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Abstract

Defined contribution (DC) pension schemes and life insurance con-
tracts often have a minimum interest guarantee as an integrated part of
the contract. The purpose of this paper is to study the ”value” to the pol-
icyholder of an embedded interest rate guarantee, depending on how the
guarantee is priced. We study a simple savings DC plan where the mini-
mum interest guarantee is expressed on an annual basis, and it is assumed
that the guarantee is priced according to the arbitrage free principle. We
use stochastic simulation to develop the (approximate) probability distri-
butions for the amount on the DC account at retirement - respectively
with and without a minimum interest rate guarantee embedded. The
probabilistic properties of the two alternative scenarios indicate that the
”enhanced safety” achieved by the guarantee is small compared to the loss
of potential return implied by charges for providing the guarantee. On
this basis we raise the question of whether an ”equilibrium price” for the
interest rate guarantee can be established.

1 Introduction

Minimum interest guarantees have always been an implicit part of ordinary
pension schemes and life insurance contracts. They have traditionally not been
priced separately from the rest of the premium. From an actuarial point of view
it is reasonable that they should have a price, which we can consider as a risk
premium against an adverse development in the financial markets. However, it
is not obvious what this risk premium should be.
In contrast to demographic risk financial risk is not reduced when the number

of contracts in the insurance portfolio is increased. Therefore the law of large
numbers can not be applied to price the guarantee. Following the route of
option pricing theory from mathematical finance we can employ alternative ways
to reduce and theoretically in fact completely eliminate the risk. Within the
framework of this theory we can find premiums which correspond to a complete
absence of risk for the provider.
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In this paper we first specify a general model for the financial market where
there exists one and only one arbitrage free guarantee price. Then we apply this
model to a certain long term savings plan and develop the formulae needed for
the actual calculations of the savings plan dynamics. A numerical case study
illustrates some properties of our model. At the end of this paper we discuss
some possible interpretations and implications of our results.

2 General model

We use the standard Black&Scholes setting, where we assume that there exists
two assets in the market, a bond with a deterministic force of interest δ and a
stock with a stochastic Gaussian log-return.

• A bond with current value B0 has a value at time t:
Bt = B0 e

δt (1)

• A stock with current value S0 has a value at time t :
St = S0 e

Lt (2)

where the log-return is Lt ∼ N(νt, σ
√
t).

The parameter ν can be evaluated from an assumption on the stock’s ex-
pected rate of return until time t. If we assume that the expected return corre-
sponds to a force of interest µ, we have

E[St] = S0 e
µt ⇔

S0 e

³
νt+σ2t

2

´
= S0 e

µt ⇔
ν = µ− σ2

2
(3)

Let us assume that we have a minimum interest rate guarantee on an in-
vestment in the stock at time m based on a given minimum force of interest
γ. Having this guarantee is the same as having the right to sell the stock for
S0 e

γm if the value of the stock is below this level. This guarantee is actually
a put option with strike price K = S0 e

γm at maturity m. The value of a put
option at time m is (K − Sm)

+ and the arbitrage free price is

p0 = e−δm EQ[(K − Sm)
+] , Q ∼ N(δm− σ2m

2
, σ
√
m)

= K e−δm Φ(−d2)− S0 Φ(−d1) (4)

d1 =
log(S0K ) + (δm+ σ2m

2 )

σ
√
m

d2 = d1 − σ
√
m
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3 The savings account

We consider a savings plan where contributions are made annually in advance.
The savings account is invested in the two assets bonds and stocks specified for
the financial market. The bond/ stock proportion is assumed to be stable over
time, which is achieved by a rebalancing approach. Formally we are looking

Figure 1: The savings account.

at a savings account {Ft}t=0,1,2,...T described in Figure 1. We assume that we
have annual payments C in advance and define a function, at, that determines
the value at time t of a unit invested at time t− 1:

at = α eGt + (1− α) eδ (5)

Here Gt = Lt − Lt−1 ∼ N(ν, σ). α ∈ (0, 1) is the share/ weight invested in a
given stock which develops according to (2) and (1 − α) is the share/ weight
invested in a bond which develops according to (1). It is worth mentioning that
we could easily generalize this model to deterministic time dependent annual
payments. We could then simply substitute C with Ct in all the following
formulae.

3.1 The savings account without guarantee

The savings account without guarantee develops according to the recursion
formula

F0 = 0

Ft = at (C + Ft−1) , t = 1, 2, ...T (6)

3.2 The savings account with guarantee

In order to establish a comparative basis to (6) for the dynamics of the account
with guarantee, we need to consider carefully how the guarantee is provided and
paid for. For illustrative purposes we will first describe a simplified approach,
before we present the model which we will actually adopt.
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3.2.1 The simple model

We start by considering a model where the guarantee premiums are paid in
addition to C at the beginning of each year. Under this model the savings
account with guarantee would develop according to the recursion formula

F g
0 = 0

F g
t = max{eγ , at} (C + F g

t−1) , t = 1, 2, ...T (7)

If the guarantee has a potential value, the unit arbitrage free price in this model
for a guarantee the following year is

p1 = e−δ EQ[(e
γ − at)

+] , Q ∼ N(δ − σ2

2
, σ)

= e−δ EQ[(e
γ − (1− α) eδ − α eGt)+]

= e−δ EQ[(K − S0 e
Gt)+]

= K e−δΦ(−d2)− S0 Φ(−d1) (8)

d1 =
log(S0K ) + (δ +

σ2

2 )

σ
d2 = d1 − σ

K = eγ − (1− α) eδ

S0 = α

We see that the guarantee has a potential value if K > 0, that is if the amount
guaranteed, eγ , is higher than the value of the risk free investment, (1− α) eδ.
The problem with this approach to modelling the dynamics of the savings

account with guarantee is that the payment in year t is C + p1 (C + F g
t ) and

not just C as for the savings account without guarantee. The cash flow in
the two cases are different in two ways: With guarantee we firstly have to pay
something in addition to the ordinary contribution and secondly this additional
amount is a stochastic variable. Because of this difference in cash flows from
the policyholder’s point of view, it is not obvious how the two approaches can
be compared.

3.2.2 Our model

In order to have a comparative basis from the policyholder’s point of view, we
assume that the guarantee-premium is charged to the savings account at the
beginning of each year. In doing so we have to take into account that the actual
return will be reduced after deduction of the guarantee premium and that the
guarantee premium itself should not be included in the amount for which we
need a guarantee. The dynamics of the savings account can in this case be
evaluated from

F g
t = max {eγ , at (1− p)} (C + F g

t−1) (9)
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Figure 2: The dynamics of the guarantee from time t− 1 to time t.

where p is the unit guarantee premium. The dynamics of this savings account
is shown in Figure 2. The unit guarantee premium p is obtained as the solution
of the equation

p = e−δ EQ[(e
γ − (1− p) at)

+]

= e−δ EQ[(e
γ − (1− p) (1− α) eδ − (1− p) α eGt)+]

= e−δ EQ[(K − S0 e
Gt)+]

= K e−δΦ(−d2)− S0 Φ(−d1) (10)

d1 =
log(S0K ) + (δ +

σ2

2 )

σ
d2 = d1 − σ

K = eγ − (1− p) (1− α) eδ

S0 = (1− p) α

In (10) p appears both at the left hand side and the right hand side of the
equation. In the absence of an explicit analytical solution, a numerical approach
has to be employed. In this case the guarantee premium has a potential value
if the amount guaranteed, eγ , is higher than the value of the remaining risk free
investment after subtraction of the guarantee premium, that is (1−p) (1−α) eδ.
To compare FT and F

g
T we define a stochastic variable, ΨT , which we might

call pension enhancement

ΨT = 100

µ
F g
T

FT
− 1
¶

(11)

This variable tells us how many percent higher the final amount on the savings
account gets with guarantee than without.
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3.3 Comparing the savings accounts

We assume that it is difficult or impossible to find an explicit expression for
the cumulative probability distribution or the probability densities for FT and
F g
T and therefore we use stochastic simulation to examine their probabilistic
properties. First we simulate a sequence of Gaussian log-returns G1, G2, ..., GT .
For one particular realization of this sequence we can calculate the corresponding
FT and F g

T ( and ΨT ) according to the formulae (6) and (9). This algoritm is
then repeated n times and we end up with n simulated realizations of FT and
F g
T ( and ΨT ). If n is big enough, the realizations of these three stochastic
variables will be distributed according to their underlying probability density.
Because the purpose of the guarantee is to increase the financial safety for

the policy holder, we are particularly interested in worst case scenarios. To
compare the lower tails of the probability densities of FT and F g

T we consider
the measures Value at Risk ( V aR ) and Conditional Value at Risk ( CV aR )
which for a stochastic variable X are defined as

V aR(ε) = qε (12)

CV aR(ε) = E[X | X < qε] (13)

where
Pr{X < qε} = ε

For n stochastic realizations x1, x2, ..., xn of X an estimate of V aR(ε) is given
by x(εn) and an estimate of CV aR(ε) is given byPn

i=1 xiI(xi < x(εn))Pn
i=1 I(xi < x(εn))

(14)

where x(1) < x(2)... < x(n) are the ordered realizations of X and n is such that
the product εn is an integer.

γ is the force of interest which corresponds to the minimum rate of return
”from the policyholder’s point of view”. We are also interested in the force of
interest on the reduced account (1−p) (C+F g

t−1), called γ
a, which corresponds

to the minimum rate of return ”from the provider’s point of view”. From Figure
2 we see that it is given by the equation

(1− p) eγ
a

= eγ ⇔
γa = γ − log (1− p) (15)

4 Case study

We have now completely specified the savings plan under the two different ap-
proaches. In this section we are going to put some concrete numbers into the
variables to illustrate the properties of the model. We assume that C = 1 and
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that
T = 20 years
σ = 20 % per year
µ = 10 % per year
δ = 5 % per year
γ = 3 % per year
α = 20 %

This is supposed to be a reasonably representative description of long term
properties of a typical financial market and of typical terms of DC contracts.
The force of interest for the minimum guarantee as perceived by the provider

is γa = 4.1% and the unit guarantee premium is p = 1.1%.With n = 105

simulations of each of FT and F g
T we obtain the estimated probability densities

for FT and F g
T shown in Figure 3. The minimum values, the estimated Value

at Risk and the estimated Conditional Value at Risk are shown in the data
summary in Table 1.

min V aR(.05) CV aR(.05)

FT 26.4 32.7 31.4
F g
T 29.3 33.1 32.3

Table 1: Data summary

The estimated probability density for ΨT is shown in Figure 4. Only 20% of
the probability mass lies to the right side of 0 in this figure. It is noteworthy
and remarkable that with a probability of 80% the policyholder is best served
by abstaining from the guarantee.
We have also studied the sensitivity of Pr{ΨT > 0} to changes in the pa-

rameters µ and σ in Table 2:

σ
.10 .20 .30

.07 .26 .37 .46
µ .10 .09 .20 .30

.15 .01 .05 .12

Table 2: Pr{ΨT > 0}
As we might expect this probability is increasing in σ and decreasing in µ. This
supports the following intuitive insights:

• ”The riskier the financial market, the more likely it is that the guarantee
will be of benefit”.

• ”The better expected performance in the financial market, the less likely
it is that the guarantee will be of benefit.”
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Figure 3: Approximate probability densities for FT and F g
T .

Figure 4: Approximate probability density for ΨT .
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5 Conclusion

The concept of minimum interest rate guarantees is well established within actu-
arial theory and practice dealing with traditional life insurance savings policies.
However, from a contractual standpoint the interest rate guarantee itself is not
highlighted; rather it is a means towards fulfilling the obligations of paying fixed
benefits under the contracts.
All other things being equal, it is obvious that a savings contract with an

embedded interest rate guarantee is more valuable than a similar policy without
the guarantee. Accordingly the interest rate guarantee should have a price.
To the authors it is however unclear to what extent and eventually how life
insurance providers have charged policyholders for such a price. Traditional
actuarial theory disregards the cost and the pricing of interest rate guarantees.
For policyholders and beneficiaries an interest rate guarantee provides a

shelter from the financial market’s downside risk. On the surface this appears
to be a user-friendly concept also for unit-linked ( UL ) and DC contracts.
However, at this point there is one important distinction between traditional

contracts and UL/DC-contracts to be taken into consideration, in that for the
latter the provider does not exercise control over the asset allocation as a means
towards achieving a financial performance embedded in the guarantee. Accord-
ingly, the question of putting an explicit price on the guarantee comes to the
forefront.
Our main focus of this paper has been to investigate whether there is a

reasonable balance between this price on the one hand and the corresponding
enhanced safety on the other hand.
An interest rate guarantee for a certain investment portfolio is recognized as

a put option, and generally accepted theory of financial risk provides us with
the answer of how this option should be priced. Underlying the theory is that
the provider exercises a certain risk-neutralizing investment behavior, which will
enable him to deliver exactly the contractual return on the account irrespective
of the actual performance of the financial market.
Within the context of a UL/DC-account, the perspective of charging an ex-

plicit premium for the interest rate guarantee based on a risk-neutralizing single
period perspective meets the dynamics of the account in a multi-period perspec-
tive. While there is no diversification underlying the single period pricing of the
guarantee - here risk is completely eliminated as opposed to diversified - , a cer-
tain ”time diversification” effect is achieved when we consider the development
of the savings account over time. Accordingly it is meaningful to measure the
”fairness” of the arbitrage-free risk premium in probabilistic terms, as demon-
strated in this paper by the probability distributions of the terminal account
values.
It is a general impression that the safety the policyholder achieves from

the interest rate guarantee is small compared to the reduced return resulting
from the guarantee premium charges. Considered as an insurance coverage, the
insurance premium appears to be excessively priced. Moreover, an enhanced
safety which is broadly similar, can be achieved by shifting towards a less risky
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asset allocation.
Underlying this result is that the guarantee premium is systematically higher

than its expected payoff. This is because the risk-neutral Q-measure which we
use to derive the guarantee premium is located to the left of the true probability
measure ( for the problem to be of real interest, we must have µ > δ ) and it
is stock return realizations in this ”left region” that contribute to the expected
value-calculation.
Philosophically, it appears to be too expensive to allow the provider to do

away with all risk as a basis for providing the guarantee. However, this should
not be confused with greedy, over-pricing behavior by the provider. In fact, the
role of the provider can be eliminated from our model. Instead we could assume
that the policyholder went directly with his proceeds to the financial market and
purchased the portfolio which replicated the interest rate guaranteed account.
We would then obtain exactly the same results.
In applying interest rate guarantees to UL/DC-contracts the following para-

dox arises:

• In order to avoid arbitrage, the risk-neutral approach represents the only
solution to how the premium should be priced

• Applying the risk-neutral premium over the duration of the contract is
broadly to the disadvantage of the policyholder.

On this background, the authors question whether a meaningful equilibrium
premium for an interest guarantee applied to UL/DC-contracts can be estab-
lished in the market.
Finally, we should not disregard the real protective properties against worst

case scenarios that the interest rate guarantee does have. This is demonstrated
in Table 1, which shows both the absolute lowest outcome from the simulation,
the VaR-threshold and the CVaR-value are enhanced by including the guarantee.
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A Solving the equation (10)

We define f(x) which we assume to be a smooth function ∀ x ∈ [0, 1]:

f(x) = x− (K e−δ Φ(−d2)− S0 Φ(−d1))

K(x) = eγ − (1− x) (1− α) eδ

S0(x) = (1− x) α

d1(x) =
log(S0K ) + (δ +

σ2

2 )

σ
d2(x) = d1 − σ

We show that the first derivative of f is strictly positive:

K0(x) = (1− α) eδ

S00(x) = −α

d02(x) = − α eγ

S0 K σ

d01(x) = d2(x)

Φ0(x) = φ(x)

φ0(x) = −x φ(x)

φ(d2) = φ(d1)

µ
S0
K

¶
eδ

f 0(x) = 1−
µ
(1− α) Φ(−d2) + φ(−d2) α eγ−δ

S0 σ

¶
+µ

−α Φ(−d1) + φ(−d1) α eγ

K σ

¶
= 1− (1− α) Φ(−d2)− α Φ(−d1)− α eγ

σ

µ
e−δ

S0
φ(d2)− 1

K
φ(d1)

¶
= 1− (1− α) Φ(−d2)− α Φ(−d1)−

α eγ

σ

µ
e−δ

S0
φ(d1)

µ
S0
K

¶
eδ − 1

K
φ(d1)

¶
= 1− (1− α) Φ(−d2)− α Φ(−d1)

f 0(x) > 1− (1− α)− α = 0 ∀ x ∈ (0, 1)
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We find the second derivative of f(x):

f 00(x) = −(1− α) φ(−d2) α eγ

S0 K σ
− α φ(−d1) α eγ

S0 K σ

= − α eγ

S0 K σ
((1− α) φ(d2) + α φ(d1))

= − α eγ

S0 K σ

µ
(1− α) φ(d1)

µ
S0
K

¶
eδ + α φ(d1)

¶
= −α eγ φ(d1)

S0 K σ

µ
(1− α)

µ
S0
K

¶
eδ + α

¶
= −α eγ φ(d1)

S0 K σ

µ
α

µ
eγ −K

K

¶
+ α

¶
= −α

2 e2 γ φ(d1)

S0 K2 σ

f 00(x) < 0 ∀ x ∈ (0, 1)
Because f 0(x) > 0, we know that there exists one and only one {p ∈ (0, 1) :
f(p) = 0} if and only if
1. f(0) < 0

2. f(1) > 0

In the following we find the restrictions under which the two points above
are achieved for our function f :

1. f(0) < 0 :

f(0) < 0⇔
K(0) e−δ Φ(−d2(0))− S0(0) Φ(−d1(0)) > 0⇔

K(0) > 0⇔
eγ − (1− α) eδ > 0⇔

γ > δ + log(1− α) (16)

2. f(1) > 0 :

f(1) > 0⇔
1− (K(1) e−δ Φ(−d2(1))− 0) > 0⇔

1− (eγ e−δ Φ(−∞)− 0) > 0⇔
1− eγ−δ > 0⇔

γ < δ (17)

If γ ∈ (δ+log(1−α), δ), there exists one and only one {p ∈ (0, 1) : f(p) = 0}.
If γ /∈ (δ + log(1− α), δ), there exists no {p ∈ (0, 1) : f(p) = 0}.
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Figure 5: f(x) with the default parameters from the case study.

Figure 6: f(x) with the default parameters from the case study exept γ. Left:
The surface spanned by f and the 0−plane. Right: The contour f(x) = 0 (the
intersection between the surface spanned by f and the 0−plane.)
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If the unequality (16) is not satiesfied, the bond account alone exceeds the
minimum level and the guarantee has no potensial value. If the unequality
(17) is not satiesfied, the guarantee has a value greater than one, which is
not possible, or there are arbitrage possibilities. Therefore we assume that
γ ∈ (δ + log(1 − α), δ). We can find p by using the numerical method called
bisection:

1. Choose pmin = 0 as a point assumed to be less than p for all legal param-
eters and pmax = 1 as a point assumed to be greater than p for all legal
parameters. Compute

ptest =
pmax + pmin

2

2. If f(ptest) > 0, we set pmax = ptest, otherwise we set pmin = ptest.

3. Compute

ptest =
pmax + pmin

2

4. Repeat 2 and 3 n times, where n is chosen to achieve a certain accuracy:
The width of the interval around p is (1/2)n and ptest in the middle of
this interval is an approximation to p.
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