UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Examination in STK4500 - Life Insurance and Finance.
Day of examination: Tuesday, June 10, 2014.
Examination hours: 14.30-18.30.
This problem set consists of 5 pages.
Appendices: Formulary
Permitted aids: Approved calculator.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1. (10 points)

Consider a permanent disability model. In this model the state of the insured $X_{t} \in S$ is modeled by a regular Markov chain with state space $S=\{*, \diamond, \dagger\}$, where $*=$ "active", $\diamond=$ "disabled" and $\dagger=$ "dead".
Suppose that the transition rates for this model are given by the following constants:

$$
\mu_{* \diamond}(t)=0.0013, \mu_{* \dagger}(t)=0.003, \mu_{\diamond \dagger}(t)=\mu_{* \dagger}(t) .
$$

(i) Find explicit formulas for the transition probabilities $p_{i j}(s, t), i, j \in S$.
(ii) Calculate $p_{* *}(x, x+20)$ and $p_{* \diamond}(x, x+20)$ for $x=30$ (years).

Problem 2. (10 points)

Consider a permanent disability insurance (in discrete time). Let $x=30$ years be the initial age of the insured and let 50 be the age at maturity. Further assume that $\delta=3.5 \%$ (interest rate intensity) and that the yearly disability pension is given by $15000 \$$. Suppose that the transition rates are given as in Problem 1.

Compute the prospective reserve of the disability pension payments at time $t=47$ years, given that $X_{t}=*$.

Problem 3. (10 points)

An insurance company issues a 10 -year unit-linked term insurance with a single premium of
$P=15000 \$$ to a life aged 50 . There is a deduction for initial expenses given by 3.5% and the rest of the premium is invested in an equity fund whose dynamics S_{t} of its values over time is described by the Black-Scholes model with $S_{0}=1$. Further, management charges are deducted on a daily basis from the insured's account at a rate of $\beta=0.5 \%$ per year (i.e. in the sense of a continuous deduction based on the discount factor $e^{-\beta t}$). If death occurs during the contract period a death benefit of 115% of the fund value is provided.
Assume that
(i) the transition rate is constant and given by

$$
\mu_{* \dagger}(t)=0.009
$$

(ii) the risk free rate of interest is $r=4 \%$ per year, continuously compounded.
(iii) the volatility of S_{t} is $\sigma=22 \%$ per year.

Compute the prospective reserve of the benefits at time $t=0$.

Problem 4. (10 points)

Consider a 10 -year pure endowment issued to a life aged 50 . The endowment amount, which is paid in the case of survival, is given by $100000 \$$. Assume for this policy stochastic interest rates $r(t)$ described by the Vasicek model with parameters $r(0)=0.03, a=0.5, b=0.03$ and $\sigma=0.012$. Let $\lambda=-1$ (risk premium) and

$$
\mu_{* \dagger}(t)=0.009
$$

be the constant transition rate.
(i) Calculate the prospective reserve of the endowment payment at time $t=0$.
(ii) Explain how to find the constant continuously paid yearly premiums P of this policy based on the equivalence principle.

Problem 5. (5 points)

Consider a contingent claim with payoff

$$
X:=\max \left(0, \frac{1}{T} \int_{0}^{T} S(t) d t-K\right),
$$

at maturity T, where $S(t)$ is the stock price process described by the Black-Scholes model and $K>0$ is the strike.
(i) Show that the process

$$
Y(t):=\frac{1}{S(t)}\left(\frac{1}{T} \int_{0}^{t} S(u) d u-K\right)
$$

satisfies the stochastic equation

$$
d Y(t)=\left(\frac{1}{T}+\left(\sigma^{2}-r\right) Y(t)\right) d t-\sigma Y(t) d \widetilde{B}_{t}
$$

where \widetilde{B}_{t} is a Brownian motion with respect to the equivalent martingale measure \widetilde{P}.
(ii) Show that the replicating portfolio $V(t)$ of X can be written as

$$
V(t)=\exp (-r(T-t)) S(t) F(t, Y(t))
$$

for a function $F(t, y)$.

End
(Continued on page 4.)

Appendix: Formulary

a) Forward Kolmogorov equation:

$$
\frac{d}{d t} p_{i j}(s, t)=-p_{i j}(s, t) \mu_{j}(t)+\sum_{k \neq j} p_{i k}(s, t) \mu_{k j}(t), i, j \in S
$$

with $p_{i j}(s, s)=0$, if $i \neq j, p_{i j}(s, s)=1$, if $i=j$, where $\mu_{j}(t)=\sum_{k \neq j} \mu_{j k}(t)$.
b)

$$
p_{j j}(s, t)=\bar{p}_{j j}(s, t)=\exp \left(-\sum_{k \neq j} \int_{s}^{t} \mu_{j k}(u) d u\right), j \in S .
$$

c) Thiele's difference equation:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j \in S} e^{-\delta} \cdot p_{i j}(t, t+1) \cdot\left\{a_{i j}^{\text {Post }}(t)+V_{j}^{+}(t+1)\right\},
$$

where $a_{i}^{\mathrm{Pre}}(t)$ (pension payments) and $a_{i j}^{\text {Post }}(t)$ (benefit payments) are the policy functions.
d) Prospective reserve (in continuous time):

$$
\begin{aligned}
V_{j}^{+}(t)= & \frac{1}{v(t)}\left\{\sum_{g \in S} \int_{(t, \infty)} v(s) p_{j g}(t, s) d a_{g}(s)\right. \\
& \left.+\sum_{g \in S} \int_{(t, \infty)} v(s) p_{j g}(t, s)\left(\sum_{\substack{h \in S, h \neq g}} a_{g h}(s) \cdot \mu_{g h}(s)\right) d s\right\},
\end{aligned}
$$

for $j \in S$.
e) Black-Scholes model:

$$
S_{t}=x+\int_{0}^{t} \mu S_{u} d u+\int_{0}^{t} \sigma S_{u} d B_{u}, 0 \leq t \leq T
$$

where $\sigma \neq 0$ and μ are constants and where $B_{t}, 0 \leq t \leq T$ is a Brownian motion.
f) pricing formula for a claim X :

$$
\begin{aligned}
\text { ClaimValue }_{t} & =E_{\widetilde{P}}\left[e^{-(T-t) \cdot r} X \mid \mathcal{G}_{t}\right], 0 \leq t \leq T \\
\text { ClaimValue }_{0} & =E_{\widetilde{P}}\left[e^{-(T-t) \cdot r} X\right],
\end{aligned}
$$

where \widetilde{P} (equivalent martingale measure) is the probability measure such that $\widetilde{S}_{t}=e^{-r t} S_{t}, 0 \leq$ $t \leq T$ (in the Black-Scholes model) is a martingale under \widetilde{P}.
g) Vasicek model:

$$
r(t)=x+\int_{0}^{t} a(b-r(u)) d u+\sigma B_{t}
$$

for non-negative constants a, b and σ.
h) Bond value at time $t=0$ (in the Vasicek model):

$$
P(0, T)=\exp (-T \cdot R(T, r(0)))
$$

where

$$
\begin{aligned}
& R(s, x) \\
= & \left(b-(\lambda \sigma) / a-\frac{\sigma^{2}}{2 a^{2}}\right)-\frac{1}{a \cdot s}\left[\left(\left(b-(\lambda \sigma) / a-\frac{\sigma^{2}}{2 a^{2}}\right)-x\right)\left(1-e^{-a s}\right)-\frac{\sigma^{2}}{4 a^{2}}\left(1-e^{-a s}\right)^{2}\right] .
\end{aligned}
$$

i) Integration by parts formula:

$$
X_{t}=X_{0}+\int_{0}^{t} K_{u} d u+\int_{0}^{t} H_{u} d B_{u}, Y_{t}=Y_{0}+\int_{0}^{t} \widetilde{K}_{u} d u+\int_{0}^{t} \widetilde{H}_{u} d B_{u}
$$

Then

$$
X_{t} Y_{t}=X_{0} Y_{0}+\int_{0}^{t} X_{u} d Y_{u}+\int_{0}^{t} Y_{u} d X_{u}+[X, Y]_{t},
$$

where

$$
[X, Y]_{t}=\int_{0}^{t} H_{u} \widetilde{H}_{u} d u
$$

j) Itô's formula:

$$
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} \frac{d}{d x} f\left(X_{u}\right) d X_{u}+\frac{1}{2} \int_{0}^{t} \frac{d^{2}}{d x^{2}} f\left(X_{u}\right) \cdot\left(H_{u}\right)^{2} d u
$$

for $X_{t}=X_{0}+\int_{0}^{t} K_{u} d u+\int_{0}^{t} H_{u} d B_{u}$.

