#### Diversification: Financial risk vs. demographic risk

Pål Lillevold and Dag Svege

#### Traditional life insurance/pension undertaking

Contractual payments to insured individuals contingent upon:

- $\cdot$  remaining life time (annuity)
- $\cdot$  time of death (life insurance)
- · occurence and potential duration of disability (long term disability pension)
- dependent's remaining life time (survivor's pension)
- $\cdot$  etc.



#### **Risk nature**

Risk exposure: Random variations associated with biometric events - "demographic risk"/"biometric risk"

Do away with risk *in the aggregate* by sufficiently large portfolio:

- $\cdot$  diversification
- $\cdot$  law of large numbers

Assumptions:

- homogenous risks
- independent risks



## Funding: Basic principle

Policyholders' obligations in return for insurer's obligation:

- Premium payments
- $\cdot$  In advance

Pre-funding  $\Rightarrow$  Accumulation of funds



#### **Funding: Technical base**

Balance between :

- $\cdot$  contractual outgoes
- $\cdot\,$  contractual ingoes and investment income

Balance in *expected* terms and *over time*.

 $E(\sum \text{Benefits}) = E(\sum \text{Premiums} + \text{Return})$ 

Principle of equivalence



6 of 6

## **Carrying out principle of equivalence**

Mathematical expectation w.r.t. demographic risk well understood and substantiated from a risk control perspective.

Mathematical expectation w.r.t financial risk:

- $\cdot$  what is it?
- how does it work?

Financial risk not diversifiable

#### First attempt to manage financial risk

Pretend that financial risk can be disregarded.

Artificial deterministic discount rate: Sufficiently low to be realised "almost certainly".

Not very satisfactory:

- · Theoretically
- $\cdot$  In practice



#### Deterministic discount rate in risky financial market

Setting:

- actual return on insurer's investment *is* stochastic, with some probabilistic properties
- insurer has an accrued liability represented as a future (stochastic) payment stream
- premium reserve for accrued liability stipulated by discount rate "to the safe side"

Key question: Relation between:

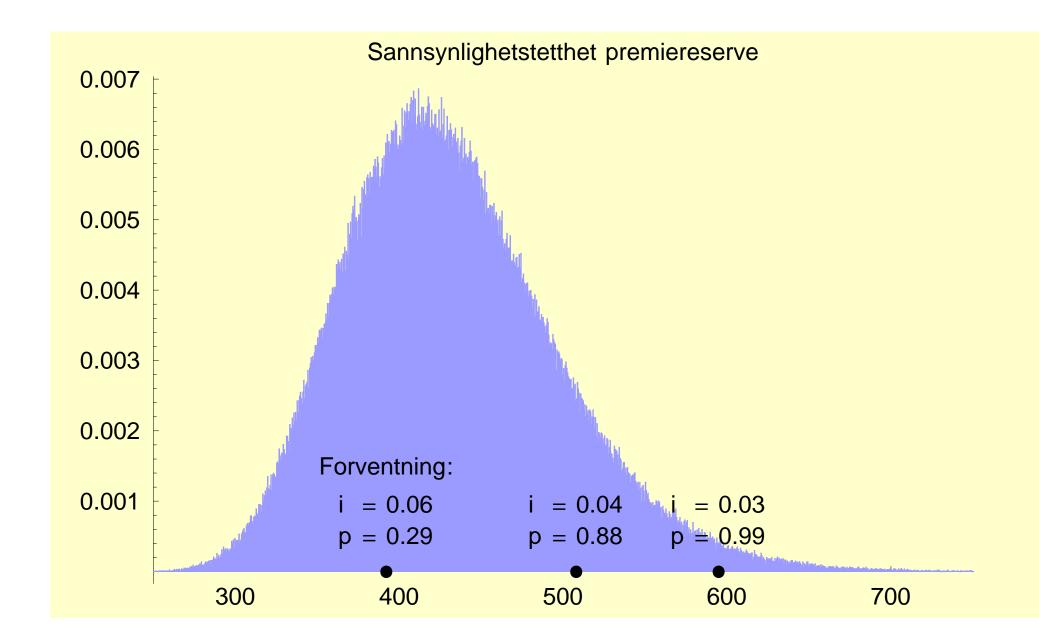
· capital *actually required* to finance insurer's accrued liability - expressed as a probability distribution

• premium reserve - expressed as fixed amount; expected present value as if investment return was deterministic





#### Grafikk





#### Case for considering non-diversifiability of financial risk

Actuarial present value of deferred annuity :

$$P = \sum_{t=k}^{\infty} I[T > t] \cdot v_t$$

where

- $\cdot$  T = remaining lifetime for insured individual
- $\cdot v_t$  = factor for discounting from time *t* back to time 0.



## Non-diversifiability of financial risk: Basis

Two lifes  $T^1$  and  $T^2 i.i.d$ .

$$P^{i} = \sum_{t=k}^{\infty} I[T^{i} > t] \cdot v_{t}; i = 1, 2$$

 $P^1$  and  $P^2$ :

- · independent if  $v_t$ 's deterministic
- · dependent if  $v_t$ 's stochastic!



#### Non-diversifiability of financial risk: Basis

*n* lifes  $T^1, T^2, ..., T^n$  *i.i.d*.

$$P^{i} = \sum_{t=k}^{\infty} I[T^{i} > t] \cdot v_{t}; i = 1, 2, ..., n$$

Assume  $v_t$ 's stochastic, whereby all  $P^i$ 's dependent with :

Var $(P^i) = \sigma^2$ ; i = 1, 2, ..., nCov $(P^i, P^j) = \rho \cdot \sigma^2$ ; i, j = 1, 2, ..., n

Then:

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}P^{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}\left(P^{i}\right) + \frac{1}{n}\sum_{i\neq j}\operatorname{Cov}\left(P^{i},P^{j}\right) = \frac{1}{n^{2}}\cdot n\cdot\sigma^{2} + \frac{1}{n}\cdot n\cdot(n-1)\cdot\rho\cdot\sigma^{2} = \sigma^{2}\cdot\left[\frac{1}{n}+\left(1-\frac{1}{n}\right)\right]$$

which does not converge to zero as portfolio size increases!

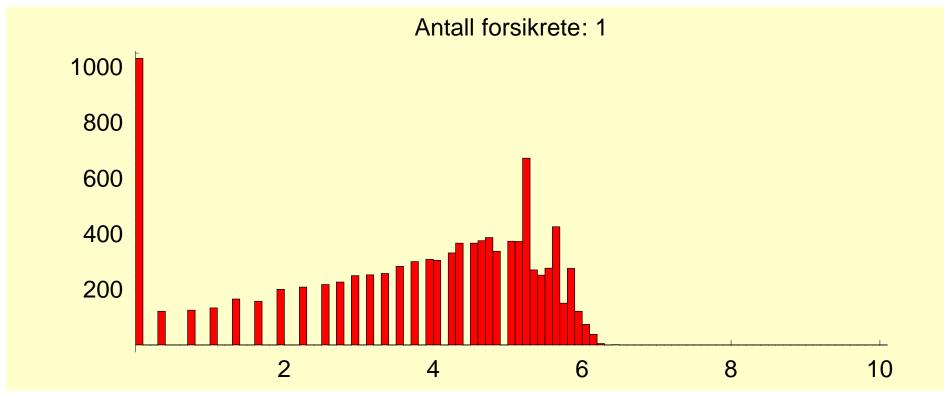
 $\left(1-\frac{1}{n}\right)\cdot\rho$ ]

## Portofolio uncertainty in the absence of financial risk

Pdf. for:

$$\frac{1}{n}\sum_{i=1}^{n}P^{i}$$

under deterministic investment return.





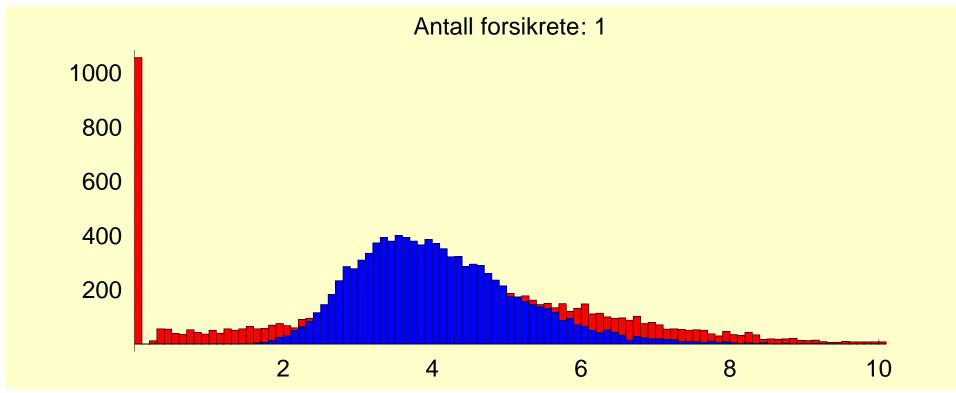
14 of 14

# Portofolio uncertainty in the presence of financial risk

Pdf. for:

$$\frac{1}{n}\sum_{i=1}^{n}P^{i}$$

under stochastic investment return.



# Volatility on investment return $\rightarrow$ variability of annuity's present value.

Simple financial market model :

 $R_t$ ; t = 1, 2, ... is investment return for period [t - 1, t)

Assume  $R_1, R_2, \dots$  *i.i.d*,  $\mu^R = E(R_t) \sigma^R = \sqrt{\operatorname{Var}(R_t)}$ Discount rates :

$$v_t = \prod_{s=1}^t \frac{1}{1+R_s}; t = 1, 2, \dots$$

Obtain (approximate) probability distribution for

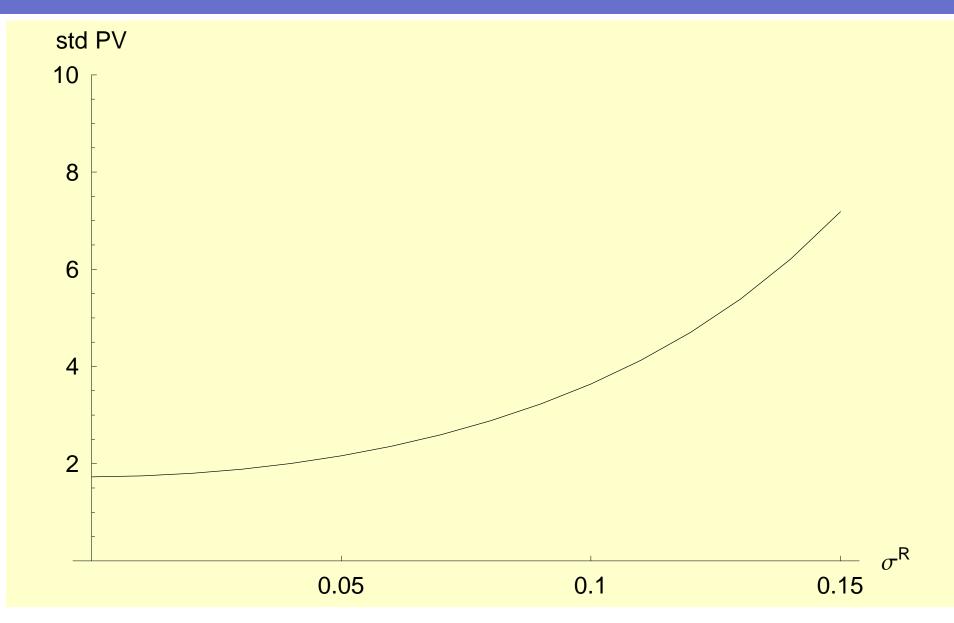
$$P^i = \sum_{t=k}^{\infty} I[T^i > t] \cdot v_t$$

by stochastic Monte Carlo simulations of  $T^i$  and  $R_s$ 

realisations. (Has in fact already been done for the preceding graphical illustrations). In particular : How does increased volatility in portfolio / financial markets affect the variability of annuity's present value, as measured by  $Std(P^i; \sigma^R)$ ?



# Standard deviation for annuity's PV depending on standard deviation for investment return.





# **Correlation between portfolios.**

Two portfolios:  $\{T^i\}_{i=1}^n$  and  $\{T^{\prime j}\}_{j=1}^m$ , all *i.i.d* 

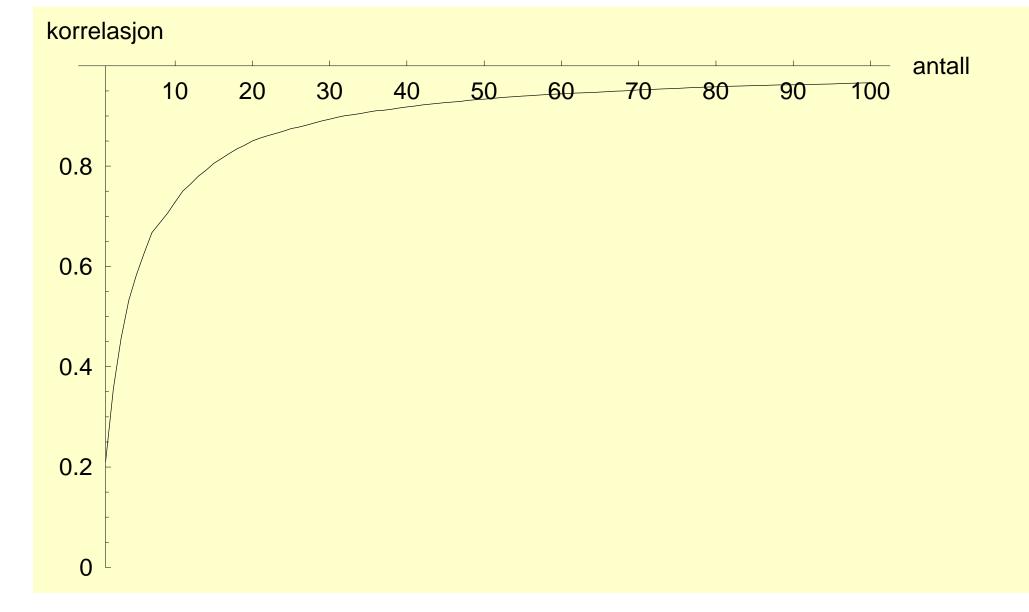
$$\operatorname{Cov}\left(\sum_{i=1}^{n} P^{i}, \sum_{j=1}^{m} P^{j}\right) = \sum_{i,j} \operatorname{Cov}(P^{i}, P^{j}) = m \cdot n \cdot \rho \cdot \sigma^{2}$$
$$\operatorname{Var}\left(\sum_{i=1}^{n} P^{i}\right) = n \cdot \sigma^{2} + n \cdot (n-1) \cdot \rho \cdot \sigma^{2}$$
$$\operatorname{Var}\left(\sum_{j=1}^{m} P^{j}\right) = m \cdot \sigma^{2} + m \cdot (m-1) \cdot \rho \cdot \sigma^{2}$$

$$n = m:$$

$$\rho\left(\sum_{i=1}^{n} P^{i}, \sum_{j=1}^{n} P^{j}\right) = \frac{\rho}{\frac{1}{n} + \frac{(n-1)}{n} \cdot \rho} \xrightarrow{n \to \infty} 1$$



## **Correlation with increasing portfolio size**





\_\_\_\_

## Modelling and managing financial risk: Foundation

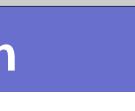
Financial market model within probabilistic framework:

- (reasonably) realistic
- operational
- possible to validate and estimate against market data/behaviour

Risk issues:

- recall: non-diversifiable
- how to manage?
  - additional capital
  - investment strategies
  - other?
  - possible to completely eliminate the impact of risk?

Financial risk isolated vs. financial risk and liability risk considered as a whole



#### **Course content**

Stochastic modelling of financial assets' market value

Pension fund risk in the presence of financial risk

Derivatives:

- Concept
- Pricing
- Hedging

Application: Annual interest rate guarantee for UL/DC contracts

Porfolio theory

Matching of assets to liabilities

Evaluation - Monte Carlo simulation.



#### **Course content - limitations and extended perspective**

Basic concepts!

Extended perspective of great importance for life insurance/pensions undertakings:

- Very long time perspective
- Interest rate sensivity
- Possibilities to hedge/securitise long term interest rate guarantees

Regulatory environment:

- Explicit pricing of interest rate guarantee compulsory in Norway from 2007 (2008?)
- Solvency II: Pension and insurance liabilities valued at "market value"
  - expected cash-flows discounted at market interest rates
  - investment strategy to hedge liability risk?

