
STK4500: LIFE INSURANCE AND FINANCE
MANDATORY ASSIGNMENT SPRING 2023

This assignment consists of 3 exercises. The deadline is 20th of April, 2023 at
2:30 pm. To pass the assignment you need to have at least 50% correct. Good luck!

Exercise 1 (Learn your formulas). This part of the assignment have to be
written by hand. Make a formulary of the most important formulas of the course so
far. Please, be precise, clear and tidy.
Let us introduce the following notation:

• S denotes the states of the insured.
• Xt denotes the state of the insured at time t. X is assumed to be Markov.
• For states i, j ∈ S, let pij(t, s) , P[Xs = j|Xt = i] for s, t ≥ 0, t ≤ s be the
transition probabilities between times and states.
• Let A(t) denote a general accumulated cash �ow at time t ≥ 0.
• Let r be an instantaneous rate of return (e.g. interest rate) and v(t) =

e−
∫ t
0 r(s)ds the value of one monetary unit at time t (discount factor).

Continuous time setting:
Write down:

(a) The de�nition of transition rates µij between states i, j ∈ S.
(b) Kolmogorov's equations to �nd µij via pij(t, s).
(c) Write down what is the value of the total cash �ow A at t = 0, discounted

accordingly w.r.t v(t).
(d) How would you change the value of the total cash �ow above if considered

at any time t?
(e) Write down the retrospective and the prospective value of a general cash �ow

A.
(f) De�ne policy functions in the continuous time setting.
(g) De�ne the processes IXi and NX

ij associated to X and write shortly what the
describe.

(h) By means of the policy functions and the processes IXi and NX
ij , give a

formula for A that fully describes its evolution.
(i) Recast the prospective value, hereby V +

t of an insurance cash �ow in the
form given in (h).

(j) De�ne single premium π0.
(k) De�ne a cash �ow Aπ of yearly continuous payments of π. Write down

the associated policy function and the prospective value of such cash �ow
V +
t (Aπ).

(l) Write down the formula for expected prospective value, given that the insured
is in state i at time t, i.e. Xt = i.

(m) Given an insurance cash �ow A, split A into the cash �ow Aπ like in (k) only
dealing with the payment of premiums while in state ∗ and another cash

1
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�ow AB modelling only the bene�ts, i.e. A = Aπ + AB. Consider now their
prospective values V +

t (Aπ) and V +
t (AB). What is then the prospective value

of A?
(n) What is the expected prospective value of the cash �ow A as above?
(o) Explain what the equivalence principle is?
(p) How would you �nd the yearly premium π in (m)?
(q) Write down Thiele's di�erential equation.

Discrete time setting:

(a) Follow the same steps as above and write down the formulas for the discrete
time case.

Exercise 2 (Friend Group Survival). Consider a group of N ∈ Z, N ≥ 1
friends all with the same age and individual mortality, hereby denoted as µ. Let
Z = {Zt}t≥0 be the continuous time (regular) Markov chain which counts the number
of living friends in this group, by time t. The state space of Z is then clearly
S = {0, 1, . . . , N}. De�ne

pmn(t, s) , P[Zs = n|Zt = m]

and let

p(t, s) = e−
∫ s
t µ(u)du

be the survival probability of an individual. Lastly we will assume that the lifespans
of the friends are independent.

(a) Prove that for every t ≥ 0 we have

µmn(t) = 0,

for every m,n ∈ S, |m− n| ≥ 2 or n = m+ 1, and that

µmm−1(t) = mµ(t),

for every m ∈ S \ {0}.
Solution: On the one hand, we have µmn(t) = 0 whenever n ≥ m + 1

because none of the friends are capable of resurrection. On the other hand,
we have µmn(t) = 0 for n ≤ m− 2 because our Markov process cannot jump

twice at the same time. To see this, assume that X(1) and X(2) are the states
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of two friends. Then

µ(∗,∗),(†,†)(t) = lim
h→0
h>0

P[X(1)
t+h = †, X

(2)
t+h = †|X

(1)
t = ∗, X(2)

t = ∗]
h

= lim
h→0
h>0

P[X(1)
t+h = †|X

(1)
t = ∗]P[X(2)

t+h = †|X
(2)
t = ∗]

h

= lim
h→0
h>0

P[X(1)
t+h = †|X

(1)
t = ∗]

h
lim
h→0
h>0

P[X(2)
t+h = †|X

(2)
t = ∗]

= µ
(1)
∗† (t) lim

h→0
h>0

P[X(2)
t+h = †|X

(2)
t = ∗]

= µ
(1)
∗† (t) · 0

= 0.

Iterating this argument (or conditioning on all possible pairs), we see that
two or more friends cannot die instantaneously in our Markov modelling
framework. Hence, µmn(t) = 0 for all n ≤ m− 2.
To prove that µmm−1(t) = mµ(t) for m ∈ S \ {0} we make the following

observation: by independence the probability that exactly one speci�c friend
dies during the time interval [t, s], s ≥ t and the rest survive is given by

p∗∗(t, s)
m−1p∗†(t, s).

Thus the probability that any one of among m friends die is given by

P[Zs = m− 1|Zt = m] = mp∗∗(t, s)
m−1p∗†(t, s).

Now the transition rate is

µmm−1(t) = lim
h→0
h>0

P[Zt+h = m− 1|Zt = m]

h

= lim
h→0
h>0

mp∗∗(t, t+ h)m−1p∗†(t, t+ h)

h

= m lim
h→0
h>0

p∗∗(t, t+ h)m−1 lim
h→0
h>0

p∗†(t, t+ h)

h

= mµ(t).

(b) Argue that for every t, s ≥ 0, s ≥ t,

pmn(t, s) = 0,

for every m,n ∈ S, n ≥ m+ 1 and that,

pmn(t, s) =

(
m
n

)
p(t, s)n(1− p(t, s))m−n,
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for everym,n ∈ S, n ≤ m and show that s 7→ pmn(t, s) satis�es Kolmogorov's
forward equation.
Solution: We �rst note that since none of the friends are capable of

resurrection we must have that the number of living friends at time s are
exactly the number of friends who were alive at t and survived. Since the
survival probability of an individual in the period [t, s] is p(t, s) we see by
independence of lifespans that the events

Bi = {friend i survived from t to s},
are i.i.d. Bernoulli trials. The number of living friends at time s, given that
Zt = m, is then binomially distributed with probability mass function

pmn(t, s) =

(
m
n

)
p(t, s)n(1− p(t, s))m−n. (1)

Komogorov's forward equation for pmn(t, s) is given by

d

ds
pmn(t, s) = −pmn(t, s)µn(s) +

∑
k∈S
k 6=n

pmk(t, s)µk n(s), pmn(t, t) = 0, m 6= n.

Observe that, as we proved in item (a), we have pmk(t, s) = 0 for all
k ≥ m + 1 and µk n(s) = 0 for all k ≥ n + 2. So Kolmogorov's equation
simpli�es to

d

ds
pmn(t, s) = −pmn(t, s)µn(s) + pmn+1(t, s)µn+1n(s), pmn(t, t) = 0, m 6= n.

It is readily checked from (1) that pmn(t, t) = 1 if m 6= n. On the one
hand we have

d

ds
pmn(t, s) =

(
m
n

)
np(t, s)n−1

d

ds
p(t, s)(1− p(t, s))m−n

−
(
m
n

)
p(t, s)n(m− n)(1− p(t, s))m−n−1 d

ds
p(t, s)

= −
(
m
n

)
nµ(s)p(t, s)n(1− p(t, s))m−n

+

(
m
n

)
µ(s)p(t, s)n+1(m− n)(1− p(t, s))m−n−1,

where we used that d
ds
p(t, s) = −µ(s)p(t, s). Now, observe that nµ(s) =

µnn−1(s). On the other hand, µnn−1(s)+µnn(s) = 0 so µnn−1(s) = −µnn(s)
and by convention −µnn(s) = µn(s). Also, observe that(

m
n

)
µ(s)p(t, s)n+1(m− n)(1− p(t, s))m−n−1

= (n+ 1)µ(s)

(
m

n+ 1

)
p(t, s)n+1(1− p(t, s))m−(n+1)

= pmn+1(t, s)µn+1n(s),
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and the proof of the case m 6= n follows.
For m = n Kolmogorov's equation reduces to

d

ds
pmm(t, s) = −pmm(t, s)µm(s) = −pmm(t, s)mµ(s), pmm(t, t) = 1,

Which we have seen to have the solution

pmm(t, s) = e−
∫ s
t mµ(u)du = p(t, s)m =

(
m

m

)
p(t, s)m(1− p(t, s))m−m.

Note that proving that (1) satis�es Kolmogorov's equation is also a rigorous
proof of (1) being the transition probabilities of the Markov process Z.

Exercise 3 (A Tontine of Friends in Continuous Time). A tontine is an
old investment strategy named after Neapolitan banker Lorenzo de Tonti, who is
popularly credited with inventing it in France in 1653.
The main idea of a tontine is that a group of people all pay a single lump sum

and invest it into a shared fund. Every year the net pro�t of the fund is distributed
amongst the investors as yearly dividends. Whenever any of the initial investors die,
the yearly dividends will then be distributed between fewer and fewer people, thus
increasing the payout for those who remain alive.
In this exercise we will assume that an insurance company oversees and manages

a tontine insurance scheme with N friends under the same conditions and notations
as in the previous exercise. We will focus on one of these participants, referred to
as the chosen one. As such we model the state of everyone involved by the Markov
process X with the state space

S = {0, 1, . . . , N − 1} × {∗, †}.

Here the state (m, ∗) means that m participants, other than the chosen one,
are alive and that that the chosen one is still living, while (m, †) means that m
participants are alive, but our chosen one is dead.

(a) Transition Probabilities.
Argue in an almost analogous way as in Exercise 1, that

µ(m,∗) (m−1,†)(t) = 0,

µ(m,∗) (m,†)(t) = µ(t),

µ(m,∗) (m−1,∗)(t) = µ(m,†) (m−1,†)(t) = mµ(t),

for every t ≥ 0 and m ∈ {0, 1, . . . , N − 1}. As a result, argue that for every
t, s ≥ 0, s ≥ t,

p(m,j) (n,j)(t, s) = 0,

for every m,n ∈ S, n ≥ m+ 1, j ∈ {∗, †} and that,

p(m,∗) (n,∗)(t, s) =

(
m
n

)
p(t, s)n+1(1− p(t, s))m−n,
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and

p(m,∗) (n,†)(t, s) =

(
m
n

)
p(t, s)n(1− p(t, s))m−n+1,

for every m,n ∈ S, n ≤ m.
Solution: Note that by independent lives we have

p(m,∗) (n,∗)(t, s) = pmn(t, s)p(t, s),

which, along with the same arguments as Exercise 1 (a), yields the desired
results.

We assume that the contract starts at time t = 0 and that all participants pay
a single premium π0 at this time. The premiums are invested into a fund managed
by the insurance company. Let S = {S(t), t ≥ 0} denote the value of a fund. We
assume that the value of the fund evolves according to

S(t) = S(0)eρt, t ≥ 0,

for some ρ ∈ R, ρ > 0.
At retirement time T0 ≥ 0, we start paying out the returns from the fund to the

living participants. Observe that the return on [t, t+dt] is given by S(t+dt)−S(t) =
S(t)

[
eρdt − 1

]
and if dt is in�nitesimally small we have eρdt−1 = ρdt+O(dt2). Hence,

the instantaneous return at time t is given by ρS(t). In particular, our participants
receive instantaneously ρS(T0) after t ≥ T0 to be distributed among all surviving
participants. We can also note that since all the pro�ts of the fund are distributed
the value of the fund stagnates at time T0 and we have for all t ≥ T0 that

S(t) = S(T0) = S(0)eρT0 .

From now on, we assume a constant interest rate r > 0 that the insurance company
uses to price its policies.

(b) Policy Functions. Take the perspective of the chosen one and therefore
ignore all payments that are not going to them. Write down the policy func-
tions for the chosen one's contract without taking into account premiums,
yet. Note that since we are taking the perspective of the chosen one we have
a(m,†)(t) = 0 for all m.
Solution: The instantaneous return generated by the fund is ρS(T0) as

explained in the exercise. In state (m, ∗) we have exactly m + 1 survivors

to redistribute the wealth among. Hence, each obtain ρS(T0)
m+1

at time t ≥ T0.
The accumulated payments in state (m, ∗) are therefore given by

a(m,∗)(t) =

{
0 for t < T0
ρS(T0)
m+1

(t− T0) for t ≥ T0

(c) Cost of the insurance. Show that the cost of this insurance, i.e., the
present value at each time of the future liabilities is given by

V +
(m,∗)(t) = ρS(0)eρT0

m∑
n=0

∫ ∞
t∨T0

(
m

n

)
p(t, s)n+1(1− p(t, s))m−n

n+ 1
e−r(s−t)ds
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Solution: The present value of the cash �ow generated by the policy func-
tions a(m,∗) is given by

V +
(m,∗)(t) =

1

v(t)

m∑
n=0

∫ ∞
t

v(s)p(m,∗) (n,∗)(t, s)da(n,∗)(s),

where v(t) = e−rt is the discount factor. Noting that the policy functions

are a.e. di�erentiable and that da(n,∗)(s) = 1s≥T0
ρS(T0)
n+1

ds and using the
expression for p(m,∗) (n,∗)(t, s) from item (a), we obtain the desired expression.

(d) A simpler formula. Show that the present value V +
(m,∗)(t) can be written

in the following simpli�ed form,

V +
m,∗(t) =

ρS(0)eρT0

m+ 1

∫ ∞
t∨T0

(
1− (1− p(t, s))m+1

)
e−r(s−t)ds

Note that for numerical implementations this form might be easier and
faster to use.
Solution: We note that(

m

n

)
=

(
m+ 1

n+ 1

)
n+ 1

m+ 1
,

and that by total probability we have

m+1∑
k=0

pm+1 k(t, s)

m+ 1
= 1.

where pm+1 k is the transition probability in Exercise 1 (b). This means
that, if we substitute k = n+ 1, we have

m∑
n=0

(
m

n

)
p(t, s)n+1(1− p(t, s))m−n

n+ 1

=
m∑
n=0

(
m+ 1

n+ 1

)
p(t, s)n+1(1− p(t, s))m+1−(n+1)

m+ 1

=
m+1∑
k=1

(
m+ 1

k

)
p(t, s)k(1− p(t, s))m+1−k

m+ 1

=
m+1∑
k=1

pm+1 k(t, s)

m+ 1

=
1− pm+10(t, s)

m+ 1

=
1− (1− p(t, s))m+1

m+ 1
,

Plugging this into the equation from item (c) yields the desired result. We
can interpret this equation by considering the payouts the insurance company
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is liable for, regardless of how many are still alive the insurance company
must pay the same total rate of ρS(T0) as long as at least one friend is still
alive. This means that the probability the insurance company has to pay
is equal to the probability of at least one survivor (= 1 − (1 − p(t, s))m+1),
applying the explicit formula for reserves and dividing by m + 1 to get the
reserves per person yields the same formula.

(e) Single and yearly premiums. Compute the single and yearly premiums
that our chosen one has to pay to enter this policy. The yearly premiums
are only paid until retirement time T0.
Solution: The single premium is simply the initial expected cost of the

policy, given that all members are alive, that is

π0 = V +
(N−1,∗)(0) =

ρS(0)eρT0

N

∫ ∞
T0

(
1− (1− p(0, s))N

)
e−rsds.

Here, S(0) represents the total amount that our participants wish to buy

from the fund, so S(0)
N

is how much money is invested on their behalf. Note
that the initial value of the contract di�ers from the initial value invested
into the fund.
For computing the yearly premiums, we design an arti�cial policy that

only pays 1 monetary unit continuously on [0, T0] as long as the chosen one
is alive. This corresponds to

aPrem(m,∗) (t) =

{
−t, t ∈ [0, T0]

−T0, t ≥ T0
m ∈ S.

Hence, the present value of the yearly premiums is given by

πV +
(m,∗)(t, A

Prem) = −π 1

v(t)

m∑
n=0

∫ ∞
t

v(s)p(m,∗) (n,∗)(t, s)da
Prem
(n,∗) (s)

= −π 1

v(t)

m∑
n=0

∫ ∞
t∨T0

v(s)p(m,∗) (n,∗)(t, s)ds

= −π 1

v(t)

∫ ∞
t∨T0

v(s)p(t, s)ds,

where we used that
∑m

n=0 p(m,∗) (n,∗)(t, s) = p(t, s).
The equivalence principle says that the initial value of the insurance should

match the initial value of the future paid-in premiums (cash in should match
cash in). So we must have

πV +
(N−1,∗)(0, A

Prem) + V +
(N−1,∗)(0) = 0.

Hence, the yearly premium is

π =

ρS(0)eρT0

N

∫∞
T0

(
1− (1− p(0, s))N

)
e−rsds∫∞

T0
v(s)p(0, s)ds

.
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The prospective reserve is given by

πV +
(m,∗)(t, A

Prem) + V +
(m,∗)(t).

(f) Thiele's Equation. Derive an ordinary di�erential equation for the present
value of the policy V +

(m,∗)(t) for t ≥ 0.

Solution: Writing down Thiele's di�erential equation with transition pay-
outs we get, for t ≥ 0,

dV +
(m,∗)(t)

dt
= rV +

(m,∗)(t)− ȧ(m,∗)(t)−
∑
n∈S
n6=m

µ(m,∗) (n,∗)(t)
(
V +
(n,∗)(t)− V

+
(m,∗)(t)

)
.

Plugging in the computed values and using the relations for µ(m,j) (n,j),
j ∈ {∗, †} from item (a) we get

dV +
(m,∗)

dt
= rV +

(m,∗) − 1T0≤tρNπ0e
ρT0/(m+ 1)

+ µ(t)V +
(m,∗) − 1m>0mµ(t)(V

+
(m−1,∗) − V

+
(m,∗)).

(g) A numerical example.
From now on and until the end of the assignment, let r = 0.03, ρ =

0.07, S(0) = 100 000, N = 10, T0 = 40. Furthermore, let µ(t) be given by the
K2013 mortality rates from Finanstilsynet at time t+ 2022 for a male aged
30 at the beginning of 2022.
Using these parameters compute the single and yearly premiums as de-

scribed in exercise (e). Plot the present value V +
(N−1,∗)(t), along with the

reserves for the premiums and the total reserves for t ∈ [0, 100].
Solution: We implement the formula for the present value given in (d)

and the premium reserves given in (e), producing the following plot. Code
is included in the appendix.
We also get the following values

V +
(N−1,∗)(0, A

Prem) = −23
π0 = V +

(N−1,∗)(0) = 66 209

π = 2877

(h) Lifespan Simulation.
An alternative way of computing the reserves is by the simulation of lifes-

pans.
Simulate 10 000 outcomes and compute the (discounted) costs for each of

them. Plot the histogram of these values. Compute the average of these
payouts. What do you obtain?
Now, simulate 20 tontine outcomes and compute the cost average, as be-

fore. Repeat this procedure 10 000 times and plot the histogram of the sample
means. What distribution do you see and why?
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Solution: As before, code is included in the appendix.
The idea behind the code is to consider the payouts between times of

death. For a set of 10 death times we pick the �rst one to be the death
time of the chosen one, denoted τ , we then sort the death times in increasing
order and include 0 as a starting time, i.e. {τi}10i=1, τi ≤ τi+1, τ0 = 0. We
then note that in the interval [τi, τi+1] there are N − i survivors allowing us
to compute a realisation of the stochastic reserve as

V +
t =

9∑
i=0

1τi<τ
ρS(0)eρT0

N − i

∫ T0∨ti+1

T0∨ti
e−rsds

=
9∑
i=0

1τi<τ
ρS(0)eρT0

N − i
e−r(T0∨ti) − e−r(T0∨ti+1)

r

=
9∑
i=0

ρS(0)eρT0

N − i
e−r(τ∧(T0∨ti)) − e−r(τ∧(T0∨ti+1))

r

This method allows us to simulate the distribution of the stochastic re-
serves as well as the cost average of twenty such contracts.
We note the skewed distribution of the reserve along with a spike at zero

caused by the chance of dying before T0. We also have an approximately
normal distribution of the mean stochastic reserve as a consequence of the
central limit theorem.
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Appendix/Code

General Functions.

#################### Functions For Mortality ####################

# G: Denotes gender (0:Male,1:Female)

# x: Denotes age in year 2013, not current age.

# t, s: Denotes calendar year (assumed t, s > 2013)
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w <- function(G, x){

if(G==0){

return( min(2.671548-0.17248*x+0.001485*x^2,0) )

}

if(G==1){

return( min(1.287968-0.10109*x+0.000814*x^2,0) )

}

}

mu.kol.2013 <- function(G, x){

#men

if(G==0){

return( (0.241752+0.004536*10^(0.051*x))/1000 )

}

#women

if(G==1){

return( (0.085411+0.003114*10^(0.051*x))/1000 )

}

}

mu.kol <- function(G, x,t){

return(mu.kol.2013(G, x+t-2013)

*(1+w(G, x+t-2013)/100)^(t-2013))

}

# making sure infinities arent a problem

p_surv <- function(G,x,t,s){

if (mu.kol(G=G,x=x,t=s)==Inf) {

if (s==t) {return(1)}

else {return(0)}

}

temp_int <- integrate(f=Vectorize(mu.kol),

lower=t,upper=s,G=G,x=x)$value

return(exp(-temp_int))

}

# transition probabilities from exercise 1

probs <- function(m,n,t,s,G=0,x=21){

B <- p_surv(G=G,x=x,t=t+2022,s=s+2022)

return(choose(m,n)*(B^n)*((1-B)^(m-n)) )

}

################# Functions for Reserves #################

Vcont <- function(t,m,rho=0.07,V0=1,r=0.03,min.time=40,G=0,x=21){

VT <- V0*exp(min.time*rho)

tempfunc <- function(s){exp(-r*(s-t)) *
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(1-(1-p_surv(0,21,t+2022,s+2022))^(m+1)) * rho*(VT/(m+1))}

tempint <- integrate(Vectorize(tempfunc),

lower = max(t,min.time),upper = Inf)$value

return(tempint)

}

annuity <- function(P=1,t=0,T0=40,TT=Inf,r=0.03){

if (t>=TT){return(0)}

tempfunc <- function(s){ exp(-r*(s-t)) * P * p_surv(0,21,t+2022,s+2022)}

tempval <- integrate(Vectorize(tempfunc), lower = max(t,T0),

upper = TT)$value

return(tempval)

}

Code for 2g.

Vlist <- numeric(101)

for (i in 0:100) {

Vlist[i+1] <-

Vcont(t=i,m=9,rho=0.07,V0=100000,r=0.03,min.time=40,G=0,x=21)

}

plot(0:100,Vlist,xlab = "Time",ylab = "Reserves",type = "l",col="red")

pi0 <- Vlist[1]

Vtilde <- annuity(P=1,t=0,T0=0,TT=40,r=0.03)

pic <- pi0/Vtilde

Vlist2 <- numeric(101)

for (i in 0:100) {

Vlist2[i+1] <- annuity(P=pic,t=i,T0=0,TT=40,r=0.03)

}

lines(0:100,Vlist2)

lines(0:100,Vlist-Vlist2,col="blue")

legend(x=70,y=200000 ,legend = c("Reserves for Tontine ",

"Reserves for Premiums","Total Reserves"),

col = c("red","black","blue"),lty = 1)


