STK4500: Life Insurance and Finance

Exercise list 5

Exercise 5.1

Let us consider an insurance policy model which combines benefits of a disability income insurance (see Exercise list 2, Exercise 2) and benefits in the case of critical illness. The state space for the driving Markov chain X is $S=\{*, \diamond, \times, \dagger\}$ where $*$ means healthy, \diamond means sick, \times means critically ill (with no possibility of recovery) and \dagger is death, i.e.

The transition intensities are given by

$$
\begin{aligned}
& \mu_{* \diamond}(t)=a_{1}+b_{1} \exp \left(c_{1} t\right), \quad \mu_{* \times}(t)=0.05 \mu_{* \diamond}(t), \quad \mu_{* \dagger}(t)=a_{2}+b_{2} \exp \left(c_{2} t\right), \\
& \mu_{\diamond *}(t)=0.1 \mu_{* \diamond}(t), \quad \mu_{\diamond \times}(t)=\mu_{* \times}(t), \quad \mu_{\diamond \dagger}(t)=\mu_{* \dagger}(t), \\
& \mu_{\times \dagger}(t)=1.2 \mu_{* \dagger}(t) .
\end{aligned}
$$

where $a_{1}=4 \cdot 10^{-4}, b_{1}=3.4674 \cdot 10^{-6}, c_{1}=0.138155, a_{2}=5 \cdot 10^{-4}, b_{2}=7.5858 \cdot 10^{-5}$ and $c_{2}=0.087498$. Use the Euler approximation scheme with step size $h=\frac{1}{12}$ (1 month) to compute $p_{* *}(x, x+35)$ for an insured aged $x=30$ years. You may also plot $t \mapsto p_{* *}(30, t)$, $t \geqslant 30$.

Exercise 5.2

Consider a 10-years disability income insurance to a healthy life aged 60 years. Payments of $20000 \$$ are provided by the insurer (continuously in time), while the insured is in the disabled state. A death benefit of $50000 \$$ is immediately payable on death. Further, it is also required
that premiums are payable continuously while the insured is in the healthy state. Assume that $r=5 \%$ (intensity rate) and that other expenses are ignored. The transition rates are given by

$$
\mu_{* \diamond}(t)=a_{1}+b_{1} \exp \left(c_{1} t\right) \quad \mu_{\odot *}(t)=0.1 \mu_{* \diamond}(t), \quad \mu_{* \dagger}(t)=a_{2}+b_{2} \exp \left(c_{2} t\right) \quad \mu_{\odot \dagger}(t)=\mu_{* \dagger}(t)
$$

where $a_{1}=4 \cdot 10^{-4}, b_{1}=3.4674 \cdot 10^{-6}, c_{1}=0.138155, a_{2}=5 \cdot 10^{-4}, b_{2}=7.5858 \cdot 10^{-5}$ and $c_{2}=0.087498$.

Calculate the (constant) annual premiums π for this policy.

Exercise 5.3

Again let us have a look at a disability income insurance with term two years issued to a healthy life aged 50. Premiums are paid continuously throughout the contract period while the policyholder is in the healthy state. Disability benefits are provided at the rate of $60000 \$$ per year.

Assume that the following transition probabilities are applied to the insured:

$$
\begin{aligned}
& p_{* *}(50,50+t)=\frac{2}{3} e^{-0.015 t}+\frac{1}{3} e^{-0.01 t}, \\
& p_{* \dagger}(50,50+t)=1-e^{-0.01 t}
\end{aligned}
$$

Use an intensity rate of 5% to compute the annual premiums π.

