
STK4400 –
Week 4

K. R. Dahl &
A. B. Huseby

STK4400 – Week 4

K. R. Dahl & A. B. Huseby

Department of Mathematics
University of Oslo, Norway



STK4400 –
Week 4

K. R. Dahl &
A. B. Huseby

Today:

Dual characterization of convex risk measures.

Examples: Two measures of risk.
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Recap: Convex risk measures

Definition (Convex risk measure)

A convex risk measure is a function ρ : X→ R which satisfies
the following for each X ,Y ∈ X:

(i) (Convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ) for
0 ≤ λ ≤ 1.

(ii) (Monotonicity) If X ≤ Y , then ρ(X ) ≥ ρ(Y ).

(iii) (Translation invariance) If m ∈ R, then
ρ(X + m1) = ρ(X )−m.

If ρ(X ) ≤ 0, X is acceptable since it does not have a positive
risk. On the other hand, if ρ(X ) > 0, X is unacceptable.
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Recap: Interpretations of convex risk measures

Interpret ρ as a capital requirement, that is: ρ(X ) is the extra
amount of money which should be added to the portfolio in a
risk free way to make the position acceptable for an agent.

Interpretation of the conditions in Definition 1:

Convexity: Diversification reduces risk. The total risk of loss in
two portfolios should be reduced when the two are weighed into
a mixed portfolio.
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Recap: Interpretations of convex risk measures,
ctd.

Monotonicity: The risk of loss is reduced by choosing a
portfolio that has a higher value in every possible state of the
world.

Translation invariance: ρ is the amount of money one needs to
add to the portfolio in order to make it acceptable for an agent.
Hence, if one adds a risk free amount m to the portfolio, the
capital requirement should be reduced by the same amount.
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A dual characterisation of convex risk measures

Goal today: Derive dual characterisation of a convex risk
measure ρ.

Result by Frittelli and Gianin.

Let V be a vector space paired with the vector space X of
financial positions.

What is a pairing? Let’s recall!
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Conjugate functions in paired spaces

Definition (Pairing of spaces)

A pairing of two linear spaces X and V is a real valued bilinear
form 〈·, ·〉 on X × V .

The pairing associates for each v ∈ V a linear function 〈·, v〉 :
x 7→ 〈x , v〉 on X , and similarly for X .
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Compatible topology

Definition (Compatible topology)

Assume there is a pairing between the spaces X and V . A
topology on X is compatible with the pairing if it is a locally
convex topology such that the linear function 〈·, v〉 is
continuous, and any continuous linear function on X can be
written in this form for some v ∈ V . A compatible topology on
V is defined similarly.

Definition (Paired spaces)

X and V are paired spaces if one has chosen a pairing between
X and V , and the two spaces have compatible topologies with
respect to the pairing.
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Paired space with the space of financial positions

Let V be a vector space paired with the vector space X of
financial positions.

Example: If X is given a Hausdorff topology, so it becomes a
topological vector space (for definitions of these terms, see
Pedersen), V can be the set of all continuous linear functionals
from X into R, as in Frittelli and Gianin.
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Conjugate and biconjugate of a convex risk
measure

Let ρ∗ denote the (convex) conjugate of ρ.

Let ρ∗∗ denote the biconjugate of ρ.

We let 〈·, ·〉 be a pairing between V and the space of financial
positions X.

Recap: What is the conjugate and biconjugate?
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Recall: Convex conjugate of a function

Definition (Convex conjugate of a function, f ∗)

Let X and V be paired spaces. For a function f : X → R̄,
define the conjugate of f , denoted by f ∗ : V → R̄, by

f ∗(v) = sup{〈x , v〉 − f (x) : x ∈ X}. (1)

Finding f ∗ is called taking the conjugate of f in the convex
sense.
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Biconjugate of a function and the Fenchel
transform

Definition (Biconjugate of a function, f ∗∗)

Let X and V be paired spaces. For a function f : X → R̄,
define the biconjugate of f , f ∗∗, to be the conjugate of f ∗, so
f ∗∗(x) = sup{〈x , v〉 − f ∗(v) : v ∈ V }.

Definition

The operation f 7→ f ∗ is called the Fenchel transform.

If f : Rn → R̄, then the operation f 7→ f ∗ is sometimes called
the Legendre-Fenchel transform.
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General duality result for convex risk measures

Theorem

Let ρ : X→ R be a convex risk measure. Assume in addition
that ρ is lower semi-continuous. Then ρ = ρ∗∗. Hence for each
X ∈ X

ρ(X ) = sup{〈X , v〉 − ρ∗(v) : v ∈ V }
= sup{〈X , v〉 − ρ∗(v) : v ∈ dom(ρ∗)}

where 〈·, ·〉 is a pairing between X and V .
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Recall: A duality theorem

Before we do the proof, let’s recall the following duality
theorem:

Theorem

Let f : X → R̄ be arbitrary. Then the conjugate f ∗ is a closed,
convex function on V and f ∗∗ = cl(co(f )). Similarly if one
starts with a function in V .

In particular, the Fenchel transform induces a one-to-one
correspondence f 7→ h, h = f ∗ between the closed, convex
functions on X and the closed, convex functions on V .
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Proof:

Since ρ is a convex risk measure, it is a convex function (from
the definition).

Hence, the convex hull of ρ is equal to ρ, i.e., co(ρ) = ρ (recall
the def. of convex hull).

Also, since ρ is lower semi-continuous and always greater than
−∞, ρ is closed (see comment after the def. of closed
functions, week 2).

This means that

cl(ρ) = ρ.
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Proof, ctd.:

Therefore

cl(co(ρ)) = cl(ρ) = ρ.

But from the duality theorem recalled above, Theorem 9,

ρ∗∗ = cl(co(ρ)),

hence ρ = ρ∗∗.

The second to last equation in the theorem follows directly
from the definition of ρ∗∗.

The last equation follows because the supremum cannot be
achieved when ρ∗ = +∞.
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The finite dimensional case

Theorem 8 is in an abstract form.

If we choose a specific set of paired spaces, X and V , we get
more specific results.

Now, a theorem by Föllmer and Schied:

Let X = Rn,V = Rn be paired spaces with the standard
Euclidean inner product, denoted ·, as pairing.

Let (Ω,F) be a measurable space and let P denote the set of
all probability measures over Ω.
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Dual representation of convex risk measures: Finite
Ω

Theorem

Assume that Ω is finite. Then, any convex risk measure
ρ : X→ R can be represented in the form

ρ(X ) = sup
Q∈P
{EQ [−X ]− α(Q)} (2)

where EQ [·] denotes the expectation with respect to Q and
α : P → (−∞,∞] is a ”penalty function” which is convex and
closed. Actually, α(Q) = ρ∗(−Q) for all Q ∈ P.
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Proof (Luthi and Doege)

To show that ρ : X→ R (as in Theorem 10) is a convex risk
measure, we check Definition 1:

Convexity:
Let λ ∈ [0, 1],m ∈ R,X ,Y ∈ X.

ρ(λX + (1− λ)Y ) = sup
Q∈P
{EQ [−(λX + (1− λ)Y )]− α(Q)}

= sup
Q∈P
{λEQ [−X ] + (1− λ)EQ [−Y ]− α(Q)}

≤ λ sup
Q∈P
{EQ [−X ]− α(Q)}

+(1− λ) sup
Q∈P
{EQ [−Y ]− α(Q)}

= λρ(X ) + (1− λ)ρ(Y ).
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Proof, ctd.:

Monotonicity: Assume X ≤ Y . Then −X ≥ −Y , so

ρ(X ) = sup
Q∈P
{EQ [−X ]− α(Q)}

≥ sup
Q∈P
{EQ [−Y ]− α(Q)}

= ρ(Y ).

Translation invariance:

ρ(X + m1) = sup
Q∈P
{EQ [−(X + m1)]− α(Q)}

= sup
Q∈P
{EQ [−X ]−mEQ [1]− α(Q)}

= sup
Q∈P
{EQ [−X ]−m − α(Q)}

= sup
Q∈P
{EQ [−X ]− α(Q)} −m

= ρ(X )−m.

Hence, ρ is a convex risk measure.
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Proof, ctd.

To prove the converse: Assume that ρ is a convex risk measure.

The conjugate function of ρ, denoted ρ∗, is

ρ∗(v) = sup
X∈X
{v · X − ρ(X )}

(where · denotes Euclidean inner product) for all v ∈ V = Rn.

Fix X ∈ X and consider Ym := X + m1 ∈ X for an arbitrary
m ∈ R.
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Proof, ctd.

Then

ρ∗(v) ≥ sup
m∈R
{v · Ym − ρ(Ym)}

because {Ym}m∈R ⊂ X.

This means that

ρ∗(v) ≥ sup
m∈R
{v · (X + m1)− ρ(X + m1)}

= sup
m∈R
{m(v · 1 + 1)}+ v · X − ρ(X )

where the equality follows from the translation invariance of ρ
(see Definition 1).
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Proof, ctd.

The first term in the last expression is only finite if
v · 1 + 1 = 0, (where 1 = (1, 1, . . . , 1) ∈ Rn).

That is, if
∑n

i=1 vi = −1 (if not, one can make the first term
go towards +∞ by letting m go towards either +∞ or −∞).
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Proof, ctd.

We have now proved that in order for ρ∗(v) < +∞,∑n
i=1 vi = −1 must hold.

Again, consider an arbitrary, but fixed X ∈ X,X ≥ 0
(component-wise).

Then, for all λ ≥ 0,

λX ≥ 0,

and λX ∈ X.

Hence, ρ(λX ) ≤ ρ(0) (from the monotonicity of ρ, see
Definition 1).
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Proof, ctd.

Therefore, by the same type of arguments as above

ρ∗(v) ≥ sup
λ≥0
{v · λX − ρ(λX )} ≥ sup

λ≥0
{v · (λX )} − ρ(0).

Here, ρ∗(v) is only finite if v · X ≤ 0 for all X ≥ 0.

Hence v ≤ 0.

The conjugate ρ∗ is reduced to

ρ∗(v) =

{
supX∈X{v · X − ρ(X )} where v · 1 = −1 and v ≤ 0

+∞ otherwise .
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Proof, ctd.

Now, define α(Q) = ρ∗(−Q) for all Q ∈ P.

From Theorem 8, ρ = ρ∗∗.

But

ρ∗∗(X ) = sup
v∈V
{v · X − ρ∗(v)}

= sup
Q∈P
{(−Q) · X − α(Q)}

= sup
Q∈P
{

n∑
i=1

Qi (−Xi )− α(Q)}

= sup
Q∈P
{EQ [−X ]− α(Q)}

where Qi ,Xi denote the i ’th components of the vectors Q,X
respectively.



STK4400 –
Week 4

K. R. Dahl &
A. B. Huseby

Proof, conclusion

Hence ρ(X ) = ρ∗∗(X ) = supQ∈P{EQ [−X ]− α(Q)}.

This concludes the proof of the theorem.
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Interpretation of the dual representation

Theorem 10 says that any convex risk measure ρ : Rn → R is
the expected value of the negative of a contingent claim, −X ,
minus a penalty function, α(·), under the worst case probability.

Note that we consider the expectation of −X , not X , since
losses are negative in our context.
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The penalty function α(Q)

Know: The penalty function α in Theorem 10 is of the form
α(Q) = ρ∗(−Q).

Luthi and Doege proved that it is possible to derive a more
intuitive representation of α.

Theorem

Let ρ : Rn → R be a convex risk measure, and let Aρ be its
acceptance set (in the sense of Definition 12). Then,
Theorem 10 implies that ρ(X ) = supQ∈P{EQ [−X ]− α(Q)},
where α : P → R is a penalty function. Then, α is of the form

α(Q) = sup
X∈Aρ

{EQ [−X ]}.
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Recall: The acceptance set

Before we do the proof, let’s recall:

Associated with every convex risk measure ρ, there is a natural
set of all acceptable portfolios: The acceptance set, Aρ, of ρ.

Definition (The acceptance set of a convex risk measure, Aρ)

A convex risk measure ρ induces a set

Aρ = {X ∈ X : ρ(X ) ≤ 0}

The set Aρ is called the acceptance set of ρ.
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Proof:

It suffices to prove that for all Q ∈ P,

ρ∗(−Q) = sup
X∈X
{EQ [−X ]− ρ(X )} = sup

X∈Aρ

{EQ [−X ]} (3)

since we know that α(Q) = ρ∗(−Q) (from the dual
representation of convex risk measures).

For all X ∈ Aρ, ρ(X ) ≤ 0 (see the definition of acceptance
sets), so

EQ [−X ]− ρ(X ) ≥ EQ [−X ].

Hence, since Aρ ⊆ X

ρ∗(−Q) ≥ sup
X∈Aρ

{EQ [X ]− ρ(X )} ≥ sup
X∈Aρ

{EQ [−X ]}.
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Proof, ctd.

To prove the opposite inequality (and hence to prove equation
(3)):

Assume for contradiction that there exists Q ∈ P such that

ρ∗(−Q) > sup
X∈Aρ

{EQ [−X ]}.

From the definition of supremum, there exists a Y ∈ X such
that

EQ [−Y ]− ρ(Y ) > EQ [−X ] for all X ∈ Aρ.
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Proof, ctd.

Note that Y + ρ(Y )1 ∈ Aρ since

ρ(Y + ρ(Y )1) = ρ(Y )− ρ(Y ) = 0.

Therefore,

EQ [−Y ]− ρ(Y ) > EQ [−(Y + ρ(Y )1)]

= EQ(−Y ) + ρ(Y )EQ [−1]

= EQ(−Y )− ρ(Y )

This is a contradiction. Hence, the result is proved.
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Recap: Dual representation of convex risk
measures for finite scenario space

Together, Theorem 10 and Theorem 11 give thourough
understanding of convex risk measures when Ω is finite:

Any convex risk measure ρ : Rn → R can be written in the form

ρ(X ) = sup
Q∈P
{EQ [−X ]− α(Q)},

where α(Q) = supX∈Aρ
{EQ [−X ]} and Aρ is the acceptance

set of ρ.
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The case where Ω is infinite

It is also possible to derive a similar characterization in the case
where Ω is infinite.

This is left as self-study for those interested.

This is omitted here, and is left to self-study for those
interested.
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Two commonly used measures of financial risk

Aim: Present two measures of monetary risk which are
frequently used in practice.

One of these measures, called Value-at-Risk, is not coherent, or
even convex in general.

Why use measures not satisfying the economically reasonable
conditions of convex and coherent risk measures?
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Why is Value-at-Risk used in practice?

Old habits die hard: VaR was used before the concepts
coherent and convex risk measures were introduced.
Hence, people are so used to the old measures that they
are hesitant to implement others.

Simplicity: As we will see, Value-at-Risk is a very intuitive
concept.

Good enough: In many practical situations, the results
attained are sufficient, though the measures in question
are economically unreasonable in theory.
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Value-at-Risk

Value at risk, VaR, is the most commonly used risk measure in
practice (insurance, banks, investment funds etc.).

Interpretation: For a given portfolio, time horizon and
probability λ, VaR is the maximum potential loss over the time
period after excluding the λ percent worst cases.

Let X be a random variable representing a financial position.

X may represent one stock, a portfolio of stocks or the
financial holdings of an entire firm.

Negative values of X (ω) correspond to losses, and positive
values to profit.
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Mathematical definition of VaR

VaR is defined as follows: Fix some level λ ∈ (0, 1) (typically
close to 0), and define Y := −X .

Note that for the random variable Y , losses are positive
numbers.

Then, VaRλ is defined as the (1− λ)-quantile of Y

VaRλ(X ) := F−1Y (1− λ) (4)

where FY is the cumulative distribution function of Y .
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VaR is the maximum potential loss after excluding
the worst cases

One can show (this is left as an exercise) that

VaRλ(X ) = − inf{x ∈ R : FX (x) > λ}. (5)

That is, VaRλ is the maximum potential loss over the time
period after excluding the λ worst cases.
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VaR is decreasing

Lemma

VaRλ(X ) is decreasing in λ.

Proof: Left as an exercise to the reader.
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Alternative interpretation of VaR

One can alternatively define VaR as

VaRλ(X ) := inf{m ∈ R|P(X + m < 0) ≤ λ}, (6)

i.e., VaRλ(X ) is the smallest amount of money that needs to
be added to X in order for the probability of a loss to be less
than λ.
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Applications of VaR

Financial firms and banks use VaR to quantify the risk of their
investments: Can monitor their current risk at any time to
measure their potential losses.

In practice, firms will specify their VaR depending on the
confidence level λ, but also depending on some time horizon.

The definition of VaR (4) is typically not used directly for
computing the value at risk, since this formula requires that we
know the exact distribution of X .

Most banks, insurance firms etc. use historical data as an
approximation to the exact distribution, and compute the
quantile in (4) based on this.
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Monte Carlo to calculate VaR

As an alternative, some use Monte Carlo methods based on a
stochastic model of the financial markets.

Monte Carlo methods are based on random sampling from the
stochastic model.

The Monte Carlo approach is more time-consuming, and
usually involves additional work by an analyst in order to fit the
parameters of the model to the relevant problem based on
historical data.

Drawback with the historical data method: This implicitly
assumes that the future distribution will be the same as the
past one, no further randomness or adaptation to the general
economic situation is included.
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Time and VaR

Note that in our mathematical definition of VaR above, we
didn’t mention time at all.

For practical interpretations of VaR, one should think of our
random variable X as the profit/loss random variable for the
financial position.

So, if a bank wants to compute their one-month VaR, X is the
(uncertain) difference between the current value of the banks
financial holdings and the value a month from now.
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Practical VaR

How is VaR used and interpreted in practice?

Say a portfolio of stocks has a one-day 2% VaR of NOK 10
million.

Then, there is a 0.02 probability that the value of the portfolio
will decrease by more than NOK 10 million during this day,
assuming no trading.

On average, the bank will expect to lose more than this 1 out
of 50 days.

Note that it is very important for the VaR calculation that
there is no trading happening in the portfolio. If there is
trading, the distribution of the portfolio will change, and hence
also the VaR.
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Drawbacks of VaR

Despite its use in practice, value at risk has major drawbacks:

In general, VaRλ is not convex, see Föllmer and Knispel:
Diversification may increase the risk w.r.t. VaR. This is
economically unreasonable.

From equation (4): VaRλ ignores extreme losses which
occur with small probability. This tail insensitivity makes it
an unsuitable measure of risk in situations where the
consequences of large losses are very bad (e.g., insurance
companies not being able to pay their customers).

These drawbacks of VaR lead to the development of the theory
of convex and coherent risk measures.

Still widely used in practice, despite its deficiencies.
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Average value at risk

Average value at risk (AVaR), also called expected shortfall
(ES) or conditional value at risk (CVaR), was introduced to
mend the deficiencies of value at risk.

For λ ∈ (0, 1], the average value at risk is defined as

AVaRλ(X ) :=
1

λ

∫ λ

0
VaRα(X )dα. (7)

Average value at risk can be interpreted as the expected loss in
a presupposed percentage of worst cases.
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AVaR ≥ VaR

Note that

AVaRλ(X ) ≥ VaRλ(X ),

(the proof is left as an exercise).

So, when considering the same level λ, the average value at
risk is always greater than or equal the value at risk.
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AVaR is a coherent risk measure

Föllmer and Schied prove that AVaRλ is a coherent risk
measure, with a dual representation

AVaRλ(X ) = max
Q∈Qλ

EQ [−X ]

where Qλ := {Q << P|dQdP ≤ λ}. That is, Qλ, is the set of all
measures Q that are absolutely continuous w.r.t. the measure
P given that the Radon-Nikodym derivative of Q w.r.t. P is
less than or equal λ (see Shilling for more on these measure
theoretical concepts).

Note also that for λ = 1, average value at risk reduces to
EP [−X ], i.e., the expected loss.
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Other examples of convex risk measures

Other examples of convex risk measures are:

Shortfall risk.

Divergence risk measures

We refer those interested to Föllmer and Knispel.
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Next week

Recap!

We were supposed to have a physical lecture, but this is
cancelled due to the current corona situation.

There will be a lecture recording instead.


