STK4500: Life Insurance and Finance

Exercise list 7: Solutions

Exercise 7.1

Let f:[0,7] — R be a continuous function and B = {B;,t € [0,7]} a Brownian motion. Show

that
T
[ s

is normally distributed with mean zero and variance given by

T
/ f(s)?ds.
0
Solution:

We can find step functions f,, such that

fals) === f(s)

for all s with |f,(s)] < C for all n,s (C constant). On the other hand, we know from Itd’s
isometry that

var [ [ 1) = snam] =] [ (o) - stopas] =0
which implies ) )
| sz === [ psas.

in the sense of variance or, in particular, in probability.
Therefore, we may without loss of generality assume that f is a step function given by

—_

n—

f(S) = ail(ti,ti+ﬂ(s)’

=1

where 0 =ty < t; < --- <t, =T. By the definition of stochastic integrals

T n—1 n—1
/ f(s)dBS = ai(BT/\ti+1 - DT/\ti) = Zai(Bti-H - Bt7)
0 i=1 -

=&



Now we have that { ~ N(0,t;41 —t;) and &, i = 1,...,n — 1 are independent because of
the properties of the Brownian motion. Then

/ " f(s)a.

is normally distributed with

E [ /O ' f(s)st] - gaz-E[@] =0

and

: n—1 L
Var {/Tf(S)dBS} 1HCEP~ Za?VaT’ & = Za?(tiﬂ ) = /T Fods
’ i=1 Py 0

Exercise 7.2

Let B ={B,,t € [0,T]} be a Brownian motion.

(i) Compute [B, B]; using the definition of quadratic variation.

T
/ B,dB;.
0
Solution:

Let 0 = té") < tg”) < oo <t = T be a sequence of partitions of [0,7] with mesh
() _ ™| = 0asn— oo

[ 1—1

(ii) Use (7) to evaluate

=1,...,

fn(s) = ZO Bt§">1(t§">,t§1)1](s)

a stochastic step function. Then f,(s) — B for all s € (0,77]. 1t6’s isometry implies

T T T
— [ BUsPis -2 [ BB s+ [ BB ds
0 0 0
mp—1 - T
= Y BB e (-2 E[Bfuls) / sds
i=0 N’ - Tz—/ 0
:t<n) Zi:%(s/\ti )l(t("),t(i)ll(s)_)S




/ (s —2s+ s)ds
0.

Thus
mp—1 T
/ fu(s)dB, = Z By (B — Byw) “== / B,dB,
‘ 0

in the sense of variance, or in particular, probability.
On the other hand, using the telescopic sum, we get

mp—1 my—1 my—1
N 1S 21X Loy
Z Btgn) (Btgi)l - Bén)) -+ 5 ; (Btgi)l - Btgn)) - 5 £ <Bt£i)1 Bt(n)) 2BT
However,’
mp—1 2 mp—1
’ ( 2 (B = Byw)* = T> =E| > (B ~ BBy, — Byn)’
i=0 i,j=0

_ _ 2 2
o1 3 B [(8y, - B 41

=0 ~

St |t£i>1ft§-"’ =T

. mp—1
indep. Z"

Z’JZO\ g 7
(n) (n) n) n
=t{) 4! *t§+1 £
mp—1
—T—
4 2
+ E FE (Bt(n) _Bt(n)) =T
. i+1
= N0, ™)
Syt
2
mp—1 mp—1
_ (n) (n) 2 (n) (n)y2
= (ti—i—l_ti ) — 1" +2 E (ti+1_ti )
U=0 _i=0
-7 e

— 1‘t(”) tgn)|T

,,,,,

<2 max |t§i)1 — ™ 22,

1:17"'7m7l_

As a result,

. ’L+1
=0

with probability one (at least for a subsequence).
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Note: E[(X, — X)?] =2 0 = X,, === X with probability one, for a subsequence of X,,,
n>=1.
We know that

mp—1

2 (B, = B)* 25 (B, Bl

i=0
with probability one, at least for a subsequence. Hence, [B, Blr = T.
For the second item we have

r 1 1,
B.dB, + =B, B|y = ~ B2
0 2 2

and hence
T 1
/ B.dB, = —(B% -T).
0 2

Exercise 7.3 (Hull-White interest rate model)

In the Hull-White model the dynamics of the overnight interest rate r = {r(t),t € [0,T]} are
described by the following stochastic differential equation

r(t) ==z —I—/O (a(s) — b(s)r(s))ds —|—/0 o(s)dBs,

where B = {By;,t € [0,7]} is a Brownian motion and a, b and ¢ are non-random positive
functions of the time variable ¢.

Find the explicit solution to this equation by using the integration by parts formula from
the lecture applied to the "integrating factor"
and Z(t) = r(t).

V(t) = exp ( /0 t b(s)ds>
Solution:

Use Tto’s formula applied to X\ = V(t), x® = r(t) and f(x1,z2) = 129 to get

V) = fxM, xP) = x{x§
N——

=z

tof ) "Of L)
L XEhax® / xW xax®
+ 89@1( D)AXT | g (X X)X,

- (X x®hax®, x 0
5 3 [ S X, xo

1<z]<2

ST x®) - px@ x| - Y of (x xPyAx ),
N N——

. X
0<s<t 0 1<ij<e ! 0

=0

where we used that s — X, is a.s. continuous.



Recall that Xt(l), Xt(2) continuous in t =
(X0, x0e = [xO x0)], - xPx = [xO - x x0)), (0.1)

" Note: [A, D]y = 01if A or D are of bounded variation with continuous paths starting in zero
(See List 8). Since 4V (t) = b(t)V (t) a.e. we know that

V(t)=1+ /Otb(s)V(s)ds

then V is of bounded variation (as an integral w.r.t. ds) and with continuous paths. Hence,
) ) t t
(XD XD)e =0 = V(t)r(t) =2+ / XPaxM 4 / XMax®,
0 0

Furthermore,

As a result
t t
r(t) = e~ Jobeds g 4 o= o bls)ds / V(s)a(s)r(s)ds + e~ Job()ds / Vi(s)o(s)dBs
0 0

which gives us the explicit unique solution. Alternatively, one can also use the integration by
parts formula from Definition 7.9 to obtain the result.

Exercise 7.4 (Vasicek model with jumps)

Suppose that the short rates r(¢) are modelled by the stochastic differential equation

r(t) =z + /Ot a(b—r(s))ds + /Ot odLs,,

where a, b and o are non-negative constants and L = {L;,t € [0,T]} is a Lévy process, that
is Ly = 0 a.s. and L has (as the Brownian motion) independent and stationary (but not
necessarily normally distributed) increments. In addition, assume that L is a martingale with
E[|L|?] < oo for all ¢ € [0,T].

Solution:

Define V(t) = e then V(t) = 1+ fot aV(s)ds. Thus V is of bounded variation (as an
integral w.r.t. ds) and continuous. Hence, by similar computations as in the previous exercise
we have )

~=
Virly= [V —=V(0),r] +V(0)r(0)=V(0)r(0).
—_——

=0 (because B.V.)
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Using the integration by parts formula from Definition 7.9 applied to V (¢) and r(t) we get
t t
V,rly =V(t)r(t) — / V(s™)dr(s) — / r(s7) dV (s).
=V(0)r(0) V(s) r(07):=0
Hence,
t t
V(t)r(t) = x—l—/ V(s)dr(s) +/ r(s7)dV(s).

0 0

Substituting the differentials dr(s) and dV(s) we have

V(t)r(t) :x—i-/o V(s)a(b—r(s))ds+/0 V(s)odLs+ /0 r(s7)aV(s)ds.

[\

:f(;5 r(s)aV(s)ds
since r(s) only has countably many jumps

Now [} V(s)abds = b(e® — 1) and as a consequence

t
r(t) =z~ +b(1 — e ) + / e =gdL,.
0

Exercise 7.5

Let X = {Xi,t > 0} be a regular time-homogeneous Markov chain as a model for stochastic
interest rates and denote by N, (t) the number of transitions from state j to state k # j by
time t.

Calculate the "speed" of changes of the expected number of interest rate transitions from j
to k at time ¢, given X; = j, that is

E[Nji(t + h) — Ny ()| X; = j]
h

for h ™\, 0 by using the following fact (which can be used for an alternative definition of Markov
chains X3): Consider the jump chain of X;:

Yn = XJ”,

where J,, is the n-th jump time of X;. Then Y,, n > 0 is a Markov chain with transition
probabilities

_ {Mij/ﬂu J #dand p; # 0, B {Oa pi # 0,
Pij = Pii =

O,J#Zandﬂzzo 17/%:0
where p;; are the transition rates of X;. Moreover, for all n > 1, ig,...,%,_;, conditional
on Yy = ig,...,Y,—1 = i, the holding times S; := J; — J;_1, j = 1,...,n (Jy = 0) are
independent and exponentially distributed with parameters ., ..., (;, ;-
Solution:

Since X, s > 0 is a time-homogeneous process we can set t = 0 in

E [Njk(t + h) — Nj(t)|Xe = j] /h.
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It follows from the definition of Njx(s), s > 0 that

Nj(h) = Z 1{XJn_1:j, X, =k Jn<h}’
~~

N>l Se——
=Yn =Yn_1
Hence.
) 1
E[Nju(h)|Xo = j] = > E [Lisgr1si4eSuatt Lvi=ip L=ty Lpvo=iy ) P(Yy =)
n=>1

1
— Z Z ]E |:1{SO+151+...7Sn<h}]-{Yn:k,Yvn_1=j,Yn_2=mn_2,...,Y1=m1,Yb:j}] ]P)(T

=)
indep. and
exp. distributed

=3 ) E|Nserisiioseen Yo=5Yi=m, . Yoo =m0, Yo =5, Y, =k

1
. P(Mo=jYi=ma,... Y=Y, = k)
XP(%:j) (0 J, Y1 my, y 1 J )

Generalized Erlang distribution for sums of independent exponentially distributed random
variables (use induction):

E [1{SO+IS1+---,Sn<h}|YO =5Yi=mq,.... Y, o =my Y, =3Y,= k’]
:IED(SO+51 + +Sn < h|}/0 :]7}/1 :mla"'7Yn72 :mn727Yn Ij,Yn - k) - 1 _aeh@H7

where
wav) 1(7) 0000 0
o 0  —u(my)u(imy) 0 0 0 O 0
" 0 0 00 0 0 —p(my_o)u(m,_2)
0 0 0000 —u(j)
for a:= (1,0,...,0) and T = (1,...,1)". Then by the mean value theorem we have

t
1 — el = / —ae!™®n e, Idth.
0

E [Nu(W)|X. = j] /h =

1
1
§ § —aet™® e, Ndt h——P(Yy = 7. Y, = Y, =3Y., =k
/0< ae @n) ]P’(YE):]) (0 VIR 4! my, s In—1 1y In )

n=2l my,...,mp_2€S

1
1 , ,
n=1 0 —

Zpzo (51 (-aOLT'D)

S/

~—
=P(Yn=Fk|Yo=4,Yn_1=§)P(Yn—1=4|Yo=4)=pji P(Yn—1=3|Yo=))
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he [t . .
— Z ﬁ/ tﬂdtZ(—aG)g*lH)pjklP’(Yn_l = j|Yo = 7j).
- JO

p=0 nzl

Letting h \, 0 we have

h 0 . .
N (—a®ul) pai P(Yaor = Yy = §) = e

N—_——

n=0 . \;f:
5 if n=1 = /j
0ifn>1 7



