STK4500: Life Insurance and Finance

Exercise list 5: Solutions

Exercise 5.1

Let us consider an insurance policy model which combines benefits of a disability income insurance (see Exercise list 2, Exercise 2) and benefits in the case of critical illness. The state space for the driving Markov chain X is $S=\{*, \diamond, \times, \dagger\}$ where $*$ means healthy, \diamond means sick, \times means critically ill (with no possibility of recovery) and \dagger is death, i.e.

The transition intensities are given by

$$
\begin{aligned}
& \mu_{* \diamond}(t)=a_{1}+b_{1} \exp \left(c_{1} t\right), \quad \mu_{* \times}(t)=0.05 \mu_{* \diamond}(t), \quad \mu_{* \dagger}(t)=a_{2}+b_{2} \exp \left(c_{2} t\right), \\
& \mu_{\odot *}(t)=0.1 \mu_{* \diamond}(t), \quad \mu_{\diamond \times}(t)=\mu_{* \times}(t), \quad \mu_{\diamond \dagger}(t)=\mu_{* \dagger}(t), \\
& \mu_{\times \dagger}(t)=1.2 \mu_{* \dagger}(t) .
\end{aligned}
$$

where $a_{1}=4 \cdot 10^{-4}, b_{1}=3.4674 \cdot 10^{-6}, c_{1}=0.138155, a_{2}=5 \cdot 10^{-4}, b_{2}=7.5858 \cdot 10^{-5}$ and $c_{2}=0.087498$. Use the Euler approximation scheme with step size $h=\frac{1}{12}$ (1 month) to compute $p_{* *}(x, x+35)$ for an insured aged $x=30$ years. You may also plot $t \mapsto p_{* *}(30, t)$, $t \geqslant 30$.

Solution:
The transition probability matrix $P(s, t)=\left\{p_{i j}(s, t)\right\}_{i, j \in S}$ and rate matrix $\Lambda(t)=\left\{\mu_{i j}\right\}_{i, j \in S}$ look like this

$$
P(s, t)=\left(\begin{array}{cccc}
p_{* *} & p_{* \diamond} & p_{* \times} & p_{* \dagger} \\
p_{\diamond *} & p_{\diamond \infty} & p_{\diamond \times} & p_{\diamond \dagger} \\
0 & 0 & p_{\times \times} & p_{\times \dagger} \\
0 & 0 & 0 & 1
\end{array}\right)(s, t), \quad \Lambda(t)=\left(\begin{array}{cccc}
\mu_{* *} & \mu_{* \diamond} & \mu_{* \times} & \mu_{* \dagger} \\
\mu_{\diamond *} & \mu_{\diamond \infty} & \mu_{\diamond \times} & \mu_{\diamond \dagger} \\
0 & 0 & -\mu_{\times \dagger} & \mu_{\times \dagger} \\
0 & 0 & 0 & 0
\end{array}\right)(t) .
$$

Kolmogorov's forward equation in matrix form is

$$
\frac{d}{d t} P(s, t)=P(s, t) \Lambda(t), \quad P(s, s)=I d .
$$

Let $s>0, t<s$ and $h>0$ be fixed, define $N=\frac{t-s}{h}$ the number of iterations. Then the Euler scheme is defined for each $t_{n}=s+n h, n=0, \ldots, N$ as follows

$$
P\left(s, t_{n+1}\right)=P\left(s, t_{n}\right)+h P\left(s, t_{n}\right) \Lambda\left(t_{n}\right), \quad n \geqslant 0,
$$

where $P\left(s, t_{0}\right)=P(s, s)=I d$. The matrix $P\left(s, t_{N}\right)$ approximates the values of the matrix $P(s, t)$. We have implemented this in R and obtained the following plots for $s=0$ and $t=100$, and $s=30$ to $t=100$.

Transition probabilities from active

Figure 1: Transition probabilities starting from $s=0$ in the active state up to $t=100$. The blue color is $p_{* *}(0, \cdot)$ and the darker colours correspond to the states \diamond, \times and \dagger, respectively.

For $t \mapsto p_{*, j}(30, t)$ we have

Transition probabilities from active

Figure 2: Transition probabilities starting from $s=30$ in the active state up to $t=100$. The blue color is $p_{* *}(30, \cdot)$ and the darker colours correspond to the states \diamond, \times and \dagger, respectively.

The transition matrix $P(30,65)$ was found to be

$$
P(30,65)=\left(\begin{array}{llll}
0.61908042 & 0.1435257 & 0.007907848 & 0.2294861 \\
0.01435257 & 0.7482535 & 0.007907848 & 0.2294861 \\
0.00000000 & 0.0000000 & 0.731534516 & 0.2684655 \\
0.00000000 & 0.0000000 & 0.000000000 & 1.0000000
\end{array}\right)
$$

Hence, $p_{* *}(30,65)=0.61908042$. If you wish to do this by hand, observe that $p_{* *}$ does only depend on the transient class $\{*, \diamond\}$ since all other states never return to $\{*, \diamond\}$. Thus you will only obtain a two dimensional SDE for $p_{* *}$ and $p_{* \diamond}$ and you can carry out the Euler scheme iterating two linear ODEs.

Exercise 5.2

Consider a 10-years disability income insurance to a healthy life aged 60 years. Payments of $20000 \$$ are provided by the insurer (continuously in time), while the insured is in the disabled state. A death benefit of $50000 \$$ is immediately payable on death. Further, it is also required that premiums are payable continuously while the insured is in the healthy state. Assume that $r=5 \%$ (intensity rate) and that other expenses are ignored. The transition rates are given by

$$
\mu_{* \diamond}(t)=a_{1}+b_{1} \exp \left(c_{1} t\right) \quad \mu_{\odot *}(t)=0.1 \mu_{* \diamond}(t), \quad \mu_{* \dagger}(t)=a_{2}+b_{2} \exp \left(c_{2} t\right) \quad \mu_{\odot \dagger}(t)=\mu_{* \dagger}(t),
$$

where $a_{1}=4 \cdot 10^{-4}, b_{1}=3.4674 \cdot 10^{-6}, c_{1}=0.138155, a_{2}=5 \cdot 10^{-4}, b_{2}=7.5858 \cdot 10^{-5}$ and $c_{2}=0.087498$.

Calculate the (constant) annual premiums π for this policy.
Solution:
There are two ways of solving this problem: 1) Thiele's differential equation or 2) Using the explicit formula for $V_{*}^{+}(t, A)$.

The policy functions are given by

$$
a_{*}(t)=\left\{\begin{array}{l}
-\pi t, \text { if } t \in[0,10) \\
-\pi 10, \text { if } t \geqslant 10 \\
0, \text { else }
\end{array} \quad a_{\diamond}(t)=\left\{\begin{array}{l}
-20000 t, \text { if } t \in[0,10) \\
-20000 \cdot 10, \text { if } t \geqslant 10 \\
0, \text { else }
\end{array}\right.\right.
$$

and for transitions

$$
a_{* \dagger}(t)=\left\{\begin{array}{l}
50000, \text { if } t \in[0,10) \\
0, \text { else }
\end{array} \quad a_{\diamond \dagger}(t)=\left\{\begin{array}{l}
50000, \text { if } t \in[0,10) \\
0, \text { else }
\end{array} .\right.\right.
$$

We know that the explicit formula is

$$
\begin{aligned}
V_{*}^{+}(t, A)=\frac{1}{v(t)}\left[\int_{t}^{\infty}\right. & v(s) p_{* *}^{x}(t, s) d a_{*}(s)+\int_{t}^{\infty} v(s) p_{* \diamond}^{x}(t, s) d a_{\diamond}(s) \\
& \left.+\int_{t}^{\infty} v(s) p_{* *}^{x}(t, s) \mu_{* \dagger}(s) a_{* \dagger}(s) d s+\int_{t}^{\infty} v(s) p_{* \diamond}^{x}(t, s) \mu_{\diamond \dagger}^{x}(s) a_{\diamond \dagger}(s) d s\right] .
\end{aligned}
$$

Observe that the Riemann-Stiltjes integrals have continuous integrators so we do not need to add any jumps. We have $\dot{a}_{*}(t)=-\pi$ and $\dot{a}_{\diamond}(t)=50000$, hence for $t \in[0,10]$ we have

$$
\begin{aligned}
V_{*}^{+}(t, A)=\frac{1}{v(t)}[- & \pi \int_{t}^{10} v(s) p_{* *}^{x}(t, s) d s+20000 \int_{t}^{10} v(s) p_{* \diamond}^{x}(t, s) d s \\
& \left.+50000 \int_{t}^{10} v(s) p_{* *}^{x}(t, s) \mu_{* \dagger}^{x}(s) d s+50000 \int_{t}^{10} v(s) p_{* \diamond}^{x}(t, s) \mu_{\diamond \dagger}^{x}(s) d s\right]
\end{aligned}
$$

Using the equivalence principle, i.e. $V_{*}^{+}(0, A)=0$ we obtain

$$
\begin{aligned}
\pi & =\frac{50000 \int_{0}^{10} v(s) p_{* *}(x, x+s) \mu_{* \dagger}(x+s) d s+50000 \int_{0}^{10} v(s) p_{* \diamond}(x, x+s) \mu_{\diamond \dagger}(x+s) d s+20000 \int_{0}^{10} v(s) p_{* \diamond}(x, x+s) d s}{\int_{0}^{10} v(s) p_{* *}(x, x+s) d s} \\
& \approx 3260.25 \$
\end{aligned}
$$

where $x=60, r=0.05$ and we used R to complete the last computation. The integrals were computed using a rudimentary Riemann sum, i.e.

$$
\int_{a}^{b} f(s) d s \approx \sum_{i=1}^{(b-a) / h} f(a+i h) h
$$

where a, b and h are such that $(b-a) / h$ is integer. In our case $a=0, b=10$ and $h=1 / 12$. Probably, Newton-Cotes formulae, e.g. Simpson's rule would lead to a better estimate since the integrands are always positive.

