1 Problem solving II

1.1

Introduction

The purpose of this second round of problem
solving is to demonstrate how the tools of the
three preceding chapters are put to work to
solve practical problems in life insurance. Both
liabilities and assets are considered and also
(in section 13.4) their coordination, so-called
asset-liability management (or ALM for short).
The cases under discussion will simpler than in
real life. This is at it should be. Basic training
is not to be burdened with the myriad of details
often encountered in practice.

Yet we do approach the demands of prac-
tical problem solving. There are in all examples
aspects of mathematical modeling, uncertainty
in input to those models and computational
issues as well. The mathematical part has
been introduced in the preceding chapters and
also statistical time series models. The latter
are needed to portray investment risk. We
shall adhere to the earlier position (chapter
11) of projecting experience of the twentieth
century. Warning against over-confidence in
that approach was issued earlier (section 11.5),
but it is difficult to find anything convincingly
better. Interest in long, historical time series for
macroeconomic variables seems to be on its way
up, see, for example, 7?7 and 7?7. We shall here
rely on the Wilkie system of models due to the
British actuary David Wilkie; see, e.g., Wilkie
(1995). In actuarial science these appear to be
the most established and most widely used ones.
The Wilkie models will be introduced along the
way, as they are needed.

All examples considered involve stochastic
simulation at some stage. How we plan and
carry out these kind of experiments is thus a
recurrent theme. What can be said about such
matters at a general level?

First of all,
periments,
conditions.

simulations are laboratory ex-
run under laboratory
They produce uncertainty asses-

idealised

ments. It is probably wise to regard those as
underestimates. If things appear risky or uncer-
tain in the laboratory, they are likely to be even
worse in real life. That has actually nothing
to do with simulations as such and applies to
stochastic modelling generally, irrespectively
of how computations are carried out; see, e.g.,

Kendal (1985), p.??

Then there is the question of design. All
simulation experiments (by definition)
carried out under fully specified conditions,
called M in figure 1.1. We might refer to M as
the ground truth. Computer experimentation
is, above all, about how we set up M to reflect
what we want to find out, what we know and
what we do not know. There may be many
members in the latter group. Suppose we
have not been able to select some factor right.
The level of risk will then be wrong, but not
necessarily comparisions as some other factor
is varied. We shall in the next section be
dealing with errors in the mortality rates and
how they affect projections of liability. Some
specific portfolio will be used. Surely what
we find out will have much relevance also for
other portfolios, even though they differ in
composition.

are

One way to make this idea more concrete
is to assume that we are considering a risk
variable Y of the form

Y =H(X,0,n), (1.1)
where X is some random vector and (6,7) pa-
rameters. If X* is a simulation of X, then

Yl*:H(X*701777)7 YQ*:H(X*702777)
are Monte Carlo realisations of Y under #; and
8, respectively. Suppose, that approximately

H(X,0,n) = Hy(X,0) Hy(X, 7). (1.2)

Then,

Yy . Hy(X*,6,)

Y Hy(X*,6,)



1 dropping out. Thus we would, approximately,
see the effect of varying 6 even if 1 was not
correctly selected. That was comparision of
ratios, for a similar argument in terms of
differences; see exercise 77.

The reasoning is simplistic. In practice,
we would not know such things, although
we might be able to pass some judgement.
However, the general idea is a sound one. It is
frequently easier to evaluate the effect of change
in a parameter than to estimate the actual level
of a variable Y.

Planning simulation experiments can not
be done according to a given recipy in a
cookbook. There are an unlimited number of
variations and design; interpretation must be
learned by example. A number of different
problems encountered in life

discussed below. We start with liabilities.

insurance are

1.2 Mortality risk revisited

Posing the problem

Chapter 11 dealt principally with [liabilites.
There were stochastic models involved, but
by concentrating on expected values all un-
certainty was removed from the evaluations.
It was argued in chapter 3 that this was
sensible since random variation is negligible
compared to the total amount of money. Mortal-
ity risk in this sense is thus zero, or close to zero.

The
liability projections depend on unknown quan-
tities. For example, where are the survival
probabilites in section 10.2 to come from? Or
the transition probabilites in section 10.47
From historical data, surely, and this begs the
question of whether the experience we are able
to draw on is extensive enough or even relevant.
Above all, we must ask ourselves how far back
in time we should go. Often questions like these
lack clear-cut answers and are settled through a
dose of pragmatism.

However, there is another side to this.

For example, there may, after all, be plenty

of survival data. Mightn’t that indicate that
we should, perhaps, not look so far back, since
patterns emerging from the more recent years
are not unduly disturbed by random error
in any case? The advantage of such tactics
is that trends in mortality are automatically
accomodated if we are able to concentrate on
the more recent past. Of course, that changes if
we are trying to gauge the trends themselves,
rely on them to continue and build them into
the projections. For a simple example, see
exercise 77. To estimate such trends we would
need to take a longer look back. Whether it
is sound to link projections to trends we see
today, is debatable. It is not an issue that can

be settled by actuarial methodology alone.

What this tells us is that future develop-
ment in mortality is uncertain. Does that mean
that we should describe these concepts through
stochastic processes like we did with interest
rates in chaper 117 There has been some interest
in such an approach lately, and the idea might
even cite experience in certain countries in
Eastern Europe where life expectancy actually
went down throughout the last decades of the
twentieth century.

Actually this holds much less appeal than
for interest rates. First of all, there is little
experience to hang stochastic fluctuations in
mortality rates on. Over centuries man has con-
sistently tended to live longer, which indicates
that time effects in mortality, if included, should
be of a deterministic. type, resembling more
the models in chapters 77 than the stochastic
processes we dealt so much with in the preceding
chapters. Mortality as stochastic processes only
serves to create more complicated, less trans-
parent analyses without giving much in return.
That applies to disability, as well although
the issues are not quite the same. There may
now be less historical data to build on, and for
government funded schemes the very definition
of disability may be obscure, often influenced by
political currents that do not repeat themselves
in the future. That obstacle applies to many



Quantity Symbol Assumption
Portfolio size J 100000
Mortality q Gomperz-Makeham?!
Time step Annual
Interest rate r 4% annually
Benefit ¢ 40000 Euro annually
Retirement Iy 65 years
Maximum age le Unlimited
Payments All in advance
Premium el Equivalence

!Parameters in (11.24).

Table 1.1: Portfolio description for the expirements
reported in figure 13.1 and 13.2.

macroeconomic variables as well, as we shall see
in the next section.

It would be too ambitious to tackle all
these issues exhaustively in an introductory
book. Our more modest aim is to take a first
step through the study of an ordinary pension
portfolio. How do we go about to examine the
impact of errors in the survival probabilites?
How to determine the required size of the
historical data base? If we worry about the
economic consequences of the future in terms
of mortality differing from the past, how do we
throw light on this? As elsewhere, the simplest
answer is through computer experiments. We
start by looking at a specific portfolio and then
take you through all the stages of such a process.

Portfolio description

A simplified portfolio of pension plans will be
used to study the effect of errors in the mortality
rates. The main assumptions are shown in table
13.1. There are .J policies. They pay premium
and receive benefit (40000 euro) only once a
year, i.e. at the start of it. Each member of the
pension scheme entered at the age of lj = 30
years. As usual [, will be used to denote the
maximum age (120 years).

The age distribution was made to follow a
Gomperz-Makeham law in the following sense.
Suppose the recrutement (always at 30) on
average exactly balances the departure due to

death!. Tt can then be proved that the age
distribution in the long run must become

Y= P kP> k:l_107

where jp, are the survival probabilities defined
in 77 and p is a constant of proportionality, de-
termined so that

Yo+ .- +7, =1
If J is the total number of polcies, then
Jo=vJ

is the number of them at age [. Don’t worry with
the argument behind this peculiar way of laying
out the portfolio, that is only to persuade you
that the age distribution is a reasonable one that
could arise in practice; see exercise 77 for details.

We are thus entring at an ordinary stage
of the life of the portfolio. Some of the policy
holders are contributing premium, others have
reached the benefit stage. Earlier (so-called
retrospective premium) have been transferred
to the people in charge of the assets of the
company. Qur concern is the liabilities, defined
as

lo
R =Y JRi.

=l

To compute the total the reserve we simply
add those of the individual policies; of course
we must multiply with the number of clients
in the various age groups. All this is simplistic
compared to the real world. It is, above all,
assumed that all policies are identical. It would
not have been difficult to change that into a
scenario closer to the reality, but that would not
have contributed much to the problem posed
above.

The equivalence premium can be calculated as

7°1 = 5.458  (unit: thousand euro)

'We do not take into consideration that people in
practice might leave for a number of other reasons,
for example that they change job.
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Figure 1.1: Relationships beween survival
model and equivalence premium and reserve.

and the total reserve is

RP° =17097  (unit: million euro)

Note that these figures are computed under the
true survival probabilities. In practice we only
have estimated ones which leads to estimated
premium 7% and estimated RP° reserve as
well. It is to examine the errors #°¢ — 74 and
RPe — RP° we now turn the attention.

Errors: A first look

The scenarios we are dealing with is shown
in Figure 11.1 One-step survival probabilities
P, lead to multi-step ones ;P; which in turn
produces the equivalence premium #°? and
the reserve RP°. The precise mathematical
relationships are those in chapter 10. Our target
is the similar flow form estimates P, through
estimates klsl to final estimates ¢ and Rr°. We
are forced to supply P, instead of P, and the
consequence is errors 7°¢ — 7°¢ and Rre — Rro,
What can be said about them?

The distribution will typically resemble
the normal one if there is enough historical data
to hang the estimates P on. Why was explained
in chapter 5. With the estimation we shall use
below it is actually possible derive the standard
deviation of the error distribution through
exact mathematical arguments. However, the
resulting expressions are messy, and we end
up with doing more, not less work than with
simulation.

Simulation experiment: Design

Arguably portfolio created is also a part of the
experimental design, but the main thing is how
the historical data are generated. In real life
we might have been using officuial government
records. That holds the weakness that the
mortalities of the population as a whole are not
quite the same as in our portfolio.

In practice historical data are likely to come
from the companies themselves. Perhaps the
process is like the following: Imagine that at
some point in the past there were .J’ policies, the
age of the policy holders being I}, ..., 1, stored
on file. The fatal events of this population
are then followed K years ahead (up to the
present time). In practice it would have been
recrutement of new customers, and some other
would have left for oterh causes than deaths,
but we can trust this to have minor impact on
the conclusions, and we ignore that issue.

Implementation

How such a scheme is simulated is elaborated
in Algorithm 13.1. Details must depend on how
the probabilities are estimated. In the present
case the simple non-parameric estimate (??) has
been used. During the period the population is
monitored we then have to count

e the total number of deaths Dy,
occurring at age [, and
e the total number N; of times

a policy holder of age [ has been at risk.

The probability of surviving the year from [ to

[+ 1is then
P=1-

{

The algorithm to generate Monte Carlo versions
of this estimates runs as folloows:

Algorithm 13.1.
mortality
Input: Survival probababilties P,

MC experiment of
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Figure 1.2: Simulated log-returnes from models fit-
ted historical data.

age distribution /% (historical)
0Alll: Df <0, Nf <0
1Forj=1,...,J do
2 Fork=0,...,Kdo
L1+ k
N« N/ +1
Draw U* ~ uniform
If U* > P, then % Life ended

Dy + Dy + 1, leave k-loop

7 End k-loop
8 End j-loop
9 Return all I: P/ 1 —

%Simulations
% of the fate
% of client j

S O W

[/NY

The algorithm tracks the policy holders in-
dividually (lines 2 — 6). Note how D; and N
are updated on lines 6 and 4. Each time a fatal
event at age [ occurs, D; is augmented; each
time a policy holder has reached a age [, the
value of N;" goes up. On output the algorithm
has counted the number of deaths D} and the
number of individuals who have at some point
been at that age. The ratio Dy /N; is then an
assessment of the mortality at age [/, and the
survival probability is the expression on line 9.

The output is then entered the second flow
chart in Figure 10.1 and equivalence premium
and reserve calculated. We may repeat the
procedure as many times as we please and
deduce the impact of errors in mortality.

Results (and what we make of them)

The main example is 100000 policies followed
over five years. Estimated one-year mortality
probabilities from a single simulation have

Reserve: Variation due to random error in mortality

o

8 Historical data:

o 100000 policies
over five years

N

o

S

o

—

o

=
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=
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16800 17000 17200
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Figure 1.3: Simulated log-returnes from models fit-
ted historical data.

17400

Premium’ Reserve?
History: 5 years Mean SD  Mean SD
100000 policies ~ 5.455 0.028 17084 108
10000 policies 5.458 0.093 17136 356

n thousand euro 2In million euro

Table 1.2: Equivalence premium and reserve ob-
tained from simulations from true mortality model

been plotted in Figure 10.1 (as the dots) and
compared to the true Gomperz-Makeham model
(solid lines). They certainly follow each other,
though not at very high age (perhaps above 95
years) where the estimated ones (right hand
plot) are meaningless. Even at younger age the
estimated probabilities wriggles a little up and
down; they are not completly monotone. That
does not look very elegant. The question is
whether it matters.

If you examine the plot carefully you will
detect the estimates being above the true ones
for a while, then they fall under a period before
climbing up gain for another while. Such a
performance is consistent with the estimatation
errors being positively correlated at neigh-
bours. Such effects may have have important
contribuions to make to errors in the reserve.
Simulation has the considerable advantage that
it automatically caters for it.

When we apply the estimated model to
the computation of the equaivalence premium
and the reserve (table 13.2 and figure 13.2) it
seems that it is good enough. The standard



deviation when we have drawn on 100000
policies over five years are no more than 0.6%
of the total reserve. That occurs despite the
inelegant behaviour when models are inspected
visually (figure 10.2). And 100000 policies re
not much! Even so small a number as 10000
policies dos not lead to dramattic errors, though
they are now much bigger. Both experiments
were run with 1000 replications.

The final experiment is an attempt to imi-
tate what happens when we use out-dated
information. Reserves calculated from the
original Gomperz-Makeham model were com-
pared what we get from changing one of the
parameters (f;); see, e.g., (11.24) in section
10.2 about that. Underestimating survival leads
to underestimation of reserves of up to 15%.
Clearly that is something we might like to avoid.
The practical eprecussions are dealt with next.

What we have learned
In terms of method: How such experiments are
conceived and carried out.

In terms of computational speed: That ex-
periments this size encounter no computational
obstacles when implemented properly

In terms of relevance for insurance:

e Simple mortality estimates:
Often good enough
e Random error: Didn’t seem important
e Obsolete data. Dangerous!
Sometimes

In terms of model error: we

can live with them!

In addition there are the following comments:
The fact that bias due to wrong population was
so much more important than random error
definitely argues in favour of using company
records instead of offical statistics.
good idea to update estimates once in a while
and not let them be untouched for decades. Is

It seems a

the non-parametric estimates too primitive?

6, x 1072 9.067 8.817 8.567 8.317
Mean life!  75.1  76.8 787  80.7
Reserve? 17.1 18.7 204 221
I In years for new-born  2In billion euro
Table 1.3: Reserve obatined under variation of

the Gomperz-Makeham survival model; parameters 6,

and 0y as (11.24).

Our experience rather suggests otherwise. True,
at very high age they were completely wrong,
but then that didn’t matter too much anyway.
Two points can be cited on their behalf. The
first is that they are very simple to use, the
other is that they produce estimates that are
unbiased. Once you impose a parametric model
like the Gomperz-Makeham you do obtaim
smooth, more elegantly looking survival curves,
but you are also at the mercy of the parametric
form resembling the true one. You have no
gurantee of that; if the discepancy is too large
ther would again be bias effects. Anyway, we
have not gone into how such models are fitted
in practice; for that you must dip into a book
like Haberman and Petacci (1998).

1.3 Liabilities and inflation

Posing the problem

Reserves in life insurance, though large, are not
that difficult to evaluate. The discount factor
is, of course problematic, but that issue belongs
to the realm of finacial risk and is covered in
The greatest threat to the
validity of the liability projections so far is un-
derestimation of the survival probabilities. We
saw above that the repercussions of an obsolete
model could be severe. The same goes for future
trends in mortality that have not been picked up.

the next section.

Another feature of importance is inflation.
Benefits are often linked to the development of
a wage index or the price level in general. How
that is introduced into the calculations and
what the consequences are is the topic of this
section.

Dealing with inflation: Fixed rate



Price movements of a country can be captured
by a time series {Qx} of indexes, Suppose, for
example, that @Q; is the retail price index at
time tz. In real terms a purchase for which it is
paid Yj is then worth Y;/Qp. It is convenient
to introduce the convention that ()9 = 1 which
means that Yz /@ is the value of Y; in to-prices.

In practice the series {Qr} is often (but
not always) increasing in k, and to preserve
purchasing power a pension must somehow be
linked to it. Suppose the contract specifies that
the cash-flow is to be in real terms. This means
that a payment ((¢) into or out of the account
at time f; must be of size ((7)Qk, and the
expression 77 for the reserve must be changed
to

le—1

Ri= > #Cydr, (1.3)
k=0
where
o Qy
dy = m (1.4)

The presence of ) means that the discounting
is changed from

1/0+r%  to  Qp/(1+r)

We may feed on the previous inflation-free cal-
culations if it is assumed that

Qr = (1 +9)Qk-1, (1.5)

where now ¢ is a fixed growth in the retail price.
Since Q¢ = 1, this implies that Q;, = (1+4)* and

ay = (1) =0

where (exercise ?7)

ST =1
b — . 1.
"I (1.6)

Thus, (1.3) can be rewritten

le—1

kél
O S
k=0 (1+T‘)

Inflation 2% Inflation 3%

Premium' Reserve? Premium' Reserve? 17
9.947 22059 13.306 25220 "
5.4583 262603 5.458° 333293

thousand euro 2In million euro
3 Premium charged with no inflation

Table 1.4: Equivalence premium and reserve under
reqgimes with inflation for same portfolio as in Table

10.2.

and all the methods from chapter 10 can be
applied with the inflation-adjusted discount
factor 1/(1 +r?).

It is obvious that inflation-linked payments
must increase funding requirements. This
emerges clearly from the mathematics, as indeed
it had to. From (1.6) r' decreases with 7 so
that r* < r® =7 if 4 > 0, and inflation amounts
to a lower discount factor and hence higher
reserves. We see that clearly in Table 11.4 where
regimes of 2% and 3% annual inflation are com-
pared. The portfolio is the same asin Table 10.2.

One feature worth noting is the effect of
including inflation in the calculations of pre-
mium which more than doubles from row two
(inflation ignored) to to row one (inflation
included) when the inflation rate is 3%. The
reserve is also influenced greatly when you
compare with the corresponding figure (about
17 billion) in table 13.2. Tt is now 30% larger
when the annual the inflation rate is 2% and
50% larger when it is 3%. Undercoverage may
be dramatic if inflation is ignored alltogether
(last row in table 13.4.) Now the money needed
to cover future benfit will be almost doubled
when inflation is 3%.

Stochastic extension

The preceding argument lead to a conclusion
of importance, but it also contained a major
weakness. When liabilites are considered over
decades, inflation is far from constant. If this
issue is to be taken into account, (1.5) must be
extended to

Qr = (1+11)Qr-1, (1.8)



where 73 now is time-varying. The discount fac-
tor di in (1.4) now changes into

Qr
dp = —2F
T )k
o l+dy Qe _1+ikd
T UFrn) ()T T4l
or
dr—1 r— i
dr = - — . 1.9
S P T 110 (1.9)

The expression (1.3) for the reserve still stands,
but now the discount factor is computed recur-
sively through (1.9).

The problem is that we do not know what
1 is going to be. One thing is the fixed version
i, = 1 where it is at least possible to ’'take a
position’ as to what level is likely in the future,
quite another thing is the time-varying version.
It is hard to see that we can escape a stochastic
model and use of historical data. We deal with
that next.

Long-term modelling

Models for price movements are part of the
Wilkie system; see Wilkie (1995). The inflation
model writes 7, as

ir=(1+&Yexp(Z}) -1 (1.10)
where
Zi=a'Z,_ +a'el, (1.11)

is an autoregressive process of morder one.
As usual, the series {c%} consists of indepen-
dently and standard normal variables. Inserting
into (1.8) produces a stochastic version of the
recursion for the price index; i.e.

Qr = Qr_1(1+ &) exp(Z}).

The parameters suggested by Wilkie for the pe-
riod 1923 — 94 is

€ = 4.8% (1.2%)
&' = 0.040 (0.004).

(1.12)

a' = 0.58 (0.08)

The numbers in parenthesis are the estimated
standard errors. A feature we have seen before

Wilkie’s model for inflation

Inflation /
Lo Index

10 15 20
Years ahead

Figure 1.4: Simulated log-returnes from models fit-
ted historical data.

(and which we will meet again) is the huge
uncertainty in the estimate of the expectation &.
Thus, even if the economic forces behind infla-
tion can be trusted not to cause systematically
different patterns in the present, twentyfirst
century, the sheer statistical error in the most
important parameter is large. The economic

consequences are considerable; we saw that in
Table 13.4.

The fitted Wilkie inflation model is simu-
lated in Figure 13.4, starting at ip = 4.8%;
see below for how it is done. One noteworthy
feature is how often negative inflation occurs;
i.e. when the retail index simulated goes down
from the previous year. Why that is so, is
analysed in exercise 7 through a little dose
of mathematics. What should our attitude be
towards a model with this property? It isn’t
that negative inflation can’t occur, but the
frequency may appear excessive. The issue is
again one lacking a clear answer. One study
that appears worth doing is to investigate the
impact on the reserve. We deal with that next.

Simulating inflation risk

What we have learned
In terms of method: How inflation can be
described mathematically and how both deter-
minstic and stochastic versions can be integrated
into present value computations of portfolio

liabilites.



Discount rate 8.7% Discount rate 6.7%

o 5%  50% 95% 5%  50% 95%
0 7.7 177 177 225 225 225
0.02 138 178 233 163 227 31.7
0.04 11.0 182 310 11.9 232 456

L All figures in billion euro. 100000 simulations

Table 1.5: Present value (percentiles) of the portfo-
lio in Table 11.2 under stochastic inflation.

In terms of financial significance: The fol-
lowing main points are founded on the prceding
discussion:

e Inflation is a severe threat.

e Stochastic effects are important.
e The model matters,

e and the selection is not clear-cut.

In terms of strategy: It follows from the
preceding points that it is advantageous to
immunize financial assets against inflation.
Although easier said than one, it should be one
of the considerations when designing investment
portfolios; some assets follow inflation better
than others; see later sections in this chapter.

1.4

Posing the problem

How relevant are the lessons of the twentieth
century for projections ahead?
been raised before (section 13.1), and it is one
on which people are likely to differ in their
opinions. But if the experience of the past
century (or half-century) is not to be used at all,
then what else? There isn’t really reliable theory
to fall back on, and the implied information in
current market performance (see, e.g., section
11.7) does not suffice.

20'" century investment risk

The issue has

The twentieth century performance of fi-
nancial assets classes is by no means to be
swallowed raw and used uncritically as descrip-
tion of the financial risk ahead, but it does
represent experience to draw on and provides
useful models for laboratory experiments. We
are in this section going to present the Wilkie

system of models based on the very long article

Wilkie (1995). The price index process used
in the preceding section is an introductory
example. Other macroeconomic quantities of
central importance in insurance, are yield and
dividend for equity and spot and long rate of
interest. We discuss them below. Additional
variables are wage and property indexes. Al-
though highly relevant you will have to consult
Wilkie’s original work for those.

One thing we would like to learn is the
kind of financial risks it is sound to take if
future does not deviate systematically from the
processes that went on in the twentieth century.
Should we then go for equity rather than
bonds and has that someting to do with the
time horizon of our projections? What about
inflation? Is it true, as frequently maintainded,
that equity investments protect us better that
interest rate instruments ? How the liabilities
distribute over time may also be relevant, but
that is deferred until sections 13.6 and 7.

All these questions (except the last one) is
answered through simulation in later sections
of this chapter. But first we have to present
the models themselves. They are based almost
solely on empirical studies of the past. The
arguments behind their construction are beyond
the scope of this book, and the presentation
concentrates on their mathematical description.
It has been an aim to provide an easy link to the
basic toolbox for time series models in chapter
11, and the detailed structure and notation is
completely rewritten compared to what you will
find in Wilkie’s original article. This apart,
there is nothing new; the models are as put

forward in Wilkie (1995).

The Wilkie models: Stationary part

The concept of stationarity was introduced in
chapter 3, and we saw in chapter 11 how such
processes through simple manipulations gave
birth to non-stationary ones.
example. It was asssumed in the preceding
section that the rate of inflation {[;} was
stationary which meant in practical terms that

Inflation is an



Symbol innovation
Stationary building blocks

Ordinary inflation Iy 5

Share yield Yk &},

Share dividend inflation Ig EZ
Long interest rate ri(T) €
Spot interest rate L

Interest rate ratio Fy, 6£

Derived variables

Price index Qx
Dividend Dy,
Share price Sk
Return on equity Ry,

Table 1.6: Macroeconomic variables of the Wilkie
model

it fluctuated around some long term average.
The price process {Qr} that derives from it is
qualitatively different in exhibiting persistent
growth (interupted by the occasional decline).

Other macroeconomic quantites that be-
have similarly to inflation are yields on shares
(denoted yi), the inflation on share dividend
(I#) and the long and the short rate of interest
(re(T) and rp respectively). The model for
{rr(T)} must depend on the length T of the
period. The one identified by Wilkie is for
so-called consols; i.e. for loans with infinite
time to expiry. We shall in this book use this
model as an approximation for interest over long
periods T. The Wilkie models for interest are
developed in terms of the ratio Iy, = r/Ri(T).

In a well-functioning society all these quantities
oscillate within certain, not clearly defined
limits, hence the restriction to stationarity. The
variables and their mathematical notation are
summarised in the upper part of Table 13.6.
Also given (third column) are the the random
processes 5};, e} and so on driving their fluctu-
ations. As elsewhere those are independent in
time and gaussian with mean zero and standard
deviation one. Different processes 5'};, ey, ...
are are also stochastically independent of each
other. This condition is the natural way to

construct models for many dynamic variables
jointly, but it does not imply that the variables
themselves must be independent, as will emerge
below.

The link from the innovation processes in
table 13.6 to the macroeconomic quantities is a
two-step one with linear processes of the type
introduced in section 11.5 as intermediates. The
empirical studies conducted by Wilkie suggested
the seven linear processes in (1.13-1.19), divided
here into three groups; i.e.

Inflation
Zi=d'Zi_, + o'cl, (1.13)
Fquity
Z}:Z — ayZ]:Z_l + UyEZ’ (114)
Z]i'y = Ud(Ei + bilfi—ﬁ + 0d|y5%—17 (1.15)

dli i i dli i | pdli i
7 = a7z 4 (05" 24 + 60" Ziy), (1.16)

Due to inflation

Interest rates

Ry R
Z;H = ar|iZ;|i1 + (1 - aW)Z]i? (1‘18)
S—
Due to inflation
Z]{ :afZ]{_l—}—G'fé‘i. (1'19)

The superscripts define the variables to which
they belong. Here {Z}} (for inflation), {Z}}
(for equity) and, {Z]{} (for the interest rate
ratio) are all ordinary autoregressive processes
of order 1, all moving independently of each
other. How they relate to inflation, yield and
the interest ratio is explained below.

Of the remaining four processes {Zﬂy}7
{ng} define share dividend inflation and
{Z;'y} and {Z;'Z}) the long rate of interest.
These processes have a more complicated struc-
ture than the others and contain cross terms;
i.e. they are linked to the the movements equity
yield and inflation. This dependency is reflected
in their superscripts. Consider, for example,
the fifth process {Z;j'z}. There is an ordinary

10



autoregressive relationship one step back, but
last term is not an independent e-series. Instead
the cycles are now being driven by inflation,
hence the designation Z%/",

The macroeconomic variables in Table 13.6 is
then, in turn, connected to the processes (1.13-
1.19) through

Inflation
Iy = (1+ &) exp(Z}) - 1, (1.20)
Fquzty
yr = & exp(Z) + Hy“Zli), 1.21)
=+ exp(Z0" + 20 -1, (1.22)
Interest rates
re(T) = € exp(Z,") + € + 7,1, (1.23)
Fy, = ¢/ exp(Z]), (1.24)
ry = Fyri(T). (1.25)

There are alltogether 22 parameters in the
relationships (1.13-1.25).

Estimates and interpretation

The model shown above has been identified from
the period 1923 to 1994. Its parameters are
shown in table 13.7 with their standard errors
in parenthesis. Since some of the parameters
used here are different from those in Wilkie
(1995), it was necessary to recompute them by a
rough approximation technique?. Those are the
*-marked ones in Table 13.7. A common feature

is the high uncertainty in almost all estimates
3

of the &-parameters®. This is unfortunate since
they are the parameters having the highest
impact on the assessments of financial risk, as

is explained below. However, we saw the same

2Tt was impossible to do that accurately from the
information in Wilkie’s paper, since correlations be-
tween estimates are not given there. The values ob-
tained are computed by the so-called delta-method,
introduced in exercise 7, ignoring correlations be-
tween the original Wilkie estimates.

3The exception is éy for which the standard error
recorded in Table 13.7 is strikingly low.

11

Inflation (7x)

&= 4.80% @l = 0.58 &' = 0.040
(1.2%) (0.08) (0.004)
Yield(yg)
&Y =4.10% =055  ¢Y=0.16
(0.3%*) (0.10) (0.01)
gvli = 1.79
(0.59)
Dividend inflation ()
£ =6.50% bi=057 60U =—0.027
(1.8%*) (0.13) (0.007%)
4=0067 adi=087 b =050
(0.006) (0.08) (0.19%)
b = —0.36
(0.19%)
Long interest rate (rg (7))
£ =3.05% ar=0.90  6"1v =0.052
(0.65%*) (0.04) (0.02*)
6" =0.19 a’lt = 0.955
(0.02) (NA)
Interest ratio (Fy)
£ =0.80 af =074  &f =018
(0.06) (0.08) (0.02%)

*-marked standard errors means that a rough conver-
sion from standard errors in Wilkie (1995) has been
carried out.

Table 1.7: Estimated parameters for the Wilkie
long-term asset models with standard errors in paran-
thesis.

thing with a simpler example in section 2.7, and
it is a fact of life with repercussions on how the
model can be used for projecting future risk;
more on that in section 13.5.

There is a common structure in the model
worth pointing out.
represented by the seven Z-processes (1.13-
1.19). All of them have mean zero. Suppose,
for a moment, we removed all randomness and
forced them to be identically zero. 1t then
follows immediately from (1.20-1.25 that

IkE€i7 yk55y7 Idzgd (126)
(M) =€ +¢, rm=¢(E+¢). (1.27)

This gives a useful interpretation of the &-
parameters.  In practice the Wilkie model

The random variation is



allows the macro-economic variables to fluctuate
around these values. Not that the expectations
of I, yr and so forth are larger than the values
in (1.26) and (1.27); see exercise 7.

The non-stationary part

In applications we are often more interested in
the price level process {@Qx} than the rate of
inflation, and of course we need the dividend
process {Dj} and stock prices {Si} as well as
returns R of investing in equity; see, e.g., the
second part of table 13.6. They are are defined
in terms of the the stationary building blocks
introduced above through the simple recursions

Qr =1+ It)Qr-1 (1.28)
Dy= (141D, 1.29)
D
Sp= —= (1.30)
Yk
= % ~ 1. (1.31)
k—1

There are no new parameters in this part of the
model.

The return on equity needs eleaboration.
Suppose equity priced as Sp_; is bought at
time tx_;. At the end of the period the value
of the stock is changed to S and we have
also collected dividend Dj. That leads to the
expression (1.31) for the return Rj on the
investment Sp_;. A useful alternative form is
obtained if we use (1.30) to replace S; and Sk_;.
Then

e _ Di/yx+ Dy

= Diy_1/yx—1 b
which becomes
By= g et -
or, on inserting (1.29)
Ry = (1—}—]}?)(1—}—@/;:)3/2: —1L 0 (1.32)

Since {I{} and {yi} are described by stationary
processes, the return on equity {Rj} becomes
stationary too. The non-stationary effects in the

Unit:%, 100000 simulations.

Ik Y Ig Tk(T) T
Fixed! 48 4.1 6.5 7.8 6.3
Mean 4.9 4.2 6.9 8.2 6.8
SD. 52 1.0 94 2.0 2.5

L Without andomness, i.e (13.26) and (13.27).

Table 1.8: Mean and standard deviation of the five

stationary consituents of the Wilkie model

dividends {D;} and the prices {Si} on equity
cancel in the returns which fluctuate under the
Wilkie model without persistent trends in any
direction.

One-year behaviour

Although the main purpose of the Wilkie model
is to describe investment risk in the long run,
it is a useful introductory exercise to examine
model projections for a single year. We have in
tables 13.8 and 13.9 allowed the macreoconomic
variables to develope over 20 years and recorded
means and standard deviations from the last
of these simulated annual movements. This
way of running the experiment ensures that
the statistical parameters come from a typical
state of the economy; see, e.g, section 3.7. How
the simulations were carried out in detail is
discussed below.
The mean and standard deviation of the
rate of inflation, equity yield, equity dividend
inflation and the long and short rate of interest
and the spot rate are shown in table 13.8.
It emerges that the the expressions (1.26)
and (1.27) are only slightly less that the true
expectations. The long rate with higher mean
return and smaller standard deviation is, on the
surface, better for long term investments than
the spot rate.

A Dbetter picture of the potential of the
various asset classes are obtained if we compare
the interest rates with the return on equity.
That is done in Table 13.9, both for the ordinary
return (left hand side) and the inflation-adjusted
one (right hand side). If Rj is the nominal

12



Current | Inflation adjusted

Mean and standard deviation (unit: %)

RZ Tk (T) Tk RZ Tk (T) L
Mean 13.3 8.2 6.8 7.9 3.3 2.0
Sd 23.0 2.0 2.5 1 20.9 4.9 5.1
Correlation matriz
RZ Tk (T) Tk RZ Tk (T) Tk
Ry, 1.0 .07 .04 ] 1.0 ~.06 -.06
re(T) .07 1.0 .66 | -.06 1.0 .93
Tk .04 .66 1.0 | -.06 .93 1.0

Table 1.9: Mean, standard deviation and correla-
tion matriz of annual return on equity, long and short
bank deposits under the Wilkie model.

return on an investment then
Ry — I
14+ 1

is the returns in real terms; see 7.

There are several striking features.  From
the experience of the 20th century equities have
much higher expected return than interest rate
Note that this also holds when
The other side of the
coin is risk. Table 13.9 suggests that equities is
much more risky, the standard deviation being
ten times higher when we do not correct for
inflation. In real terms that gap is diminished to
a factor around four due to standard deviation

instruments.
we correct for inflation.

of interest rates more than doubling. Folklore
cited earlier that equities are robust towards
inflation seems at least partially substantiated,
but we shall study this more thoroughly in
section 13.5.

It is also worth commenting on the corre-
lation between asset returns. The two interest
rates are strongly correlated, particularly when
inflation adjusted. By contrast their correlation
with equity is virtually zero.  Such results
are simplistic in the sense that the dynamic
development of the assets is a result of much
more complex features than merely correlations
between movements at the same period. The
simplest way to proceed is to examine returns
over longer time horizons through simulations.

That is dealt with in section 13.5.

Implementing the Wilkie models

A good summary of the Wilkie models is
provided by a sketch of how they are imple-
mented in the computer. Actually this is not
much more more than a repetition of all the re-
cursive equations above. We start with inflation.

Algorithm 13.3 Simulating inflation
Input: &, @, o

0 QL 1, Zi « z}
lFork=1,...,K do

2 Draw &% ~ normal(0,1)
3 ZP e dZy +otey

1 Qi e Qi (148 exp(Z))
5 Endfor

6 Return @7, Z};*, k=1,...,K.

% zo user selected

On line 4 (1.20) and (1.28) have been merged
into one equation. Note that the simulated
quantites have been *-marked according to
our usual convention. A question is how the
recursive scheme should be initialised (line 0).
The price index itself is easy, simply make @
equal to one. Then all subsequent prices can
be referred back to the level at the start of the
scheme by dividing on (3.

We

The simulations are then

For z{ there are several possibilties.
may take z§ = 0.
run from a typical state of the economy. Often
we would want to start from the situation we
actually have. Let Iy = I§ be the observed rate
of inflation. Insert k£ = 0 in (1.20) and solve it
for Z} = z5. We then obtain

i o (1110
o= o8 (1 n 8’)
Note that the sequence {Z:*} in algorithm 13.3
may have to be stored to be used with other
simulation algoritms. For equity the scheme
runs as follows:

Algorithm 13.4 Simulating equity
Input: &, a¥, o¥, VI, ' ' '
€d7 bil7 0::l|y7 O'd, ad|z7 bg'l, bi”l
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0 Select Dy, ZY*, ey edx, 7,
1 For k = 1, , K do
d*

. yx
2 Draw ey, €}

% See below

~ normal (0,1)

327 —a¥ZlT 4 ovel”

4 yr+ exp(Zy + 0y|ZZi*)

5 Z,f'y* — od(ed +biedx )+ odlvel”

6 Zz'l* —a d|i d|z* " (bth + bd|zZ )
7 DI« D (1+gd) exp(Z V" +Zd'”)
8 Sp= D}t/yk

9 R« (Dz + S;)/S};_l -1

10 Endfor

11 Return R¢*, el k=1,...K.

Again this is no more than a condensation
of equations given earlier. Note that we have
to store the sequence e}", which are needed
with interest rates in a moment. How we start
the scheme is the same issue as for inflation.
If you go carefully through the recursion, you
will discover that we need precisely the five
quantities on line 0. The dividend Dy can be
selected as the current one, but for the returns,
it does not matter what we choose see exercise 7.
For the other four (73", &4, ed ,Zg' ) there are
the same two possibilities as for inflation. We
may either select all as zero, starting at typical
state of the economy or adapt it to the present
situation observed. However, the latter is now
technically more complicated and we deal with
it in exercises 77 and 77.

Finally there is the algorithm for the two
interest rates:

Algorithm 13.5 Interest rates
Input: ¢, af, of &7,

gr 7“7 o" 07“|y7 52" 0T|i7
075 2, 70 21,
lFork=1,...,K do
2 Draw ei*, ey ~ normal (0,1)
ZI{* — afZ]{il + Ufek*
Fr ¢ exp(Z{:*)
T = a" 7%+ omer* + rlvel”
ri(T)* € exp(Z5*) + € + 07”“22*
ry o Frrg(T)*

% zg , 24 user selected

~1 S Ot =~ W

8 Endfor

9 Return ry(T),rf, k=1,...K.
For the initial values there are the same
options as before. The details of adapting to the
preseent state of the economy are worked out in
exercise 7.

1.5

Investment risk over decades

Posing the problem

Insurance companies and public pension schemes
with obligations extending over decades have
to take the long view in their investments. But
can financial risk over such a long time span
really be evaluated? And if so, how should we
go about it and what would be the uncertainty?

The sim-
plest is how returns on single assets develope
under stochastic regimes. Then there is the
portfolio viewpoint. Normally investments are
spread over different asset classes, for example
equities and bonds of varying maturity. Clearly
we must learn how to conduct appraisals of
our combined holdings far ahead, uncertainty
included. = The problem is aggragavated by
portfolios being managed according to different
strategies. How the latter are exercised often
depends on what happens in the future. This is
something we would like to take into account at
an early stage when the long-term investment
program is planned. It will be demonstarted
below how you do that.

There are several sides to this.

Another issue is the wuse of risk-reducing
instruments like options. Is that advantageous,
or rather, under what circumstances should they
be employed? A first step is to evaluate how
risk is altered when the portfolio is protected

through financial derivatives.

be run under the
long-term model discussed in the preceding
section.  That raises still another question:
What are the consequences of the model being
wrong? How much is the evaluations changed
by that? If the 20™ century calibration is not

These assessments will
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to be relied on, then how should it be modified?
It is not within the scope of the present book to
answer that, but what it can do is to propose a
framework for examining such issues. We deal
with it at the end of the section.

Return on single assets

One-year returns on equity and interest rate
were recorded in in table 13.9. The target now
is longer time horizons. It is simplest to assume
that a single euro or US$ is invested at time
to = 0. The value of the assets then evolves
according to the recursion (k=0,..., K —1)

Vit1 = (14+ Re)Ve, VYo=1, (1.33)
which yields the nominal return
Ro(K)=Vrk -1 (1.34)

over a time span of length "= Kh, h being one
year. The corresponding real return is

Vi

T Qr

The return Ry in (1.50) may come from a com-
plex portfolio of assets (see below), but we shall
first examine single asset classes. Three possi-
bilites covered by the model in section 13.4 are
then

1.

R (K) (1.35)

R =rs (spot rate)
=r(L) (long rate)
= It (equity)

Note that with this set-up all funds received
are placed in the same asset. For example,
with equities dividend could be re-invested in
several ways. When Ry Rj is the return
throughout, this means that dividend money is
always used to buy new stock. An alternative
investment plan is examined later in this section.

The computer implementation of the
cursion (1.50) is summarized by the following
algorithm:

re-

Algorithm 13.6 Asset risk over time

0V§ < vo % Initial investment, below vg = 1

15

1Fork=0,..., K —1do

2 Generate R}, Q7 % Wilkie, selected parts
3 Vip < Vil + RV,

4 Endfor

5 Ro(K)* « Vi — 1, RG(K)* « (Vi /Q%) — 1
6 Return Ro(K)* and R§(K)*

Note that on line 2 the return R} and the
price index )} are generated by inserting the
relevant parts of algorithms 13.3-13.5 above,
depending on the asset in question. On output
the algorithm produces the nominal and real
return. It is possible to move computation of
the returns inside the loop on lines 1 to 4 so
that they are obtained at any point in time t.
We utilize that below.

Suppose the scheme is run m times, pro-
ducing m realisations of the returns Ry(k) and
R (k) at each t;. Each set may be ranked in
ascending order; the em’th in size is then an
approximation of the e percentile of the return;
see, e.g., chapter 4. The results below are based
on m = 100000 simulations, which means that
Monte Carlo error virtually vanishes in the €
range considered. All simulations were run from
the same initial scenario typifying an ’average’
state of the economy of the twentieth century.
In precise terms all Z-processes in (1.13-1.19)
were zero at tg = 0.

To see how the scenarios develop you may
consult figure 13.6, but our initial discussion
is in terms of figure 13.5 displaying percentile
If read vertically the figure relays the
variability of the returns at future points in
time. For example, the nominal return from the
spot rate after twenty years (upper, left corner
of figure 13.5) are almost 500% if we have been
in real luck and no more than about 120% in
the opposite case. These numbers are the 95%
and the 5% percentiles respectively. With this
understanding what does figure 13.5 tell us
about investment risk under the risk model of
the twentieth century?

CUTveSs.

Note the differing scales on the vertical



Investment: Spot rate of interest Investment: Spot rate of interest

n
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1
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Years ahead
Investment: Equity
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Figure 1.5: Percentiles of the returns under the
Wilkie model, current value to the left, real to the
right. Varying vertical scale

The top panel is of the spot rate of
interest and lower one applies to equity; nominal
returns are to the left and real ones to the right.
The lesson learned seems to be this: Equity has
in nominal terms both a larger downside and
a (much) larger upside than the spot rate. In
real terms its downside over time is smaller,
not larger. In other words, if inflation-linked
liabilities are to be protected, the spot rate of
interest is risky! It is also worth noticing that
returns, whether nominal or real, are skewedly
distributed. The 50% curves in figure 13.5 are
not in the middle, but drawn downwards.

axes.

Single assets: A second look

How do we proceed when equity dividend is
not used to buy new shares, as in the prceding
experiments, but instead put in the bank,
earning the spot rate of interest? The portfolio
then consists of the original shares bought
plus a growing bank account. In mathemat-

ical terms the scheme develops according to

Investment: Spot rate of interest Investment: Spot rate of interest

o [Current value / Real value

50 scenarios

50 scenarios

1.5 2.0

1.0

0.5

0 5 15 2 0 5 15 2

10
Years ahead
Investment: Equity

10
Years ahead
Investment: Equity

40
7

Current value Real value

[ 50 scenarios
3 50 scenarios

20

10

0 2 0 2

‘(ears1 ghead ‘(ears1 ghead
Figure 1.6: Simulated development of investment of
one euro according to Wilkies model, current value
to the left, real to the right. Varying vertical scale

(k=0,....,K-1)
Vk—{—l = V]:_;.1 + Sk—i—h Vo = So (1.36)
Vigir =0 +re)Ve+ Dy, Vg =0.

Here Vy, the portfolio value at time tj, is the
sum of the value of the stock held and the bank
account V;. The original investment in equity
is Sp, which is also the value of the portfolio at
that time. When the system start to run, the
value S of the stock will fluctuate, dividends
D, are added the bank account which also earns
interest.

How is the nominal and real value of the
portfolio simulated? We need the joint move-
ments of (Qx, Dg, Sk,7r), delivered by the
implementation of the Wilkie model, which are
then plugged into the recursion (1.53). The real
value is Vi /Qg. The details (the same as above)
are omitted.

The in each of the

simulated scenarios

50
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joint plots figure 13.6 merely confirm the con-
clusions drawn from Figure 13.5. The spot rate
investments (top panel) are run under exactly
the same conditions as in figure 13.5 whereas
the lower panel now is the recursion (1.53).
Note that the original investment is So = 1 and
you must subtract this number to get returns.

A bond portfolio

The next example is a portfolio of bonds. As
elsewhere in this chapter we shall be interested
in the long view, decades ahead. The term
structure of interest rates observed in the
market will put a value on the portfolio today
and through forward trade even in the future;
see, e.g., chapter 11. OQur examples will be
based on the twentieth century interest rate
model of section 13.4, and here there is an
obstacle. The model only produced the spot
rate and the very long rate whereas we need
the intermediate periods as well.
of this type arise in the more complicated
situations encountered in practice too. The
solution often employed is numerical interpo-
lation, a simple, useful technique outlined below.

Problems

Basic training deals with simplified prob-
lems, and our bond portfolio will consist of
zero-coupon bonds. In real life coupon payments
are nearly always present when the time to
maturity is long, but that is left out to avoid
technical complexity. Suppose we at the start of
the scheme (at time ¢y = 0) have bought, either
directly from the issuer, or in the second-hand
market bonds that pays one money unit (say
euro) at the time of maturity (and nothing
before that). All bonds expire an interval
L = Jh after having been issued. The portfolio
thus consists of bonds identical type, but their
time to maturity varies.

Let ro(j) is the forward rate of interest for
the period from tg to¢; j =1,...,J. The initial
value of the portfolio is then

(1.37)

Z{l—}-ro 3’

where B; are the number bonds expiring at
t; = jh. Since we are dealing with one-euro
bonds, this is also the capital released at that
time, so that (1.54) is indeed the value of the
portfolio. As with equity earlier a study of the
financial risk of bonds requires a strategy of
what is going to be done with cash obtained at
expiry. It will here be assumed that all of it is
used to buy new bonds at the price at that time.
Risk is driven by an interest rate model
that portrays how the the future term structure
re(7) is going to develope*. The Wilkie model
only provides the spot rate r; and the long rate
ri(L), where L is assumed to be the time to
maturity at bond issuing. For iterest rates over
intermediate periods we may invoke numerical
interpolation. If rj and ri(L)*) are simulated
values of the short and long rate, then

(J =i+ G = Dre(L)”
J -1

re(4)" = ; (1.38)
is a simulation of rg(j), coinciding with r}
at j = 1, with r,(L)* at j = J and moving
smoothly between these two extremes as j is
varied.

The simulated term structure (1.55) leads
to simulated, future portfolio values V; similar
o (1.54), but there is one catch. The number of
bonds B; maturing j time units ahead does not
stay constant, but fluctuate as time passes. In
fact, these quantities become random variables,
since the number of bonds bought when renewed
depend on what has happened in the money
market. Details are conveyed by the following
simulation algorithm:

Algorithm 13.7 The rolling bond portfolio
0B < Bj,j=1,...,J

1Fork=1,...,K do
% Updating the portfolio
2 Forj=0,...,J—1do
B} « Bj 4

3 Bj <« By{l+ri(J )}J % Buying bonds

4Inflation contributes to risk too.
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Duration of bond portfolio

Years
% Maturity: 10 years /
© v
o a7,
<
o
~ <
o

(0] 5 10 15 20

Years ahead
Figure 1.7: Simulated development of duration for
bond poertfolio described in text.

% The term structure, Wilkie or implied
4 Forj=1,...,J, generate ri(j)*

% Now valuation
5 Vi+0
6 TForj=1,...,Jdo

Vi Vi 4 BI {1+ )Y

7 End k£ — loop
8 Return VY, ..., V.
We start (line 0) by storing the number of
bonds bought, which are revised (lines 2 and
3) as the scheme develops. The cash released
(= B{) for bonds maturing is used to buy new
bonds (line 3). Next (line 4) comes the term
structure, which may be generated in many
ways. We have below used the Wilkie model
with the interpolation (1.55).
approach could be implied, historical interest
Finally (lines 5-6) the valuation
is carried out. The output is the values of the

An alternative

rate curves.

portfolio. We may also compute the one-step
returns through
Vi

Adjustment for inflation is carried out in the
way explained earlier.

The experiments were run with an annual
time increment (i.e. h = 1) and a time to
maturity of L = 10 years. Initially, equal value
was placed on all the bonds. This means that
during the first ten years the portfolio had a

Investment: Bond portfolio Investment: Bond portfolio

Nominal return Real retun

2.0

Maturity: 10 years

Maturity: 10 years

1.5

Adjusted for
inflation

1.0

0.5

0.0

0 5 10 15 20 0 5 10
Years ahead Years ahead

Figure 1.8: Simulated k-step returns for the bond
porfolio described in tert, nominal to the left, real
to the right. Varying vertical scale

15 2

guaranteed cash-flow that was the same every
year. The initial duration Do of the portfolio
is thus the average of the numbers 1,2,...10;
hence Dy = 5.5. How the duration fluctuates
over 20 years is shown in figure 13.7 under
50 different sceanrios; see exercise 77
discussion of implementation details.
duration remains fairly stable.

for a
Clearly

How the portfolio value evolves is demon-
strated in Figure 13.8 using the same 50
scenarios as in figure 13.7 (and also figure
13.6). Nominal returns are to the left and real
ones to the right. If you compare with the
results produced by the spot rate investments in
figure 13.6, a more favourable picture has now
emerged. Investment in equity is still in real
terms superior over time.

Could we run simpler schemes and ignore
the spread in the time to maturity? One way
would be to run the recursion

Vigr = {1+ r(Do)}Vy, (1.39)

where we accumulate according to the interest
rate defined by the initial durarion of the portfo-
lio. Simulating according to (1.56) is a proxy for
the more accurate (but also more complicated)
algorithm 13.7. The two assessments have been
compared in table 13.10. Error due to ignoring
cash-flow spread sesm to large to be ignored.

18



Percentiles

5% 25% 50% T75% 95%
Exact 36 41 46 52 5.7
Approximate 3.4 4.1 4.8 5.7 6.4

Table 1.10: The distribution of 20 years returns
(nominal) for bond portfolio by exact and approzi-
mate method.

Examining different asset classes
In practice companies make use of many invest-
ment outlets, the principal tools being

e cash {V{}, earning the short rate {ry},
e bonds {V?}, earning bond returns {R%},
o equity {V}, earning equity return {R§}

Here bonds and equity would typically consist
of many different assets, but those details are
hidden in the following. The development over
time of the combined holding is

V1$+1 = (1+r)Vy
Vipr = (14 RV
Vigr = (1 + R Vi
Vi1 = V1§+1 + V£+1 + V1§+17

(1.40)

where the last line summarizes the total finan-
cial status.

How the portfolio evolves depends on strategy.
In (1.56) the three accounts live their own life.
That doesn’t mean that they could be simulated
separately from each other. Indeed, we have
learned earlier that there is an important
dependency in how they develop. What it does
mean is that the relative values of the three
Such a

assets are permitted to float freely.
strategy is called buy-and-hold.

In practice it does not work like that. First of
all, there are persistent movements in and out
of the cash account, and sometimes bonds and
equity are liquidated to cover liabilites. The
link to the liability side is taken up in section
13.6. What we have in mind at this point are
shifts been assets classes for reasons of financial
strategy according to the current view on what

is profitable. This is known as rebalancing
the portfolio. The mathematical formulation
makes use of weights wg, wz and w; defining
the relative share of assets held in the three
instruments, i.e.

Vi V) Ve
Wi = =%, wp =%, wp—== 1.41
Clearly
w}i—l—w,ﬁ—l—wz =1. (1.42)

If we leave the system (1.56) to itself these
weight will vary with time (as indicated by the
mathematical notation).

In real life a company might have laid down
rules as to what weights it will permit, often
confining weights to certain intervals. The
financial regulators might have a say in this
too. In some countries the equity share must
be below a certain upper limit. We shall on
this point simplify and assume that weights are
fized, so that a given triple (w®, w’ w®) prevails
at any point in time. How is that formulated
mathematically?

If we ignore rebalancing costs (another simplifi-
cation made), it is then inefficient to work with
separate accounts for the three instruments, as
in (1.58). It is better to combine assets classes
through their returns. The recursion now takes
the form

Ry, = w°rp + W’ RY + wERE
Vigr = (1+ Rg) Vi,

(1.43)

where the portfolio return Ry is a weighted sum
of the returns from the three assets classes.
Why that is so was explained in chapter 2.

Is the implementation of Monte Carlo schemes
much affected by financial strategy? The answer
is no. The backbone is in any case how scenarios
{ry, RY*, Rg*} of the returns are generated. Sub-
sequently there is a simple matter to insert them
into either of the recursions (1.58) and (1.59);
see also exercise? for a discussion on how more
complicated stratgies can be dealt with.
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100000 simulations

Percentiles
Strategy 5% 25% 50% 15% 95%
Buy-and-hold 0.40 0.97 151 2.25 3.81
Fixed 048 1.056 1.57 2.24 351
Table 1.11: Real return (20 years) on financial

portfolio described in text

A small comparision of the floating weight
and fixed weight strategy is carried out in Table
13.11. Initial weights were

o wi = 0.5 (equity)
e wh = 0.4 (bonds)
e wi = 0.1 (cash).

All assets followed the Wilkie model start-
ing as described in ??. The bond portfolio
was the rolling one introduced above; see, e.g.,
algorithm 13.7. In table 13.11 the real return is
reported. The price index was again taken from
the Wilkie model and simulated jointly with the
financial variables, as outlined in section 13.4.

A principal difference of the two strategies
is the higher variability of the buy-and-hold.
That is plausible as we are then wholeheartedly
a part of all upwards and downwards trends
of the stock market without doing anything to
correct. The other strategy amounts to constant
rebalancing (carried out without cost), and
means that shares are sold at high (when equity
weight have been dragged upwards) and bought
at low (when the equity weight has fallen below
target). That is an entirely sensible way to
conduct financial investments and its return is
higher than that of its competitor up to the
75% percentile.

Using equity options

The buy- and-hold-strategy was more risky, but
had also higher upside than when fixed asset
weights were used. Could we have the best of
both worlds by allowing weights to float and
protect against the downside by buying options?
Equity derivatives rarely last more than a year,

but that is enough. We could renew annually.
The issue addressed is whether that leads to a
less volatile development than in table 13.11,
and, above all, how we proceed to find out such
things.

We shall

scheme.

study this through a simplified
During year k£ 4+ 1 the value of the
equity in our portfolio goes from V; at the
start to V¢, at the end after having bought
new stock with the dividend received. Sup-
pose options on Vi, , can be bought in the
market. Since an existing risky position is
protected, it must be a put. At time f; we
enter a contract giving the right (but not the
obligation) to sell our holding of equity for an
agreed sum Ag. In that way we insure against
the return on equity falling below a certain level.

The option will be payed for by liquidat-
ing a part of the equity owned. There is a slight
technical obstacle here. The option premium
payed up-front is

e = 7k (Vi),

depending on the value of the equity. But when
the option premium has been subracted, our
holding is V; — my, rather than V. That reduces
the premium, and it becomes smaller than the
original ;. We shall have to adjust 7 so that
it is exactly equal to the option on V; — 7.
That leads to an equation, see, e.g., exer-
cise 7. There is a neat solution when the option
is at-the money. Consider a European contract,
issued at f; and expiring at fx4q1. At-the-money
means that the exercise price Ay at tx4q coin-
cides with the value of the underlying asset at
tr. It will be shown below that the net return
on equity now becomes

max(0, Rf) — mx(1)

g0 = 1.44
where
r. +o2/2
di, = kT OR2 Ukk/ , dop, = dy, — o, (1.45)
(1) = R B(—dy) — B(—dry).  (1.46)
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Model: Wilkie. Simulations: 100000

Percentiles
Use of 5% 256% 50% 5% 95%
options®

Nominal returns

Yes 1.8 35 54 8.4 149
No 1.8 4.2 70 112 21.7

Real returns
Yes 0.2 0.9 1.5 2.5 4.5
No 0.3 1.2 2.1 3.5 6.4

*European put, at-the-money

Table 1.12: The distribution of the 20 year returns
for the portfolio described in the text.

Here oy, is the volatility of Vi and ry is the short
rate of interest. The expression for m;(1) is the
Black & Scholes put formula when T = 1 and
A=V, =1;see, eg., (77).

The portfolio of asset classes still evolves
according to (1.56), except for the earlier return
Rj, on stocks now being replaced by R7°. What
is the effect of introducing the option? It is
easily seen that

R’ < Ry, ifR;>0
R > R;, ifR;<0
€0 > ﬂ-k(]‘)

EE T (1)

The downside is protected. Our return can’t fall
below a certain minimum level, and if Rf < 0,
we lose less by having bought the option. The
counterpart is lower returns than we could have
had when R} > 0. Whether the total effect is
advantageous in the long run will be examined
through simulations.

return

The expression (1.44) for the net

now follows, since

e
zo _ Vk+1 _
+1 — e

Vk

Using at-the-money options for equity requires
the return R in the recursion (1.56) to be
replaced by R;°. Apart from this the simula-
tions are generated by the same algorithm as

Model: Random walk. Simulations: 100000

Percentiles

Use of 5% 25% 50% T15% 95%
options®

Parameters: £ = 10%, o = 20%
Yes 0.8 22 39 68 147
No 0.7 30 64 129 31.0

Parameters: & = 10%, o = 40%
Yes 0.1 1.4 43 11.2 428
No 06 12 64 234 1375

*European put, at-the-money

Table 1.13: The distribution of the 20 year nominal
returns for investments in equity only.

before. We saw earlier (section 13.4) that the
Wilkie model for equity resembled a random
walk on log-scale with annual drift and volatility
¢ = 10% and o = 20% respectively. The latter
value was empoyed in (1.45) when calculating
the option premium .

The table 13.12 suggest that
downside protection through options may be a
costly strategy. After twenty years the returns
are higher without them from the 5% percentile
Using options only fare better

results in

and upwards.
at the extreme low tail. How general is such a
conclusion? Does it depend on the underlying
model? A second round of experiments are
reported in table 13.13. This time investments
are equity only, and their movements followed
the random walk on log-scale, exactly the model
on which the Black & Scholes argument is based.
With annual drift and volatility 10% and 20%,
parameters corresponding to those inherent in
the Wilkie model, the earlier picture is largely
confirmed in the upper half in table 13.13.

However, suppose the volatility is doubled
to 40%. The investement then has a healthy
expected return of

exp(0.2 +0.4%/2) — 1 =~ 20%,

but the risk is great too! Now (table 13.13, lower
half) there could be more sense of salvaging
some of the the high upper returns for security

at the lower tail. Few people are likely to be
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very comfortable with a twenty-year loss of 60%
with probability as high as 5%.

Mathematical derivation of (1.44)

We start by appealing to the Black & Scholes
put option formulas in section 12.7. Since the
exercise price Ay and the original value of the
stock coincides, these formulas reduce to

Tk (Vi) = Vime(1)

where expressions for dyy, dap and (1) were
given in (1.45)and (1.46). The true option pre-
mium 7 (V§) is calculated from Vi — 71 (V5), and
must be

Vi — me(VE) Ymi(1).

This yields the equation

(Vi) = {Vi — me (Vi) i (1)
with the solution

(1) L.

Fk(vk) = 1‘|‘7Tk(1). k>

and
Vi

Vi —me(Vg) = TF ()

is the value of the equity after the option pre-
mium has been subtracted. This grows accord-
ing to the factor

max(1 + R}, 1),

since a negative return leads to the option holder
selling out at the former price. Thus

(5] (5] Ve
Vk-l—l = maX(l -I— Rk‘7 1)%

or

14 max(0, RY)

Vi
T+ me(1) O F

e _
Visr =

The expression (1.44) for the net return now fol-
lows, since

e

Rzo _ Vk—l—l _
‘k+1 — e
Vk

Using interest rate floors.

How about downside risk protection through
interest rate floors? An insurance company
guranteeing its customers annual returns of say
3% 4% might consider such a financial instru-
ment. The option premium is payed up-front,
and if the amount of capital, after that expense
has been subtracted out, is sufficient to cover
the liabilites under 3 or 4% discounting, the
company can not fail to meets its obligations.
But such a strategy does cost money, possibly
quite a lot. The question addressed is how we
find such things out.

Interest rate derivatives were discussed in
section 12.6, and the premium for a floor was of
the form

' (Vo) = Vor/ (1),

where the so-called principal Vg is the amount
insured, and 7/ (1) is the option fee when Vo = 1.
As with equities the signing of a floor taps the
original capital Vg so that we no longer need the
coverage of the financial insurance to be quite so
high. The equation determining this is

(Vo) = {Vo — 77 (Vo) }/ (1),

with the solution

f
f _ ()
e (Vo) = 1_|_7rf(1)V0.
This yields
Vf::Lb——ﬂth)::——l@——— (1.47)
14 7f(1)

as the amount of capital after the premium for
the floor have been subtracted. As compensation
we receive at the end of each period k£ the amount

max(r/ — rg, 0)VJ

as reimbursement for the spot rate rp having
fallen below the agreed floor rate ry. If this
amount is added the cash account, the latter de-
velops according to

Vigr = (L+7re)Vi+ max(rf — ry, O)Vg,(1.48)
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Model: Wilkie. Simulations: 100000

Percentiles

Use of 5%  25% 50% 5%  95%
floor

Nominal returns: 10 years
ry=7% 067 072 079 091 1.06
rg=4% 055 069 0.83 1.01 1.37
No 0.56 0.73 0.87 1.06 1.43

Nomunal returns: 20 years
ry=7% 125 149 176 2.17 3.21
rp=4% 122 166 2.10 2.71 4.08
No 1.50 2.04 256 3.26 4381

Table 1.14: The distribution of the 10 and 20 year

nominal returns for a pure cash account.

starting from

Ve=V]. (1.49)
The
develops when protected by an interest floor
regime. It is straightforward to insert Monte
Carlo realisations of the spot rate for simulated
We may then compare with the
growth rate from the original amount of capital
Vo without interest rate derivatives being in
use; se, e.g., (1.56). It is also easy to integrate

several asset classes, as in 77.

recursion shows how a cash account

scenarios.

In the numerical experiments reported in
table 13.14 all assets are held in cash. Returns
for floor rates 7% and 4% are compared with
those obtained without any financial protection
at all.
years, and the options were bought at the start
of the scheme at ¢ty = 0. The model used for the
spor rate of interest was Wilkie’s.

The time horizon was ten or twenty

The general picture is the same as with
equities. Using interest rate floors is an expen-
sive strategy. With the option premium a high
amount of capital is drawn out up-front, and the
subsequent development under a floor regime
does not quite catch up. The ten-year contracts
perform better than the twenty-year ones. An
alternative strategy of buying contracts of

shorter duration is discussed in exercise 7.

Judgment and errors

How to proceed if we believe risk processes
ahead to be different from those of the past? It
isn’t a good idea to discard historical modelling
alltogether, as we do not have much else to fall
back on. What seems reasonable and practical
would be to modify Wilkie’s model on certain
key points to bring it closer to our perceptions
of the future.
For example, consider inflation and rates
of interest, which are, as this book is being
written (2004) on a much lower level than the
average in Wilkie’s model. It we judge this
situation to continue, how could that view be
integrated? One way is to change some of the
key parameters. The most natural ones are
¢ ey, €4 ¢f and € of the system in section
13.4. Those are the most important parameters,
chiefly responsible for ezpected growth (without
quite being mean parameters themselves).

They are also the most difficult to deter-
mine from historical time series; standard errors
of their estimates in table 13.7 are huge®. Take
the rate of inflation. The estimate for &' is
4.8% with standard error (se) equal to 1.2%.
This is enormously inaccurate if you recall that
random error of one se is what we expect and
that discrepancies up to twice that number
are plausible. It means that even if the forces
driving inflation remain they were, the true &'
with which the future should be projected could
easily be as low as 3.6% or lower or 6% or higher®

What this mean in practical terms are
shown in table 13.15 where the buy-and-hold
experiment reported in table 13.11 have been
recalculated with & = 3.6% and & = 6.0%. The
two scenarios deviate! Example: the ratio of
the two 5% downsides is about 2.5. With such
discrepancies there are limits to the usefulness
of the historical estimate. But even if we ’take

5The parameter Ey s an exception.
SThese numbers emerge when subtracting or
adding one se to the estimate, for example 3.6% =

4.8% — 1.2%.
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Model: Wilkie. 100000 simulations
Percentiles

& 5% 25% 50% T5% 95%

36% 059 1.27 1.93 2.83 4.77

6.0% 0.23 072 1.18 1.79 3.05

Table 1.15: Real return (20 years) on financial
portfolio in Table 13.11 under buy-and-hold varying
the rate of wnflation.

a position’ on future inflation, it not necessary
to let it stay fixed, since the other parameters
(i.e. @' and ¢') are more accurately estimated
and errors in that part of the model do not
have such a severe adverse effect in any case.
A similar line of argument could have been
presented for most of the other parameters £7,£"
and so forth, and substantiates the suggestion
in Wilkie (1995) that these parameters might
be specified to reflect a 'view’.

An alternative way is the following. Fi-
nancial risk is for the model in section 13.4 tied
to the the rate of inflation (/), the spot rate
of interest (ry), the long rate (ri(7)) and the
return on equity (Rf). If we are going ’to take a
position’, we could also select factors 4%, v¢, "
and +° and change the simulations from

Il:7 7“]:, rk(T)*7 Ri*

to

VI rh (D), tRE

This reduces (or upgrades) our expectations
of financial earnings witout changing the basic
structure of the model.

For example, the correlations between as-
set returns remain what they were and neither
are the dynamic properties altered. Expecta-
tions and standard deviations do change, but
their ratio does not. This is a pragmatic way
of being faithful to the past, yet allowing for
the future to deviate systematically. It is easy
to accomodate the change in the simulations
algorithms. Simply multiply by the appropriate
factor.

Model: Modified Wilkie. 100000 simulations

Percentiles
Strategy 5%  25% 50% 5% 95%
Buy-and-hold 0.23 0.47 0.67 0.90 1.30
Fixed 0.25 048 0.66 0.88 1.23

Table 1.16: Real return (20 years) on financial
portfolio in Table 13.11 under modified Wilkie model.

Results of the same experiment as that re-
ported in table 13.11 are shown in table 13.16
when

¥ =9"=9"=7"=0.5.

We are then assuming that inflation, interest
rates and equity returns to be halved compared
to what they were in the twentieth century. Does
this cause changes in real terms? Yes indeed!
If you compare tables 13.11 and 13.16 you will
discover that the real upside and real downside
are both severly altered by the new risk model.
What remains stable is the relative performance
of the two strategies.

1.6 Assets and liabilites I

Posing the problem

The liabilities of a life insurance company are, if
not exactly given, at least reasonably forseeable.
Causes for uncertainty were analysed in sections
13.2 and 13.3. They could have huge impact,
but in section 13.4 it seeemed to emerge that
financial risk is even more important. The way
the insurance business operates creates large
initial surpluses that have to be invested. It
must then be a major aim not only to bring
in profits to the shareholders in the short run,
but also to allow liabilities to be covered in
the long one”. Balancing between high returns
on investments on one hand and solvency with
respect financial obligations on the other is no
easy task. What should be our strategy? Should
the way we invest be influenced by existing
liabilities or is that irrelevant?

Operationally it is simplest to separate the

"This is, of course, also in the shareholder interest,
and the society as a whole accepts nothing less.
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two. One department deals with insurance risk;
another one manages the assets. It used to be
like that. The investment arm of the companies
once ran their business as if the liabilities didn’t
exist. However, ever since the pioneering efforts
of Redington (1952) it has been realised that it
might be beneficial to coordinate the handling
of assets and liabilites.

One
is the distribution of liabilites over time. From
the dicussion in the preceding section, surely
it could be sensible to invest more in high-
yielding, but risky equities if a lion’s share of
the payments to the policy holders are put
off in time, say a decade or two. The idea is
to trust the higher ezpected return from the
stock market to overcome its much higher
uncertainty. If we can rely on past experience,
the financial earnings would then be higher over
time. The prerequisite is that the company can
afford to wait for the equity market to realize
its potential. In practice it isn’t that simple
since government regulation does not allow
companies to be underfinanced with the respect
to its obligations at any point in time. We shall
see how that complication can be formulated
mathematically in section 13.6; the solution is
through simulation.

This derives from two basic factors.

is whether liabilities are
If they are, we must be
definitely concerned with inflation and might
choose investment outlets that safeguards better
against such risk. The longe-range portrayals
of financial uncertainty of the preceding section

will help us in evaluating this.

The second factor
index-linked or not.

Simulation has become indispensable
tool to deal with these issues, but first we
present the original line of argument known as
immunization. This idea is very simple and tells
a lot of what asset-liability matching is about.
The drawback of the simplicity is restrictions on
applicability; we can’t use in all situations we

would want to.

an

Figure 1.9: The distribution of liabilities over time
for the portfolio in section 11.3

Immunisation: What we want

In 1952 the British actuary Frank Redington
suggested (see, e.g., Redington, 1952) that in-
surance risk could be protected against interest
rate movements through a strategy that was
To present the idea
consider the portfolio introduced in section 14.2.
Using the same mathematical notation as there

coined immunisation.

the net cash-flow from company to customers is
in period k

le

L= (e 1) G

=ly

(1.50)

where p; J; is the number of persons of age /
that are alive at the entry of year £ and r(; the
payments, positive if the policy holders draw
benefit, negative if they are contributors.

The liabilites Ly are plotted against k in Figure
14.6 for the portfolio in section 10.3. There is
steady growth to a maximum occurring after 35
years. In practice administrative overhead and
other costs come on top, but let us for simplicity
accept figure 13.6 as a picture of how liabili-
ties of the existing portfolio distribute over time.

Suppose we deem the interest rate rp suit-
able to discount the payment stream {Lp}. Its
present value is then

0 Ly
PVZ = I E—
0= L T ot

(1.51)
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Let us utilise the initial surplus on the contracts
to buy bonds that in the absence of defaults give
us a fixed, future cash-flow Aj. The present
value of that is

L T

k=0
using the same discount rate as in (1.51). We
must ensure that

PVE > PV,

PVE = (1.52)

Otherwise we would be insolvent.

Over long interest rate is going to fluctu-
ate; that is a major problem for our asset
management. Let PV!(r) and PV%(r) be the
same present values when a general rate of
interest r is used in (1.51) and (1.52) instead
of rg. What we might want, if we could, is to
select the asset flow {Ay} so that

PVe(r) > PV'(r) (1.53)

for all r, not only the rate rq we have today. In
theory, we are then solvent whatever happens!®

Immunisation and convexity

The Redington argument leads to the situation
in (1.53) if r does not deviate too much from
ro. It rests on the two cash-flows in (1.51)
and (1.52) being independent of the interest
rate used for valuation.
satisified with bonds we have already purchased
(as was assumed), but not if we are dealing with
equities or have put the money on the short
rate of interest. We are going to need the the
duration of the two cash-flows {L;} and {A;}
when using rqg as the discount rate; see chapter
12. The way that concept was defined leads to

For the assets this is

Dy=> kg, Dj=> ka (1.54)
k=0 k=0
where
1 Ly(1+rg)~F
qr = T,
a A4k(1 + To)_k
W= "pya

8Many reasons for this being a laboratory state-
ment have been given earlier.

and D) and DZ are the durations of the liabil-
ity and the asset cash-flow respectively. The 0
index reminds us that they are calculated un-
der ro. Similar notation is used for the quadratic
coeflicients

Co= kqi, C5=> kaqi.  (1.55)
so-called coefficients of convexity. While

the duration represents the time average of a

cash-flow, these convey their variance®.

It can now be proved rigorously (see the
end of the section) that if

_PVg

DE =D, =2 1.56
Yo 0 v PVé ( )
then
PV®(r) — PV!(r) = PVZ — PV}, (1.57)
L PVY o 2
‘|‘§1 F 2 (vC5 = Co)(r = ro)”.

This is the first two terms of a series expansion.
The next one would be proportional to (r —rg)?.
The question is: What does it tell us about how

the asset cash-flow should be organised?

Interpretation

Consider first the condition (1.56), which is
given an algebraic reformulation in exercise 7.
If we are dealing with portfolios that are not
too small, the coefficient 7, as the ratio of the
two present values, would not deviate too much
from 119 Thus to utilize the Redington result,
we plan bond investments so that

D = Dy;

i.e. the durations of the two cash-flows are

about equally long.

Secondly, we would want

~CE=CE > ). (1.58)

®The ordinary variance would be C, — (D})?2.
10PVl0 may represents billions of euros or US §, our
assets are not that much higher.
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Why?

quadratic term in (1.57) becomes positive and

Because under this condition the

ensures that
PVe(r) — PV!(r) > PVE — PV},
for all . The interest rate ro we are planning

All

movement of r away from it is benficial! If we

under has become a worst case scenario.

are solvent under rg, we are even more solvent
under other interest rates.

The approximate mathematics is likely to
be sufficient, but, as with all results of this
nature: In practice it may be less clear how to
implement it. For example, are the the bonds
What about portfolio
1 and new

we require available?
changes due to so-called lapses
recrutement? Yet the result gives us a recipy
for bond investments in insurance. Ensure
that they have about the same duration as the
liabilities and then make their cash-flow more
spread out than the one it is to match. We
can achieve that by investing in short and very

long bonds, perhaps going short in medium ones.

Why does that lead to (1.58)7  Because
the coefficients C¢ and C, essentially define a a
cash flow time variance. That must be so when
their time expectation , i.e. their duration was

about equal; see exercise 7.

Mathematical derivation

To derive the precise form of immunisation we
have to subject the two present values PV!(r)
and PV?(r) to a Taylor expanson around a
given interest rate ro. For the former this yields

oPV!
PV!(r) = PV] + 5 (1= To)
192PV!
2 Or? (r=r0)?,

where the two partial derivatives are evaluated
under r = rg. For PV{ we have the same; simply
insert [ = a everwhere. Our interest is in their

" Customers leaving the portfolio

difference, i.e.

PV®(r) — PV!(r) = PVZ — PV}, (1.59)

1
+b1(T — 7‘0) + 5[)2(7“ — To)Q.

where
p PV PV
YT oy or
PR i SO '
2T o2 ar? -

The first order partial derivative was calculated
in exercise 7. That gave us

oPV! _ PV}, D
ar 14+ro ©

The linear term in the expansion (1.59) vanishes
if by = 0, or equivalently, if

a
0

PV, , PV}
DO -
1 + To 1 + To

This leads to the condition (1.56).

For the second derivatives we have (exer-
cise ?)

d*PV! PV,
= Dy).
or? (14 79)? (Co+ Do)
This yields for by
PV PV!
b — 0 a Da _ 0 l Dl .
2 (1 + TO)Q (CO + 0) (1 n TO)Q (CO + 0)

Here the terms involving Dg and D) cancel so
that
PV . PVy

~0s

by = -
T (04?0 (1412

gives us the expression (1.57) after a brief spell

of algbebra.
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1.7 Assets and liabilities IT

Posing the problem

With the powerful computational tools at our
disposal it is possible to analyse asset and liabil-
ity cash-flows without the restrictive condition
underlying immunisation. Technically there is
no limit on the complexity of the systems that
can be handled, but another matter is what is
useful.  Transparency of analyses and results
is of paramount importance. We simply have
to control and oversee what we put into the
simulation models in order to gauge, digest and

communicate results properly.

In a textbook where techniques are to be
learnt, simplicity is vital in any case. We shall
below split investments into no more than three
asset classes. One of them must be cash, since
a bank account is needed to reimburse clients
and collect their premia. We shall stick to the
convention of the preceding section of using
{L;} to denote net liabilites; i.e. payment
streams that come from the insurance part
of the business.
convenient way to formulate an asset-liability
scheme that flexibly allows all variations with
respect to index-linkage and guarantees to be
fitted in.

This seems to be the most

The aim of this section is to present a
fairly general dynamic system of investments
and liabilites in a form suitable for simulation
in a computer. A chief point is to make
the design sufficiently general to accomodate
details that arise in practice. One of the
things you must learn is how these variations
are formulated mathematically so that they
can be fed into the key quantities of the dy-
namic systems. Of course we then draw on the
models presented in earlier chapters of this book.
The approach amounts to a hierarchical
way of working or 'top-down’, as it is sometimes
called in engineering. It means, above all,
that simulation algorithms for more delimited
problems are inserted into the coordinating

schemes presented below. Inflation is a case in

point. Both assets and liabilities may depend on
inflation, and we shall be able to reflect that in
the analysis by employing the Wilkie inflation
model, presented in section 13.3, possibly in a
modified version if that seems the more realistic.

Liabilities: Mathematical formulation
It is convenient to write the liabilites as

Ly = J(c)C(e, k). (1.60)

Here 1J(c¢) the number of policy holders in state
c at time t;, as before. The payment function
¢(c, k) is now allowed to depend on time k.

Solvency: Mathematical formulation

The solvency of the company at time £ is not
only the question of its combined assets )} at
tht time, but also on its future liabilities Ry
and the amount it will receive when bonds are
repayed at expiry.

This is for an insurance company not the
same as solvency, since there may be a huge pile
of future obligations that are not included. We
come back to that in a moment. Also note that
the second line does not include expiry of bonds
at which point the original loan is repaid. We
are not going to discuss that complication.

1.8 Bibliographical notes

1.9 Exercises
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