# STK4500: Life Insurance and Finance 

## Exercise list 4

## Exercise 4.1 (Term insurance in discrete time)

A 10 years old policy is issued to a life aged 50 . The sum insured, payable at the end of the year of death, is $200000 \$$ and premiums $\pi$ are paid yearly throughout the term.

Assume that the intensity rate $r=2.5 \%$ and that

$$
\mu_{* \dagger}(t)=0.002+0.0005(t-50) .
$$

Use the equivalence principle to calculate the annual premium $\pi$ and the prospective reserves $V_{*}^{+}(t), t=0, \ldots, 10$.

## Exercise 4.2 (Permanent disability insurance in discrete time)

Consider a permanent disability insurance. Let $x=45$ years be the initial age of the insured and let 65 be the age at maturity. Further assume that $r=3 \%$ (intensity rate) and that the yearly disability pension is given by $12000 \$$.

Compute the reserves of the disability pension for each of the following cases (see List 1, Exercise 5):
(i)

$$
\mu_{* \diamond}(t)=0.0279 \quad \mu_{* \dagger}(t)=0.0229 \quad \mu_{\diamond \dagger}(t)=\mu_{* \dagger}(t) .
$$

(ii) Gompertz-Makeham model as follows

$$
\mu_{* \diamond}(t)=a_{1}+b_{1} \exp \left(c_{1} t\right) \quad \mu_{* \dagger}(t)=a_{2}+b_{2} \exp \left(c_{2} t\right) \quad \mu_{\odot \dagger}(t)=\mu_{* \dagger}(t),
$$

where $a_{1}=4 \cdot 10^{-4}, b_{1}=3.4674 \cdot 10^{-6}, c_{1}=0.138155, a_{2}=5 \cdot 10^{-4}, b_{2}=7.5858 \cdot 10^{-5}$ and $c_{2}=0.087498$.

## Exercise 4.3 (Endowment policy in discrete time)

Consider an endowment for a life aged 35 years with 60 years as age maturity. Suppose that $r=3.5 \%$ and that the death benefit is given by $250000 \$$. The endowment is assumed to be $125000 \$$. Further let

$$
\mu_{* \dagger}(t)=0.0015+0.0004(t-35) .
$$

Calculate the annual premiums $\pi$ based on the equivalence principle and the prospective reserves.

## Exercise 4.4 (Discrete time vs. Continuous time)

Consider an endowment for a life aged 30 years with 65 years as age maturity. Suppose that $r=3.5 \%$ and that the death benefit is given by $200000 \$$. The endowment is assumed to be $100000 \$$. Consider the mortality rate $\mu_{* \dagger}(t)$ from Exercise 4.2 (ii).

Calculate the annual premiums $\pi$ based on the equivalence principle and the prospective reserves both using discrete time formulas and continuous time formulas. Compare the results.

## Exercise 4.5 (Price of bonds under the Vasicek model)

The price of a bond at time $t$ with maturity $T>t$ is given by

$$
\begin{equation*}
P(t, T)=E\left[e^{-\int_{t}^{T} r_{s} d s} \mid \mathcal{F}_{t}\right], \tag{0.1}
\end{equation*}
$$

where $\mathcal{F}=\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$ is the filtration generated by the process $r=\left\{r_{t}, t \in[0, T]\right\}$. In this exercise we assume that $r$ is the solution of the following SDE

$$
\begin{equation*}
d r_{t}=a\left(b-r_{t}\right) d t+\sigma d W_{t}, \quad r_{0} \in \mathbb{R}, \quad t \in[0, T] . \tag{0.2}
\end{equation*}
$$

The aim of this exercise is to derive an explicit formula for the price of the bond in (0.1).
(i) Apply Itô's formula to $e^{a t} r_{t}$ in order to show that

$$
\begin{equation*}
r_{t}=r_{0} e^{-a t}+b\left(1-e^{-a t}\right)+\sigma e^{-a t} \int_{0}^{t} e^{a s} d W_{s}, \quad t \geqslant 0 \tag{0.3}
\end{equation*}
$$

and show that $r_{t} \sim N\left(r_{0} e^{-a t}+b\left(1-e^{-a t}\right), \frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)\right)$.
(ii) Use (0.2) and (0.3) starting at $r_{s}>0$ to argue that $\int_{s}^{t} r_{u} d u$ is also normally distributed and prove that

$$
\mu_{s, t}:=E\left[\int_{s}^{t} r_{u} d u\right]=\frac{r_{s}-b}{a}\left(1-e^{-a(t-s)}\right)+b(t-s),
$$

and

$$
\Sigma_{s, t}^{2}:=\operatorname{Var}\left[\int_{s}^{t} r_{u} d u\right]=\frac{\sigma^{2}}{2 a^{3}}\left(3-2 a(t-s)+e^{-2 a(t-s)}-4 e^{-a(t-s)}\right) .
$$

(iii) Conclude that

$$
E\left[e^{-\int_{t}^{T} r_{s} d s} \mid \mathcal{F}_{t}\right]=e^{-\mu_{t, T}+\frac{1}{2} \Sigma_{t, T}^{2}}
$$

