≥ f (x) ≥ f (b) for all x ∈ X . That is, f attains a
maximum and a minimum.

The extreme value theorem gives the existence of a maximum
and a minimum in a fairly general situation.

NOTE: These may not be unique.
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Critical points

For convex (or concave) functions, any local minimum
(maximum) is a global minimum (maximum) (from last
lecture).

This makes convex functions useful in optimization.

For a function f : Rn → R, the maximum and minimum are
attained in critical points. Critical points are points x such that

f ′(x) = 0, where f is differentiable at x ,

the function f is not differentiable at x or

x is on the boundary of the set one is optimizing over.

For a differentiable function (optimized without extra
constraints): Can find maximum and minimum points by
solving f ′(x) = 0 and comparing the objective value in these
points to those of the points on the boundary.
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Constrained optimization

Constrained optimization can be more difficult.

Example of constrained optimization: Linear programming
(LP); maximization of linear functions under linear constraints.

For LP: Strong theorems regarding the solution has been
derived. Corresponding to each LP problem, there is a ”dual”
problem, and these two problems have the same optimal value.

This dual problem gives a second chance at solving an
otherwise difficult problem.

There is also an effective numerical method for solving LP
problems, called the simplex algorithm. See Vanderbei for more
about linear programming.
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Lagrange duality

The concept of deriving a ”dual” problem to handle constraints
is the idea of Lagrange duality as well.

Lagrange duality begins with a problem of the form (1) (or the
corresponding maximization problem), and derives a dual
problem which gives lower (upper) bounds on the optimal value
of the problem.

Linear programming duality is a special case of Lagrange
duality.

Since Lagrange duality is more general, one cannot get the
strong theorems of linear programming.

The duality concept is generalized even more in convex duality
theory.
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Lagrange duality

Let X be a general inner product space with inner product 〈·, ·〉.

Consider a problem of the following, very general, form

maximize f (x) subject to g(x) ≤ 0, x ∈ S (2)

where g is a function such that g : X → RN and S 6= ∅ (to
exclude a trivial case).

This is the the primal problem.
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Lagrange duality: Transforming the problem to
standard form

Equality constraints: Rewrite in the form of problem (2) by
writing each equality as two inequalities.

≥ can be turned into ≤ by multiplying with −1.

By basic algebra, one can always make sure there is 0 on one
side of the inequality.

Note that there are no constraints on f or S and only one
(weak) constraint on g . Hence, many problems can be written
in the form (2).
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Lagrange duality method

Let λ ∈ RN be such that λ ≥ 0 (componentwise), and assume
that g(x) ≤ 0 (componentwise) for all x ∈ S .

Then:

f (x) ≤ f (x)− λ · g(x) (3)

because λ · g(x) ≤ 0 (where · denotes the Euclidean inner
product).

This motivates the definition of the Lagrange function, L(x , λ)

L(x , λ) = f (x)− λ · g(x).
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Lagrange duality method, ctd.

Hence, L(x , λ) is an upper bound on the objective function for
each λ ∈ RN , λ ≥ 0 and x ∈ X such that g(x) ≤ 0.

Taking supremum on each side of the inequality in (3), for each
λ ≥ 0,

sup{f (x) : g(x) ≤ 0, x ∈ S} ≤ sup{f (x)− λ · g(x) :
g(x) ≤ 0, x ∈ S}

= sup{L(x , λ) : x ∈ S ,
g(x) ≤ 0}

≤ supx∈S L(x , λ)

:= L(λ)
(4)

where the second inequality follows because we are maximizing
over a larger set, hence the optimal value cannot decrease.
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Lagrange function is an upper bound

This implies that for all λ ≥ 0, L(λ) is an upper bound for the
optimal value function. We want to find the smallest upper
bound. This motivates the definition of the Lagrangian dual
problem

inf
λ≥0

L(λ). (5)

Therefore, the following theorem is proven (by taking the
infimum on the right hand side of equation (4)).



STK4400 –
Week 2

K. R. Dahl &
A. B. Huseby

Weak Lagrange duality

Theorem (Weak Lagrange duality)

In the setting above, the following inequality holds

sup{f (x) : g(x) ≤ 0, x ∈ S} ≤ inf{L(λ) : λ ≥ 0}.

I.e., the Lagrangian dual problem is the smallest upper bound
on the optimal value of problem (2) generated by the Lagrange
function.

The Lagrangian dual problem has only one constraint: λ ≥ 0.

This may mean that the dual problem is easier to solve than
the original problem.
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Strong duality

In some cases, we can show duality theorems:

sup{f (x) : g(x) ≤ 0, x ∈ S} = inf
λ≥0

L(λ)

If this is the case, we say that there is no duality gap.

Typically happens in convex optimization problems under
certain assumptions.

Often, there is a duality gap, but the Lagrangian dual problem
still gives us an upper bound.

Example of Lagrange duality with no duality gap: Linear
programming (LP) duality.
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Graphical illustration of Lagrange duality

Can illustrate Lagrange duality to see graphically whether there
is a duality gap.

Consider problem (2) where S = X , and define the set
G = {(g(x), f (x)) ∈ RN+1 : x ∈ X}.

The optimal value of problem (2), denoted p∗, can then be
written as p∗ = sup{t : (u, t) ∈ G, u ≤ 0} (from the
definitions).

This can be illustrated for g : X → R (i.e. for only one
inequality) as in Figures 19 and 20.
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Graphical illustration of Lagrange duality, ctd.

Figure 20 shows the set G, the optimal primal value p∗ and the
Lagrange-function for two different Lagrange multipliers. The
value of the function L(l) = supx∈X{f (x)− lg(x)} is given by
the intersection of the line t − lu and the t-axis.

The shaded part of G corresponds to the feasible solutions of
problem (2).

To find the optimal primal solution p∗ in the figure, find the
point (u∗, t∗) in the shaded area of G such that t∗ is as large as
possible.
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Illustration of Lagrange duality with duality gap

G

u

t

p*

t − l*ud*
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Illustration of Lagrange duality with no duality gap

G

t

u

p* t − l*u

t − lu
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Finding the optimal dual solution graphically

How can one find the optimal dual solution in Figure 20?

Fix l ≥ 0, and draw the line t − lu.

Find the function L(l) by parallel-adjusting the line so that the
intersection of t − lu is as large as possible, while making sure
that the line still intersects G.

Now, tilt the line such that l is still greater than or equal 0, but
such that the intersection of the line and the t-axis becomes as
big as possible. The final intersection is the optimal dual
solution.

Actually, there is no duality gap in the problem of Figure 20,
since the optimal primal value corresponds to the optimal dual
value, given by the intersection of the line t − l∗u and the
t-axis.
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Finding the optimal dual solution graphically, ctd.

In Figure 19 there is a duality gap, since the optimal dual
value, denoted d∗ is greater than the optimal primal value,
denoted p∗.

What goes wrong?

By examining the two figures above, we note that the absence
of a duality gap has something to do with the set G being
”locally convex” near the t-axis.

Bertsekas formalizes this idea, and shows a condition for the
absence of a duality gap (in the Lagrange duality case), called
the Slater condition.
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The Slater condition

The Slater condition for X = Rn (see Boyd and
Vandenberghe): Assume there is a problem of the form (2). If
f is concave, S = X , each component function of g is convex
and there exists x ∈ rint(D) (relative interior), where D is
defined as the set of x ∈ X where both f and g are defined,
such that g(x) < 0, then there is no duality gap.

This condition can be weakened in the case where the
component-functions g are affine (and f is still concave) and
dom(f ) is open. In this case it is sufficient that there exists a
feasible solution for the absence of a duality gap.

Note that for a minimization problem, the same condition holds
as long as f is convex (since a maximization problem can be
turned into a minimization problem by using that
sup f = − inf(−f )).
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Alternative formulation of the Slater condition

Alternative formulation of the Slater condition for X = Rn,
from Bertsekas et. al:

If the optimal value of the primal problem (2) is finite, S is a
convex set, f and g are convex functions and there exists
x ′ ∈ S such that g(x) < 0, then there is no duality gap.
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Convex duality and optimization

Next part is based on Conjugate Duality and Optimization by
Rockafellar.

Convex functions are good for optimization because a local
minimum is also a global minimum.

Also: One can exploit duality properties in order to solve
problems.

As before, let X be a linear space, and let f : X → R be a
function.

Main idea of convex duality: View a given minimization
problem minx∈X f (x) as one half of a minimax problem where
a saddle value exists.
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Main idea of convex duality

Roughly: Do this by looking at an abstract optimization
problem

min
x∈X

F (x , u) (6)

where F : X × U → R is a function such that F (x , 0) = f (x).

U is a linear space and u ∈ U is a parameter one chooses
depending on the particular problem at hand.

Example: u can represent time or some stochastic vector
expressing uncertainty in the problem data.

Then, define an optimal value function for this problem

ϕ(u) = inf
x∈X

F (x , u) , u ∈ U. (7)
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Convexity of ϕ

Theorem

Let X ,U be real vector spaces, and let F : X × U → R be a
convex function. Then ϕ is convex as well.

Proof: This follows from property 10 of the theorem on
properties of convex functions from last week.
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Convex duality method

Now: Present the dual optimization method in detail,

Let X and Y be general linear spaces, and let K : X × Y → R
be a function.

Define
f (x) = sup

y∈Y
K (x , y) (8)

and
g(y) = inf

x∈X
K (x , y). (9)

Then, consider two optimization problems

(P) min
x∈X

f (x)

and

(D) max
y∈Y

g(y).
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Saddle value

From the definitions

g(y) ≤ K (x , y) ≤ f (x), ∀ x ∈ X , ∀ y ∈ Y . (10)

Taking the infimum over x and then the supremum over y in
equation (10)

inf
x∈X

sup
y∈Y

K (x , y) = inf
x∈X

f (x) ≥ sup
y∈Y

g(y) = sup
y∈Y

inf
x∈X

K (x , y).

(11)
If there is equality in equation (11), then the common value is
called the saddle value of K .
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Saddle points

The saddle value exists if K has a saddle point, i.e. there exists
a point (x ′, y ′) such that

K (x ′, y) ≤ K (x ′, y ′) ≤ K (x , y ′) (12)

for all x ∈ X and for all y ∈ Y . If such a point exists, the
saddle value of K is K (x ′, y ′).
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Existence of a saddle point

Can prove (from the definitions):

Theorem

A point (x ′, y ′) is a saddle point for K if and only if x ′ solves
(P), y ′ solves (D), and the saddle value of K exists, i.e.

inf
x∈X

f (x) = sup
y∈Y

g(y)

The proof is left as an exercise.
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Dual problems

(P) and (D) are called dual problems.

They can be viewed as half of the problem of finding a saddle
point for K .

To prove that (P) and (D) have a solution, and actually find it,
one can instead find a saddle point for K .

In convex optimization, we consider the opposite order:
Starting with (P), where f : X → R, how can one choose a
space Y and a function K on X × Y such that
f (x) = supy∈Y K (x , y) holds?

Freedom: Choose Y and K in different ways, to (hopefully)
achieve the properties we want of Y and K .

This idea is called the duality approach.
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Examples of convex optimization via duality

We will now look at several examples of how this duality
framework can be adapted to different optimization problems.
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Example: Nonlinear programming

Let f0, f1, . . . , fm be real valued, convex functions on a
nonempty, convex set C in the vector space X .

The duality approach consists of the following steps:

1 The given problem: min f0(x) over {x ∈ C : fi (x) ≤ 0 ∀
i = 1, . . . ,m}.

2 Abstract representation: min f over X , where

f (x) =

{
f0(x) x ∈ C , fi (x) ≤ 0 for i = 1, . . . ,m
+∞ for all other x ∈ X .

3 Parametrization: Define (for example) F (x , u) for
u = (u1, . . . , um) ∈ Rm by F (x , u) = f0(x) if
x ∈ C , fi (x) ≤ ui for i = 1, . . . , m, and F (x , u) = +∞ for
all other x. Then, F : X × Rm → [−∞,+∞] is convex
and F (x , 0) = f (x)
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Example: Nonlinear programming with infinitely
many constraints

Let f0 : C → R where C ⊂ X is convex, and let h : X × S → R̄
be convex in the x-argument, where S is an arbitrary set.

1 The problem: min f0(x) over K = {x ∈ C : h(x , s) ≤ 0 ∀
s ∈ S}.

2 Abstract representation: min f (x) over X , where
f (x) = f0(x) if x ∈ K , and f (x) = +∞ for all other x .

3 Parametrization: Choose u analoglously with Example ??:
Let U be the linear space of functions u : S → R and let
F (x , u) = f0(x) if x ∈ C , h(x , s) ≤ u(s) ∀ s ∈ S and
F (x , u) = +∞ for all other x . As in the previous example,
this makes F convex and satisfies F (x , 0) = f (x).
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Example: Stochastic optimization

Let (Ω,F ,P) be a probability space and let h : X × Ω→ R̄ be
convex in the x-argument, where X is a linear, topological
space.

Let C be a closed, convex subset of X .

The general problem: min h(x , ω) over all x ∈ C , where ω
is a stochastic element with a known distribution. The
difficulty here is that x must be chosen before ω has been
observed.

Abstract representation:We therefore solve the following
problem: Minimize the expectation
f (x) =

∫
Ω h(x , ω)dP(ω) over all x ∈ X . Here, it is

assumed that h is measurable, so that f is well defined.
Rockafellar then shows in [?], Theorem 3, that f actually
is convex.
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Example: Stochastic optimization, ctd.

Parametrization: Let
F (x , u) =

∫
Ω h(x − u(ω), ω)dP(ω) + δC (u) for u ∈ U,

where U is a linear space of measurable functions and δC
is the indicator function of C , as defined in Definition ??.
Then F is (by the same argument as for f ) well defined
and convex, with F (x , 0) = f (x).
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Conjugate functions in paired spaces

The material in this section is based on Rockafellar and
Rockafellar and Wets.

Definition (Pairing of spaces)

A pairing of two linear spaces X and V is a real valued bilinear
form 〈·, ·〉 on X × V .

The pairing associates for each v ∈ V a linear function 〈·, v〉 :
x 7→ 〈x , v〉 on X , and similarly for X .
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Compatible topology

Definition (Compatible topology)

Assume there is a pairing between the spaces X and V . A
topology on X is compatible with the pairing if it is a locally
convex topology such that the linear function 〈·, v〉 is
continuous, and any continuous linear function on X can be
written in this form for some v ∈ V . A compatible topology on
V is defined similarly.

Definition (Paired spaces)

X and V are paired spaces if one has chosen a pairing between
X and V , and the two spaces have compatible topologies with
respect to the pairing.
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Examples of paired spaces

Example

Let X = Rn and V = Rn. Then, the standard Euclidean inner
product is a bilinear form, so X and V become paired spaces.

Example

Let X = L1(Ω,F ,P) and V = L∞(Ω,F ,P). Then X and V
are paired via the bilinear form 〈x , v〉 =

∫
Ω x(s)v(s)dP(s).

Similarly, the spaces X = Lp(Ω,F ,P) and V = Lq(Ω,F ,P),
where 1

p + 1
q = 1, are paired.
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Convex conjugate of a function

Now: A central notion of convex duality, the conjugate of a
function.

Definition (Convex conjugate of a function, f ∗)

Let X and V be paired spaces. For a function f : X → R̄,
define the conjugate of f , denoted by f ∗ : V → R̄, by

f ∗(v) = sup{〈x , v〉 − f (x) : x ∈ X}. (13)

Finding f ∗ is called taking the conjugate of f in the convex
sense.

One may also define the conjugate g∗ of a function g : V → R̄
similarly.
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Biconjugate of a function and the Fenchel
transform

Similarly, define

Definition (Biconjugate of a function, f ∗∗)

Let X and V be paired spaces. For a function f : X → R̄,
define the biconjugate of f , f ∗∗, to be the conjugate of f ∗, so
f ∗∗(x) = sup{〈x , v〉 − f ∗(v) : v ∈ V }.

Definition

The operation f 7→ f ∗ is called the Fenchel transform.

If f : Rn → R̄, then the operation f 7→ f ∗ is sometimes called
the Legendre-Fenchel transform.
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Why is the conjugate function important?

To understand why, we consider f ∗ via the epigraph.

Most easily done in Rn, so let f : Rn → R̄ and consider
X = Rn = V .

From equation (13), it is not difficult to show that (try this!)

(v , b) ∈ epi(f ∗) ⇐⇒ b ≥ 〈v , x〉 − a for all (x , a) ∈ epi(f ).(14)

This can also be expressed as (check!)

(v , b) ∈ epi(f ∗) ⇐⇒ lv ,b ≤ f (15)

where lv ,b(x) := 〈v , x〉 − b.
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Why is the conjugate function important? Ctd.

Specifying a function on Rn is equivalent to specifying its
epigraph.

Hence, f ∗ describes the family of all affine functions that are
majorized by f (since all affine functions on Rn are of the form
〈v , x〉 − b for fixed v , b).

But from equation (14)

b ≥ f ∗(v) ⇐⇒ b ≥ lx ,a(v) for all (x , a) ∈ epi(f ).

This means that f ∗ is the pointwise supremum of all affine
functions lx ,a for (x , a) ∈ epi(f ).

This is illustrated in the following figures.
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Affine functions majorized by f

epi(f )

(x , a)

lv ,b(x) = 〈v , x〉 − b

lv ,b0(x)

lv ,b1(x)
lv ,b2(x)
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Affine functions majorized by f ∗

epi(f ∗)

(v , b)

lx ,a(v) = 〈x , v〉 − a
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f ∗∗ = cl(co(f ))

We then have the following very central theorem on duality:

Theorem

Let f : X → R̄ be arbitrary. Then the conjugate f ∗ is a closed,
convex function on V and f ∗∗ = cl(co(f )). Similarly if one
starts with a function in V .

In particular, the Fenchel transform induces a one-to-one
correspondence f 7→ h, h = f ∗ between the closed, convex
functions on X and the closed, convex functions on V .
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Proof

Proof: By definition f ∗ is the pointwise supremum of the
continuous, affine functions V 7→ 〈x , v〉 − α, where
(x , α) ∈ epi(f ). Therefore, f ∗ is convex and lsc, hence it is
closed. (v , β) ∈ epi(f ∗) if and only if the continuous affine
function x 7→ 〈x , v〉 − β satisfies f (x) ≥ 〈x , v〉 − β for all
x ∈ X , that is if the epigraph of this affine function contains
the epigraph of f . Thus, epi(f ∗∗) is the intersection of all the
nonvertical, closed halfspaces in X × R containing epi(f ). This
implies, using what a closed, convex set is, that
f ∗∗ = cl(co(f )).
Theorem 13 implies that if f is convex and closed, then
f = f ∗∗. This gives a one-to-one correspondence between the
closed convex functions on X , and the same type of functions
on V . Hence, all properties and operations on such functions
must have conjugate counterparts (see Rockafellar and Wets).
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Example: The indicator function

Let X and V be paired spaces, and let f = δL where L ⊆ X is
a subspace (so in particular, L is convex) and δL is the indicator
function of L, as defined last week.

From last week, we know that f = δL is convex. Then

δ∗L(v) = sup{〈x , v〉 − δL(x) : x ∈ X}
= sup{〈x , v〉; x ∈ L}

since 〈x , v〉 − δL(x) = −∞ if x /∈ L. This function δ∗L is called
the support function of L (and is often denoted by ψL).

Note also that

δ∗L(v) = δL⊥(v)

because if v ∈ L⊥, then 〈x , v〉 = 0 for all x ∈ L, but if v /∈ L⊥

then 〈x ′, v〉 6= 0 for some x ′ ∈ L.
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Example: The indicator function, ctd.

Hence, since L is a subspace, 〈x ′, v〉 can be made arbitrarily
large by multiplying x ′ by either +t or −t (in order to make
〈x ′, v〉 positive), and letting t → +∞.

By a similar argument

δ∗∗L = δ(L⊥)⊥ . (16)
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Conjugate in the concave sense

For a concave function g : X → R̄ one can define the
conjugate as:

g∗(v) = inf{〈x , v〉 − g(x) : x ∈ X} (17)

This is called taking the conjugate of g in the concave sense.
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Status quo: Dual problems and Lagrangians

We have an abstract minimization problem:

(P) min
x∈X

f (x)

which is assumed to have the representation:

f (x) = F (x , 0), F : X × U → R̄ (18)

(where U is some linear space).

Everything depends on the choice of U and F !

Want to exploit duality: Let X be paired with V , and U paired
with Y , where U and Y are linear spaces (the choice of
pairings may also be important in applications).

Preferably, we want to choose (F ,U) such that F is a closed,
jointly convex function of x and u.
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The Lagrange function

Definition (The Lagrange function, K (x , y))

Define the Lagrange function K : X × Y → R̄ to be

K (x , y) = inf{F (x , u) + 〈u, y〉 : u ∈ U}. (19)
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K is closed and convex

Theorem

The Lagrange function K is closed, concave in y ∈ Y for each
x ∈ X , and if F (x , u) is closed and convex in u

f (x) = sup
y∈Y

K (x , y). (20)

Conversely, if K is an arbitrary extended-real valued function
on X × Y such that (20) holds, and if K is closed and concave
in y , then K is the Lagrange function associated with a unique
representation f (x) = F (x , 0),F : X × U → R̄ where F is
closed and convex in u. This means that

F (x , u) = sup{K (x , y)− 〈u, y〉 : y ∈ Y }.

Further, if F is closed and convex in u, K is convex in x if and
only if F (x , u) is jointly convex in x and u.
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Proof of the theorem

Proof: Everything in the theorem, apart from the last
statement, follows from Theorem 13. For the last statement,
assume that F and K respectively are convex, use the
definitions of F and K and that the supremum and infimum of
convex functions are convex (see properties of convex functions
from last week).
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The dual problem gives a lower bound on the
primal

We now define, motivated by equation (20), the dual problem
of (P),

(D) max
y∈Y

g(y)

where g(y) = infx∈X K (x , y).
Note that this dual problem gives a lower bound on the primal
problem, from (20) since

K (x , y) ≥ inf
x∈X

K (x , y) = g(y).

But then

sup
y∈Y

K (x , y) ≥ sup
y∈Y

g(y).
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Weak duality

So from equation (20), f (x) ≥ supy∈Y g(y).

Therefore, taking the infimum with respect to x ∈ X on the
left hand side implies (D) ≤ (P).

This is called weak duality.

Sometimes, one can prove that the dual and primal problems
have the same optimal value. If this is the case, there is no
duality gap and strong duality holds.
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If ϕ is convex and l.s.c., there is no duality gap

Theorem

The function g in (D) is closed and concave. By taking the
conjugate in concave sense, g = −ϕ∗, hence −g∗ = cl(co(ϕ)),
so

sup
y∈Y

g(y) = cl(co(ϕ))(0)

while

inf
x∈X

f (x) = ϕ(0)

In particular, if F (x , u) is convex in (x , u), then −g∗ = cl(ϕ)
and supy∈Y g(y) = lim infu→0 ϕ(u) (except if
0 /∈ cl(dom(ϕ)) 6= Ø, and lsc(ϕ) is nowhere finite valued).

For the proof, see Rockafellar.

The theorem converts the question of whether
infx∈X f (x) = supy∈Y g(y) and the saddle value of the
Lagrange function K exists, to a question of whether the
optimal value function ϕ satisfies ϕ(0) = (cl(co(ϕ)))(0).

Hence, if the value function ϕ is convex, the lower
semi-continuity of ϕ is a sufficient condition for the absence of
a duality gap.



STK4400 –
Week 2

K. R. Dahl &
A. B. Huseby

Summary of the convex duality method

To begin, there is a minimization problem minx∈X f (x)
which cannot be solved directly.

Find a function F : X × U → R̄, where U is a vector
space, such that f (x) = F (x , 0).

Introduce the linear space Y , paired with U, and define
the Lagrange function K : X × Y → R̄ by
K (x , y) = infu∈U{F (x , u) + 〈u, y〉}.
Try to find a saddle point for K . If this succeeds,
Theorem 4 tells us that this gives the solution of (P) and
(D).

Theorem 16 tells us that K has a saddle point if and only
if ϕ(0) = (cl(co(ϕ)))(0). Hence, if the value function ϕ is
convex, the lower semi-continuity of ϕ is a sufficient
condition for the absence of a duality gap.
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Example: Nonlinear programming

The Lagrange function takes the form

K (x , y) = inf{F (x , u) + 〈u, y〉 : u ∈ U}

= inf{

{
f0(x) + 〈u, y〉; x ∈ C , fi (x) ≤ ui

+∞+ 〈u, y〉;∀ other x
: u ∈ U}

=

{
f0(x) + inf{〈u, y〉 : u ∈ U, fi (x) ≤ ui}, x ∈ C

+∞, otherwise.

=


inf{f0(x) + f1(x)y1 + . . .+ fm(x)ym}, u ∈ U, x ∈ C , y ∈ Rm

+

−∞, x ∈ C , y /∈ Rm
+

+∞, otherwise.

where the last equality follows because if there is at least one
negative yj , one can choose uj arbitrarily large and make the
above expression arbitrarily small.
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==

Therefore, the dual function is

g(y) = inf
x∈X

K (x , y)

= inf
x∈X


f0(x) + f1(x)y1 + . . .+ fm(x)ym if x ∈ C , y ∈ Rm

+

−∞, x ∈ C , y /∈ Rm
+

+∞, otherwise.

=

{
infx∈C{f0(x) + f1(x)y1 + . . .+ fm(x)ym} if y ∈ Rm

+

−∞, y /∈ Rm
+.
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Convex duality generalizes LP

By making some small alterations to the approach above,
Rockafellar shows that by beginning with the standard primal
linear programming problem

max{〈c , x〉 : Ax ≤ b, x ≥ 0}

where c and b are given vectors and A is a given matrix, and
finding its dual problem (in the above sense), one gets the
standard dual LP-problem back. That is

min{〈b, y〉 : AT y ≥ c , y ≥ 0}

(see Vanderbei).


