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STK4400: Convexity, optimization, and convex
duality: Overview

Cover background theory in convexity, optimization, and
convex duality.

Use this to characterise convex risk measures (via convex
duality).

Compare two commonly used risk measures: Value-at-Risk and
Conditional-Value-at-Risk.
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Convexity and optimization: Overview

Convexity theory: Convex sets, convex functions and
properties of these

Quasiconvexity

Optimization theory

Lagrange duality: A method for solving constrained
optimization problems.

Convex duality framework of Rockafellar: Very general
(generalizes Lagrange duality). Can be used to rephrase
and solve a large variety of optimization problems.
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Basic convexity: Framework

Based on the presentation of convexity in Rockafellar,
Hiriart-Urruty and Lemarèchal and Dahl.

Let X be a vector space.

An inner product 〈·, ·〉 : X × X → R is symmetric, linear in the
first component and positive definite in the sense that
〈x , x〉 ≥ 0 for all x ∈ X , with equality if and only if x = 0.

Example: X = Rn, n ∈ N.
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Essential definitions

Definition

(i) (Convex set) A set C ⊆ X is called convex if
λx1 + (1− λ)x2 ∈ C for all x1, x2 ∈ C and 0 ≤ λ ≤ 1.

(ii) (Convex combination) A convex combination of elements
x1, x2, . . . , xk in X is an element of the form

∑k
i=1 λixi

where
∑k

i=1 λi = 1 and λi ≥ 0 for all i = 1, . . . , k .

(iii) (Convex hull, conv(·)) Let A ⊆ X be a set. The convex
hull of A, denoted conv(A) is the set of all convex
combinations of elements of A.
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Core definitions

Definition

(iv) (Extreme points) Let C ⊆ X be a convex set. An extreme
point of C is a point that cannot be written as a convex
combination of any other points than itself. That is:
e ∈ C is an extreme point for C if λx + (1− λ)y = e for
some x , y ∈ C implies x = y = e.

(v) (Hyperplane) H ⊂ X is called a hyperplane if it is of the
form H = {x ∈ X : 〈a, x〉 = α} for some nonzero vector
a ∈ X and some real number α.

(vi) (Halfspace) A hyperplane H divides X into two sets
H+ = {x ∈ X : 〈a, x〉 ≥ α} and
H− = {x ∈ X : 〈a, x〉 ≤ α}, these sets intersect in H.
These sets are called halfspaces.
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Some convex sets in the plane
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A non-convex set

x y
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Hyperplane theorems in Rn

Purpose: Will be used later in connection to environmental
contours.

Only consider Rn for these theorems: Most generalize to an
arbitrary real inner product space X .

Any hyperplane, Π in Rn can be written:

Π = {x : c ′x = d},

where c ∈ Rn is a normal vector to Π and d ∈ R.
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Supporting hyperplane

Let
Π− = {x : c ′x ≤ d}

and
Π+ = {x : c ′x ≥ d}

denote the two half-spaces bounded by Π.

Let S ⊆ Rn.

A supporting hyperplane of S, is a hyperplane Π such that we
either have S ⊆ Π− or S ⊆ Π+, and such that Π ∩ ∂S 6= ∅.
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Supporting half-space

If Π is a supporting hyperplane of the set S, and S ⊆ Π−, we
say that Π+ is a supporting half-space of S.

Observe: If Π+ is a supporting half-space of S,

Π+ ∩ S ⊆ ∂S.

Introduce the notation:

P(S) = The family of supporting half-spaces of S.
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Projections

For a given nonempty set S ⊆ Rn and a vector x0 /∈ S, the
vector x∗ ∈ S is said to be the projection of x0 onto S if x∗ is
the point in S which is closest to x0.

In general the projection x∗ may neither exist nor be unique.

Theorem (Projection)

Let S ⊆ Rn be a closed convex set, and let x0 /∈ S. Then the
following holds true:

There exists a unique solution to the projection problem

A vector x∗ ∈ S is the projection of x0 onto S if and only
if:

(x∗ − x0)′(x − x∗) ≥ 0 for all x ∈ S.
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Illustration of the projection theorem in R2

x0 x*

x

S

Figure: The point x∗ is the projection of x0 onto the closed convex
set S.
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If x ∈ S, and θ is the angle between (x∗ − x0) and (x − x∗),
then we must have θ ∈ [−π/2, π/2]. This holds if and only if:

(x∗ − x0)′(x − x∗) ≥ 0 for all x ∈ S.

Theorem (Projection hyperplane)

Let S ∈ Rn be a closed convex set, and assume that x0 /∈ S.
Then there exists a supporting hyperplane Π = {x : c ′x = d}
of S such that:

c ′x ≤ d for all x ∈ S, and c ′x0 > d .
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Proof of the projection hyperplane theorem

Proof: Since S is a closed convex set, it follows by the
projection theorem that the projection of x0 onto S, denoted
x∗ exists and satisfies:

(x∗ − x0)′(x − x∗) ≥ 0 for all x ∈ S. (1)

Now, we let c = (x0 − x∗), and d = c ′x∗. Then (1) can be
written as:

c ′(x − x∗) ≤ 0 for all x ∈ S. (2)
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Proof of projection hyperplane theorem, ctd.

Hence, by (2) we have:

c ′x ≤ c ′x∗ = d for all x ∈ S.

Thus, S ⊆ Π− = {x : c ′x ≤ d}, and since x∗ ∈ S ∩ Π, Π is a
supporting hyperplane of S. Furthermore, we have:

c ′(x0 − x∗) = (x0 − x∗)′(x0 − x∗) > 0.

Hence, it follows that:

c ′x0 > c ′x∗ = d .

This concludes the proof.
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Supporting hyperplane theorem

Theorem (Supporting hyperplane)

Let S ∈ Rn be a convex set, and assume that either x0 /∈ S or
x0 ∈ ∂S. Then there exists a hyperplane Π such that S ⊆ Π−

and such that x0 ∈ Π. If x0 ∈ ∂S, Π is a supporting
hyperplane of S.

Proof: The result follows by a similar argument as for the
projection hyperplane theorem and is left as an exercise to the
reader.
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Separating hyperplanes

Let S, T ⊆ Rn. A hyperplane Π separates S and T if either
S ⊆ Π− and T ⊆ Π+ or S ⊆ Π+ and T ⊆ Π−.

Theorem (Separating hyperplane)

Assume that S, T ⊆ Rn are convex, and that S ∩ T ⊆ ∂S.
Then there exists a hyperplane Π separating S and T such that
S ⊆ Π− and T ⊆ Π+.
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Proof of the separating hyperplane theorem

Proof: We let u0 = 0 ∈ Rn and introduce the set:

U = {x − y : x ∈ So , y ∈ T },

where So = S \ ∂S is the (convex) set of inner points in S.
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Proof of the separating hyperplane theorem, ctd.

We first argue that U is convex. To show this we must show
that if u1,u2 ∈ U , then αu1 + (1− α)u2 ∈ U for all α ∈ [0, 1]:

Since u1,u2 ∈ U there exists x1, x2 ∈ So and y1, y2 ∈ T such
that:

u1 = x1 − y1 and u2 = x2 − y2.

Since So and T are convex, it follows that for any α ∈ [0, 1],
we have:

αx1 + (1− α)x2 ∈ So and αy1 + (1− α)y2 ∈ T
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Proof of the separating hyperplane theorem, ctd.

Hence, we have:

αu1 + (1− α)u2 = α(x1 − y1) + (1− α)(x2 − y2)

= (αx1 + (1− α)x2)− (αy1 + (1− α)y2) ∈ U .

By the assumption that S ∩ T ⊆ ∂S it follows that So and T
do not have any element in common.
Hence, it follows that:

u = x − y 6= 0, for all x ∈ So and y ∈ T .

Thus, we conclude that:

u0 = 0 /∈ U .
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Proof of the separating hyperplane theorem, ctd.

Then, by the supporting hyperplane theorem there exists a
hyperplane Π0 = {x : c ′x = d0} such that U ⊆ Π−0 and such
that u0 ∈ Π0.

In fact, u0 ∈ Π0 implies that c ′u0 = c ′0 = d0. Thus, d0 = 0.

Since U ⊆ Π−0 , we have c ′u ≤ d0 = 0 for all u ∈ U , implying
that:

c ′(x − y) ≤ 0 for all x ∈ So and y ∈ T ,



STK34400 –
Week 1

K. R. Dahl &
A. B. Huseby

Proof of the separating hyperplane theorem, ctd.

or equivalently:

c ′x ≤ c ′y for all x ∈ S0 and y ∈ T . (3)

We then let d = supx∈So c ′x . By the definition of d we have:

c ′x ≤ d , for all x ∈ So . (4)

If x0 ∈ ∂S, there exists {xk} ⊆ So such that limk→∞ xk = x0,
and so:

c ′x0 = lim
k→∞

c ′xk ≤ d . (5)
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Proof of the separating hyperplane theorem, ctd.

By combining (4) and (5), we have:

c ′x ≤ d , for all x ∈ S. (6)

Moreover, by (3) and the definition of d it follows that we have:

c ′y ≥ d , for all y ∈ T . (7)

Hence, by letting Π = {x : c ′x = d}, we conclude that:

S ⊆ Π− and T ⊆ Π+ (8)

Hence, Π is a hyperplane separating the convex sets S and T .
This concludes the proof.
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Separating hyperplane, supporting halfspace

In the proof of the separating hyperplane theorem, we defined
Π = {x : c ′x = d}, where:

d = sup
x∈So

c ′x .

This implies that there exists a sequence {xk} ⊆ S with limit
x0 = limk→∞ xk ∈ ∂S, such that c ′x0 = d .

Thus, x0 ∈ Π ∩ ∂S, implying that Π+ is a supporting halfspace
of S.
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Separating hyperplane, supporting halfspace
theorem

Theorem (Separating hyperplane, supporting halfspace)

Assume that S, T ⊆ Rn are convex, and that S ∩ T ⊆ ∂S.
Then there exists a hyperplane Π separating S and T such that
S ⊆ Π−, T ⊆ Π+ and where Π+ ∈ P(S).
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Polyhedrons and polytopes

Polyhedrons and polytopes are subsets of Rn.

They are useful because they are descriptions of the solution
set of systems of linear inequalities. The following definitions
are from Rockafellar.

Definition (Polyhedron)

A set K ⊆ Rn is called a polyhedron if it can be described as
the intersection of finitely many closed half-spaces.

Hence, a polyhedron can be described as the solution set of a
system of finitely many (non-strict) linear inequalities.

It is straightforward to show that a polyhedron is a convex set
(do this!).
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Polytopes

A (convex) polytope is a set of the following form:

Definition (Polytope)

A set K ⊆ Rn is called a (convex) polytope if it is the convex
hull of finitely many points.

Clearly, all polytopes are convex since a convex hull is always
convex.

Examples of (convex) polytopes in R2: Triangles, squares and
hexagons.
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Polytopes are compact

Actually, all polytopes in Rn are compact sets.

Lemma

Let K ⊆ Rn be a polytope. Then K is a compact set.

Proof: Since K is a polytope, it is the convex hull of finitely
many points, say K = conv({k1}, ..., {km}), so

K = {
m∑
i=1

λiki :
m∑
i=1

λi = 1, λi ≥ 0 for all i = 1, ...,m}.
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Proof, ctd.

Consider the continuous function f : Rm → Rn,
f (x1, ..., xm) =

∑m
i=1 xiki , and the compact set

S = {(λ1, ..., λm) :
m∑
i=1

λi = 1, λi ≥ 0 for all i = 1, ...,m} ⊆ Rm

(S is closed and bounded, hence compact in Rm)
Then, since f is continuous and S is compact, f (S) :=
{x : x = f (s) for some s ∈ S} ⊆ Rn is a compact set (see for
example Munkres). But f (S) = K from the definitions, and
hence K is compact. This concludes the proof.
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Polytopes are bounded polyhedrons

From Lemma 10, any polytope is a closed and bounded set,
since compactness is equivalent to being closed and bounded in
Rn.

The following theorem connects the notion of polytope and
polyhedron.

Theorem

A set K ⊆ Rn is a polytope if and only if it is a bounded
polyhedron.

For a proof of this, see Ziegler.
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Relative interior

Sometimes, one needs to consider what is called the relative
interior of a set.

Definition (Relative interior, rint(·))

Let S ⊆ X . x ∈ S is a relative interior point of S if it is
contained in some open set whose intersection with aff(S) is
contained in S . rint(S) is the set of all relative interior points
of S .

Here, aff(S) is the smallest affine set that contains S (where a
set is affine if it contains any affine combination of its points;
an affine combination is like a convex combination except the
coefficients are allowed to be negative).
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Convex cone

Another useful notion is that of a convex cone.

Definition (Convex cone)

C ⊆ X is called a convex cone if for all x , y ∈ C and all
α, β ≥ 0:

αx + βy ∈ C .
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Properties of convex sets

From these definitions, we can derive some properties of convex
sets.

Theorem (Properties of convex sets)

(i) If {Cj}j∈J ⊆ X is an arbitrary family of convex sets, then
the intersection ∩j∈JCj is also a convex set.

(ii) conv(A) is a convex set, and it is the smallest (set
inclusion-wise) convex set containing A.

(iii) If C1,C2, . . . ,Cm ⊆ X are convex sets, then the Cartesian
product C1 × C2 × . . .× Cm is also a convex set.

(iv) If C ⊆ X is a convex set, then the interior of C , int(C ),
the relative interior rint(C ) and the closure of C , cl(C ),
are convex sets as well.

The proof is left as an exercise.
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The extended real numbers

Sometimes, one considers not just R, but R̄, the extended real
numbers.

Definition (The extended real numbers, R̄)

Let R̄ = R ∪ {−∞,+∞} denote the extended real numbers.

When working with the extended real numbers the following
computational rules apply: a−∞ = −∞, a +∞ =∞,
∞+∞ =∞, −∞−∞ = −∞ and ∞−∞ is not defined.
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Indicator function

The following function is often useful, in particular in
optimization.

Definition (The indicator function for a set M, δM)

Let M ⊆ X be a set. The indicator function for the set M,
δM : X → R̄ is defined as

δM(x) =

{
0 if x ∈ M

+∞ if x 6∈ M.



STK34400 –
Week 1

K. R. Dahl &
A. B. Huseby

Example of indicator function in optimization

Consider the constrained minimization problem

min f (x)
s.t. x ∈ M

for some function f : X → R̄ and some set M ⊆ X .

Transform into unconstrained minimization problem: Altering
the objective function,

min f (x) + δM(x).

Same problem as before: The minimum cannot be achieved for
x /∈ M, because then δM = +∞, so the objective function is
infinitely large as well.
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Convex functions

V.I.D. (very important definition):

Definition (Convex function)

Let C ⊆ X be a convex set. A function f : C → R is called
convex if the inequality

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) (9)

holds for all x , y ∈ C and every 0 ≤ λ ≤ 1.
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Alternative way of defining convex functions via epigraphs:

Definition (Epigraph, epi(·))

Let f : X → R̄ be a function. Then the epigraph of f is defined
as epi(f ) = {(x , α) : x ∈ X , α ∈ R, α ≥ f (x)}.
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Illustration of the epigraph

f

epi(f)

Figure: The epigraph of a function f .
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Definition of convex functions via the epigraph

Definition (Convex function)

Let A ⊆ X . A function f : A→ R̄ is called convex if the
epigraph of f is convex (as a subset of the vector space X ×R).
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Illustration of a convex function

Figure: A convex function.
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The two definitions of convex functions are
equivalent

Theorem

Definitions 17 and 19 are equivalent if the set A in
Definition 19 is convex (A must be convex in order for
Definition 17 to make sense).
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Proof that the definitions are equivalent

Proof:
17 ⇒ 19: Assume that f is a convex function according to
Definition 17. Let (x , a), (y , b) ∈ epi(f ) and let λ ∈ [0, 1].
Then

λ(x , a) + (1− λ)(y , b) = (λx + (1− λ)y , λa + (1− λ)b).

But f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) from
Definition 17, so

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

≤ λa + (1− λ)b.

So (λx + (1− λ)y , λa + (1− λ)b) ∈ epi(f ).

19 ⇒ 17: Same type of arguments, so omitted. This concludes
the proof.
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Concave function

Definition (Concave function)

A function g is concave if the function f := −g is convex.

When minimizing a function, the points where it is infinitely
large are uninteresting:

Definition (Effective domain, dom(·))

Let A ⊆ X and let f : A→ R̄ be a function. The effective
domain of f is defined as dom(f ) = {x ∈ A : f (x) < +∞}.
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Proper functions

Definition (Proper function)

Let A ⊆ X and let f : A→ R̄ be a function. f is called proper
if dom(f ) 6= ∅ and f (x) > −∞ for all x ∈ A.

For definitions of general topological terms, such as
convergence, continuity and neighborhood, see any basic
topology book, for instance Munkres.
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Lower semi-continuity

Definition (Lower semi-continuity, lsc)

Let A ⊆ X be a set, and let f : A→ R̄ be a function.

f is called lower semi-continuous, lsc, at a point x0 ∈ A if for
each k ∈ R such that k < f (x0) there exists a neighborhood U
of x0 such that f (u) > k for all u ∈ U.

Equivalently: f is lower semi-continuous at x0 if and only if
lim infx→x0 f (x) ≥ f (x0).
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A lower semi-continuous function f

x

f(x)
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Sublevel sets

Lower semi-continuity can be described via sublevel sets:

Definition (α-sublevel set of a function, Sα(f ))

Let f : X → R̄ be a function and let α ∈ R. The α-sublevel set
of f , Sα(f ), is defined as

Sα(f ) = {x ∈ X : f (x) ≤ α}.

Theorem

Let f : X → R̄ be a function. Then, f is lower semi-continuous
if and only if the sublevel sets Sα(f ) are closed for all α ∈ R̄.
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closed for all α ∈ R iff. the complement sets
Y = X − Sα(f ) = {x ∈ X : f (x) > α} are open for all α.

This happens iff. all y ∈ Y are interior points, which is
equivalent with that for each y ∈ Y there is a neighborhood U
such that U ⊆ Y , i.e. f (U) > α.

This is the definition of f being lower semi-continuous at the
point y .

Since this argument holds for all y ∈ X (by choosing different
α), f is lower semi-continuous.
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Convex hull

Definition (Convex hull of a function, co(f ))

Let A ⊆ X be a set, and let f : A→ R̄ be a function. Then the
convex hull of f is the (pointwise) largest convex function h
such that h(x) ≤ f (x) for all x ∈ A.

Clearly, if f is a convex function co(f ) = f . One can define the
lower semi-continuous hull, lsc(f ) of a function f in a similar
way.
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Closure of a function

Definition (Closure of a function, clf )

Let A ⊆ X be a set, and let f : A→ R̄ be a function. We
define: cl(f )(x) = lsc(f (x)) for all x ∈ A if lsc(f (x)) > −∞ ∀
x ∈ X and cl(f )(x) = −∞ for all x ∈ A if lsc(f (x ′)) = −∞ for
some x ′ ∈ A.

We say that a function f is closed if cl(f ) = f . Hence, f is
closed if it is lower semi-continuous and f (x) > −∞ for all x or
if f (x) = −∞ for all x .
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Properties of the indicator function

Theorem

Let M ⊆ X , and consider the indicator function for the set M,
δM , as defined in Definition 16. Then, the following properties
hold:

If N ⊆ X , then M ⊆ N ⇐⇒ δN ≤ δM .
M is a convex set ⇐⇒ δM is a convex function.

δM is lower semi-continuous ⇐⇒ M is a closed set.
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Proof of properties of the indicator function

Proof:

From Definition 16: δN ≤ δM iff. (If δM(x) < +∞ then
δN(x) < +∞) iff. (x ∈ M ⇒ x ∈ N) iff. M ⊆ N.

δM is convex if and only if
δM(λx + (1− λ)y) ≤ λδM(x) + (1− λ)δM(y) holds for all
0 ≤ λ ≤ 1 and all x , y ∈ X such that
δM(x), δM(y) < +∞, that is, for all x , y ∈ M. But this
means that λx + (1− λ)y ∈ M, equivalently, M is convex.

Assume δM is lower semi-continuous. Then it follows from
Theorem 26 that Sα(δM) is closed for all α ∈ R. But, for
any α ∈ R, Sα(δM) = {x ∈ X : δM(x) ≤ α} = M (from
the definition of δM), so M is closed. Conversely, assume
that M is closed. Then, for any α ∈ R, Sα(δM) = M,
hence δM is lower semi-continuous from Theorem 26.

This concludes the proof.
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Global minimum

A global minimum for a function f : A→ R̄, where A ⊂ X , is
an x ′ ∈ A such that f (x ′) ≤ f (x) for all x ∈ A.

A local minimum for f is an x ′ ∈ A such that there exists a
neighborhood U of x ′ such that x ∈ U ⇒ f (x ′) ≤ f (x).
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Properties of convex functions

Theorem (Properties of convex functions)

Let C ⊆ X be a convex set, f : C → R be a convex function.
Then the following properties hold:

If f has a local minimum x ′, then x ′ is also a global
minimum for f .

If C = R, so that f : R→ R and f is differentiable, then
f ′ is monotonically increasing.

If a function g : R→ R is twice differentiable and
g ′′(x) > 0, then g is convex.

Jensen’s inequality: For
x1, . . . , xn ∈ X , λ1, . . . , λn ∈ R, λk ≥ 0, for k = 1, . . . , n,∑n

k=1 λk = 1, the following inequality holds

f (
n∑

k=1

λkxk) ≤
n∑

k=1

λk f (xk).
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Properties of convex functions, ctd.

Theorem

The sum of convex functions is convex.

αf is convex if α ∈ R, α ≥ 0.

If (fn)n∈N is a sequence of convex functions, fn : X → R,
and fn → f pointwise as n→∞, then f is convex.

dom(f ) is a convex set

If α ∈ R̄, then the sublevel set for f , Sα(f ) is a convex set.
Similarly, {x ∈ C : f (x) < α} is a convex set.

Maximization: Let {fλ} be an arbitrary family of convex
functions, then g(x) = supλ fλ(x) is convex. Also,
g(x) = supy f (x , y) is convex if f (x , y) is convex in x for
all y .

Minimization: Let f : X × X → R̄ be a convex function.
Then g(x) = infy f (x , y) is convex.
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Proof of properties of convex functions

Proof:

Suppose x ′ is a local minimum for f , that is: There exists
a neighborhood U ⊆ C of x ′ such that f (x ′) ≤ f (x) for all
x ∈ U. We want to show that f (x ′) ≤ f (x) for all x ∈ C .
Let x ∈ C . Consider the convex combination
λx + (1− λ)x ′. This convex combination converges
towards x ′ as λ→ 0. Therefore, for a sufficiently small λ∗,
λ∗x + (1− λ∗)x ′ ∈ U, so since f is convex

f (x ′) ≤ f (λ∗x + (1− λ∗)x ′)
≤ λ∗f (x) + (1− λ∗)f (x ′)

which, by rearranging the terms, shows that f (x ′) ≤ f (x).
Therefore, x ′ is a global minimum as well.

Follows from Definition 17 and the definition of the
derivative.
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Proof of properties of convex functions, ctd.

Left as an exercise.

Left as an exercise.

Left as an exercise.

Follows from Definition 17.

Use Definition 17 and the homogeneity and additivity of
limits.

Follows from the definitions.

Follows from the definitions, but is included here as an
example of a typical basic proof. Let x , y ∈ Sα(f ). Then
f (x), f (y) ≤ α. Then λx + (1− λ)y ∈ Sα(f ) because

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ≤ λα + (1− λ)α = α

where the first inequality follows from the convexity of f ,
and the second inequality follows from that x , y ∈ Sα(f ).

sup is a limit, so the result is a consequence of property 7.

Same as property 10.
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Quasiconvex functions

Goal: Introduce quasiconvex functions.

Quasi-convexity is weaker than convexity.

Still: Strong enough to be useful!

Applications in optimization, game theory and economics.

Definition (Quasiconvex function)

Let S ⊆ X be convex. A function f : S → R is quasiconvex if
for all x , y ∈ S and λ ∈ [0, 1], we have

f (λx + (1− λ)y) ≤ max{f (x), f (y)}.
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A quasiconvex, but not convex, function
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Defining quasiconvexity via sublevel sets

An equivalent way to define quasiconvexity is via convexity of
the sublevel sets Sα := {x ∈ S : f (x) ≤ α} for all α.

Theorem

Let S ⊆ X be convex and let f : S → R. Then, f is
quasiconvex if and only if the α-sublevel sets

Sα = {x ∈ S : f (x) ≤ α}

are convex for all α ∈ R.

Proof: Left as an exercise.
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Convex functions are quasiconvex

All convex functions are quasiconvex.

The opposite is not true: There exists quasiconvex functions
that are not convex, see Figure 61.

Concave functions can be quasiconvex:An example of this is
f (x) = log(x), defined on the positive real numbers.
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Not all functions are quasiconvex

Not all functions are quasiconvex.

An example of a function which is not quasiconvex is illustrated
in Figure 61.
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A function which is not quasiconvex
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Why is this function not quasiconvex?

This fuction is not quasiconvex because the set of points in the
domain where the function values are below the horizontal red
line is the union of the two bold, red intervals, which is not a
convex set.

Hence, the sublevel set Sα for this particular α is not convex,
and therefore the function does not satisfy the condition in
Proposition 33


