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STK4400: Convexity, optimization, and convex
duality - Summary

To do: Summarize convexity, optimization and risk
measures
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Convexity and optimization: Overview

Convexity theory: Convex sets, hyperplanes, convex
functions and properties of these

Quasiconvexity

Optimization theory

Lagrange duality: A method for solving constrained
optimization problems.

Convex duality framework of Rockafellar: Very general
(generalizes Lagrange duality). Can be used to rephrase
and solve a large variety of optimization problems.
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Essential definitions

Definition

(i) (Convex set) A set C ⊆ X is called convex if
λx1 + (1− λ)x2 ∈ C for all x1, x2 ∈ C and 0 ≤ λ ≤ 1.

(ii) (Convex combination) A convex combination of elements
x1, x2, . . . , xk in X is an element of the form

∑k
i=1 λixi

where
∑k

i=1 λi = 1 and λi ≥ 0 for all i = 1, . . . , k .

(iii) (Convex hull, conv(·)) Let A ⊆ X be a set. The convex
hull of A, denoted conv(A) is the set of all convex
combinations of elements of A.
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Core definitions

Definition

(iv) (Extreme points) Let C ⊆ X be a convex set. An extreme
point of C is a point that cannot be written as a convex
combination of any other points than itself. That is:
e ∈ C is an extreme point for C if λx + (1− λ)y = e for
some x , y ∈ C implies x = y = e.

(v) (Hyperplane) H ⊂ X is called a hyperplane if it is of the
form H = {x ∈ X : 〈a, x〉 = α} for some nonzero vector
a ∈ X and some real number α.

(vi) (Halfspace) A hyperplane H divides X into two sets
H+ = {x ∈ X : 〈a, x〉 ≥ α} and
H− = {x ∈ X : 〈a, x〉 ≤ α}, these sets intersect in H.
These sets are called halfspaces.
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Hyperplane theorems in Rn

Purpose: Will be used later in connection to environmental
contours.

Only consider Rn for these theorems: Most generalize to an
arbitrary real inner product space X .

Any hyperplane, Π in Rn can be written:

Π = {x : c ′x = d},

where c ∈ Rn is a normal vector to Π and d ∈ R.
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Supporting hyperplane theorem

Theorem (Supporting hyperplane)

Let S ∈ Rn be a convex set, and assume that either x0 /∈ S or
x0 ∈ ∂S. Then there exists a hyperplane Π such that S ⊆ Π−

and such that x0 ∈ Π. If x0 ∈ ∂S, Π is a supporting
hyperplane of S.
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Separating hyperplanes

Let S, T ⊆ Rn. A hyperplane Π separates S and T if either
S ⊆ Π− and T ⊆ Π+ or S ⊆ Π+ and T ⊆ Π−.

Theorem (Separating hyperplane)

Assume that S, T ⊆ Rn are convex, and that S ∩ T ⊆ ∂S.
Then there exists a hyperplane Π separating S and T such that
S ⊆ Π− and T ⊆ Π+.
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Properties of convex sets

From these definitions, we can derive some properties of convex
sets.

Theorem (Properties of convex sets)

(i) If {Cj}j∈J ⊆ X is an arbitrary family of convex sets, then
the intersection ∩j∈JCj is also a convex set.

(ii) conv(A) is a convex set, and it is the smallest (set
inclusion-wise) convex set containing A.

(iii) If C1,C2, . . . ,Cm ⊆ X are convex sets, then the Cartesian
product C1 × C2 × . . .× Cm is also a convex set.

(iv) If C ⊆ X is a convex set, then the interior of C , int(C ),
the relative interior rint(C ) and the closure of C , cl(C ),
are convex sets as well.

The proof is left as an exercise.
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Convex functions

V.I.D. (very important definition):

Definition (Convex function)

Let C ⊆ X be a convex set. A function f : C → R is called
convex if the inequality

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) (1)

holds for all x , y ∈ C and every 0 ≤ λ ≤ 1.
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Alternative way of defining convex functions via epigraphs:

Definition (Epigraph, epi(·))

Let f : X → R̄ be a function. Then the epigraph of f is defined
as epi(f ) = {(x , α) : x ∈ X , α ∈ R, α ≥ f (x)}.
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Definition of convex functions via the epigraph

Definition (Convex function)

Let A ⊆ X . A function f : A→ R̄ is called convex if the
epigraph of f is convex (as a subset of the vector space X ×R).

The definitions are equivalent
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Properties of convex functions

Theorem (Properties of convex functions)

Let C ⊆ X be a convex set, f : C → R be a convex function.
Then the following properties hold:

If f has a local minimum x ′, then x ′ is also a global
minimum for f .

If C = R, so that f : R→ R and f is differentiable, then
f ′ is monotonically increasing.

If a function g : R→ R is twice differentiable and
g ′′(x) > 0, then g is convex.

Jensen’s inequality: For
x1, . . . , xn ∈ X , λ1, . . . , λn ∈ R, λk ≥ 0, for k = 1, . . . , n,∑n

k=1 λk = 1, the following inequality holds

f (
n∑

k=1

λkxk) ≤
n∑

k=1

λk f (xk).
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Properties of convex functions, ctd.

Theorem

The sum of convex functions is convex.

αf is convex if α ∈ R, α ≥ 0.

If (fn)n∈N is a sequence of convex functions, fn : X → R,
and fn → f pointwise as n→∞, then f is convex.

dom(f ) is a convex set

If α ∈ R̄, then the sublevel set for f , Sα(f ) is a convex set.
Similarly, {x ∈ C : f (x) < α} is a convex set.

Maximization: Let {fλ} be an arbitrary family of convex
functions, then g(x) = supλ fλ(x) is convex. Also,
g(x) = supy f (x , y) is convex if f (x , y) is convex in x for
all y .

Minimization: Let f : X × X → R̄ be a convex function.
Then g(x) = infy f (x , y) is convex.
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Quasiconvex functions

Goal: Introduce quasiconvex functions.

Quasi-convexity is weaker than convexity.

Still: Strong enough to be useful!

Applications in optimization, game theory and economics.

Definition (Quasiconvex function)

Let S ⊆ X be convex. A function f : S → R is quasiconvex if
for all x , y ∈ S and λ ∈ [0, 1], we have

f (λx + (1− λ)y) ≤ max{f (x), f (y)}.
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Optimization

Optimization is the mathematical theory of maximization and
minimization problems.

Useful in many applications, for example in logistic problems,
finding the best spot to set up a wind-farm, and in
mathematical finance.

Example (finance): Consider an investor who wants to
maximize her utility, given various constraints (for instance her
salary).

How can we solve this problem?
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Basic optimization problem

Let X be a vector space, f : X → R̄, g : X → Rn and S ⊆ X .

Consider an optimization problem of the form

min f (x)
subject to

g(x) ≤ 0 (componentwise)
x ∈ S .

(2)

In problem (2), f is called the objective function.

Furthermore, g(x) ≤ 0, x ∈ S are called the constraints of the
problem.
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Transforming an optimization problem

A useful technique when dealing with optimization problems is
transforming the problem.

Example: A constraint of the form h(x) ≥ y (for h : X → Rn,
y ∈ Rn) is equivalent to y − h(x) ≤ 0, which is of the form
g(x) ≤ 0 with g(x) = y − h(x).

Similarly, any maximization problem can be turned into a
minimization problem (and visa versa) by using that
inf f (x) = − sup(−f (x)).

Any equality constraint can be transformed into two inequality
constraints: h(x) = 0 is equivalent to h(x) ≤ 0 and h(x) ≥ 0.
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Extreme value theorem

One of the most important theorems of optimization is the
extreme value theorem (see Munkres [?]).

Theorem (The extreme value theorem)

If f : X → R is a continuous function from a compact set into
the real numbers, then there exist points a, b ∈ X such that
f (a) ≥ f (x) ≥ f (b) for all x ∈ X. That is, f attains a
maximum and a minimum.

The extreme value theorem gives the existence of a maximum
and a minimum in a fairly general situation.

NOTE: These may not be unique.
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Lagrange duality

The concept of deriving a ”dual” problem to handle constraints
is the idea of Lagrange duality as well.

Lagrange duality begins with a problem of the form (2) (or the
corresponding maximization problem), and derives a dual
problem which gives lower (upper) bounds on the optimal value
of the problem.

Linear programming duality is a special case of Lagrange
duality.

Since Lagrange duality is more general, one cannot get the
strong theorems of linear programming.

The duality concept is generalized even more in convex duality
theory.
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The convex duality method: Summary

To begin, there is a minimization problem minx∈X f (x)
which cannot be solved directly.

Find a function F : X × U → R̄, where U is a vector
space, such that f (x) = F (x , 0).

Introduce the linear space Y , paired with U, and define
the Lagrange function K : X × Y → R̄ by
K (x , y) = infu∈U{F (x , u) + 〈u, y〉}.
Try to find a saddle point for K . If this succeeds,
Theorem ?? tells us that this gives the solution of (P) and
(D).

Theorem ?? tells us that K has a saddle point if and only
if ϕ(0) = (cl(co(ϕ)))(0). Hence, if the value function ϕ is
convex, the lower semi-continuity of ϕ is a sufficient
condition for the absence of a duality gap.
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Convex risk measures

Definition (Convex risk measure)

A convex risk measure is a function ρ : X→ R which satisfies
the following for each X ,Y ∈ X:

(i) (Convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ) for
0 ≤ λ ≤ 1.

(ii) (Monotonicity) If X ≤ Y , then ρ(X ) ≥ ρ(Y ).

(iii) (Translation invariance) If m ∈ R, then
ρ(X + m1) = ρ(X )−m.

If ρ(X ) ≤ 0, X is acceptable since it does not have a positive
risk. On the other hand, if ρ(X ) > 0, X is unacceptable.
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Coherent risk measures

If a convex risk measure also satisfies positive homogeneity,
that is if

λ ≥ 0⇒ ρ(λX ) = λρ(X )

then ρ is called a coherent risk measure.
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Interpretations of convex risk measures

Interpret ρ as a capital requirement, that is: ρ(X ) is the extra
amount of money which should be added to the portfolio in a
risk free way to make the position acceptable for an agent.

Interpretation of the conditions in Definition 13:

Convexity: Diversification reduces risk. The total risk of loss in
two portfolios should be reduced when the two are weighed into
a mixed portfolio.
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Interpretations of convex risk measures, ctd.

Monotonicity: The risk of loss is reduced by choosing a
portfolio that has a higher value in every possible state of the
world.

Translation invariance: ρ is the amount of money one needs to
add to the portfolio in order to make it acceptable for an agent.
Hence, if one adds a risk free amount m to the portfolio, the
capital requirement should be reduced by the same amount.
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Convex combinations and max of convex risk
measures are convex risk measures

Starting with n convex risk measures, one can derive more
convex risk measures:

Theorem

Let ρ1, ρ2, . . . , ρn be convex risk measures.

1 If λ1, λ2, . . . , λn ≥ 0 and
∑n

i=1 λi = 1, then
ρ =

∑n
i=1 λiρi is a convex risk measure as well.

2 ρ = max{ρ1, ρ2, . . . , ρn} is a convex risk measure.
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The acceptance set

Associated with every convex risk measure ρ, there is a natural
set of all acceptable portfolios: The acceptance set, Aρ, of ρ.

Definition (The acceptance set of a convex risk measure, Aρ)

A convex risk measure ρ induces a set

Aρ = {X ∈ X : ρ(X ) ≤ 0}

The set Aρ is called the acceptance set of ρ.
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Associated measure of risk

Conversely, given a class A ⊆ X, one can associate a
quantitative risk measure ρA to it.

Definition (Associated measure of risk)

Let A ⊆ X be a set of ”acceptable” random variables. This set
has an associated measure of risk ρA defined as follows: For
X ∈ X, let

ρA(X ) = inf{m ∈ R : X + m ∈ A}. (3)

ρA(X ) measures how much one must add to the portfolio X , in
a risk free way, to get the portfolio into the set A of acceptable
portfolios.
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Connection between risk measure and acceptance
sets

Theorem

Let ρ be a convex risk measure with acceptance set Aρ. Then:

(i) ρAρ = ρ

(ii) Aρ is a nonempty, convex set.

(iii) If X ∈ Aρ and Y ∈ X are such that X ≤ Y , then Y ∈ Aρ

(iv) If ρ is a coherent risk measure, then Aρ is a convex cone.

Conversely, let A be a nonempty, convex subset of X. Let A be
such that if X ∈ A and Y ∈ X satisfy X ≤ Y , then Y ∈ A.
Then, the following holds:

(v) ρA is a convex risk measure.

(vi) If A is a convex cone, then ρA is a coherent risk measure.

(vii) A ⊆ AρA .
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The finite dimensional case

Choose a specific set of paired spaces, X and V : Theorem by
Föllmer and Schied:

Let X = Rn,V = Rn be paired spaces with the standard
Euclidean inner product, denoted ·, as pairing.

Let (Ω,F) be a measurable space and let P denote the set of
all probability measures over Ω.
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Dual representation of convex risk measures: Finite
Ω

Theorem

Assume that Ω is finite. Then, any convex risk measure
ρ : X→ R can be represented in the form

ρ(X ) = sup
Q∈P
{EQ [−X ]− α(Q)} (4)

where EQ [·] denotes the expectation with respect to Q and
α : P → (−∞,∞] is a ”penalty function” which is convex and
closed. Actually, α(Q) = ρ∗(−Q) for all Q ∈ P.
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Interpretation of the dual representation

Theorem 18 says that any convex risk measure ρ : Rn → R is
the expected value of the negative of a contingent claim, −X ,
minus a penalty function, α(·), under the worst case probability.

Note that we consider the expectation of −X , not X , since
losses are negative in our context.
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The penalty function α(Q)

Know: The penalty function α in Theorem 18 is of the form
α(Q) = ρ∗(−Q).

Luthi and Doege proved that it is possible to derive a more
intuitive representation of α.

Theorem

Let ρ : Rn → R be a convex risk measure, and let Aρ be its
acceptance set (in the sense of Definition 15). Then,
Theorem 18 implies that ρ(X ) = supQ∈P{EQ [−X ]− α(Q)},
where α : P → R is a penalty function. Then, α is of the form

α(Q) = sup
X∈Aρ

{EQ [−X ]}.
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Value-at-Risk

Value at risk, VaR, is the most commonly used risk measure in
practice (insurance, banks, investment funds etc.).

Interpretation: For a given portfolio, time horizon and
probability λ, VaR is the maximum potential loss over the time
period after excluding the λ percent worst cases.

Let X be a random variable representing a financial position.

X may represent one stock, a portfolio of stocks or the
financial holdings of an entire firm.

Negative values of X (ω) correspond to losses, and positive
values to profit.



STK4400 –
Week 5

K. R. Dahl &
A. B. Huseby

Mathematical definition of VaR

VaR is defined as follows: Fix some level λ ∈ (0, 1) (typically
close to 0), and define Y := −X .

Note that for the random variable Y , losses are positive
numbers.

Then, VaRλ is defined as the (1− λ)-quantile of Y

VaRλ(X ) := F−1Y (1− λ) (5)

where FY is the cumulative distribution function of Y .
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Despite its use in practice, value at risk has major drawbacks:

In general, VaRλ is not convex, see Föllmer and Knispel:
Diversification may increase the risk w.r.t. VaR. This is
economically unreasonable.

From equation (5): VaRλ ignores extreme losses which
occur with small probability. This tail insensitivity makes it
an unsuitable measure of risk in situations where the
consequences of large losses are very bad (e.g., insurance
companies not being able to pay their customers).

These drawbacks of VaR lead to the development of the theory
of convex and coherent risk measures.

Still widely used in practice, despite its deficiencies.
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Average value at risk

Average value at risk (AVaR), also called expected shortfall
(ES) or conditional value at risk (CVaR), was introduced to
mend the deficiencies of value at risk.

For λ ∈ (0, 1], the average value at risk is defined as

AVaRλ(X ) :=
1

λ

∫ λ

0
VaRα(X )dα. (6)

Average value at risk can be interpreted as the expected loss in
a presupposed percentage of worst cases.
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AVaR is a coherent risk measure

Föllmer and Schied prove that AVaRλ is a coherent risk
measure, with a dual representation

AVaRλ(X ) = max
Q∈Qλ

EQ [−X ]

where Qλ := {Q << P|dQdP ≤ λ}. That is, Qλ, is the set of all
measures Q that are absolutely continuous w.r.t. the measure
P given that the Radon-Nikodym derivative of Q w.r.t. P is
less than or equal λ (see Shilling for more on these measure
theoretical concepts).

Note also that for λ = 1, average value at risk reduces to
EP [−X ], i.e., the expected loss.


