STK4500: Life Insurance and Finance

Exercise list 7: Solutions

Exercise 7.1

Let $f:[0, T] \rightarrow \mathbb{R}$ be a continuous function and $B=\left\{B_{t}, t \in[0, T]\right\}$ a Brownian motion. Show that

$$
\int_{0}^{T} f(s) d B_{s}
$$

is normally distributed with mean zero and variance given by

$$
\int_{0}^{T} f(s)^{2} d s
$$

Solution:
We can find step functions f_{n} such that

$$
f_{n}(s) \xrightarrow{n \rightarrow \infty} f(s)
$$

for all s with $\left|f_{n}(s)\right| \leqslant C$ for all n, s (C constant). On the other hand, we know from Itô's isometry that

$$
\mathbb{V} a r\left[\int_{0}^{T}\left(f_{n}(s)-f(s)\right) d B_{s}\right]=\mathbb{E}\left[\int_{0}^{T}\left(f_{n}(s)-f(s)\right)^{2} d s\right] \xrightarrow{n \rightarrow \infty} 0,
$$

which implies

$$
\int_{0}^{T} f_{n}(s) d B_{s} \xrightarrow{n \rightarrow \infty} \int_{0}^{T} f(s) d B_{s}
$$

in the sense of variance or, in particular, in probability.
Therefore, we may without loss of generality assume that f is a step function given by

$$
f(s)=\sum_{i=1}^{n-1} a_{i} \mathbf{1}_{\left(t_{i}, t_{i+1}\right]}(s),
$$

where $0=t_{0}<t_{1}<\cdots<t_{n}=T$. By the definition of stochastic integrals

$$
\int_{0}^{T} f(s) d B_{s}=\sum_{i=1}^{n-1} a_{i}\left(B_{T \wedge t_{i+1}}-D_{T \wedge t_{i}}\right)=\sum_{i=1}^{n-1} a_{i}(\underbrace{B_{t_{i+1}}-B_{t_{i}}}_{=: \xi_{i}}) .
$$

Now we have that $\xi_{i} \sim N\left(0, t_{i+1}-t_{i}\right)$ and $\xi_{i}, i=1, \ldots, n-1$ are independent because of the properties of the Brownian motion. Then

$$
\int_{0}^{T} f(s) d B_{s}
$$

is normally distributed with

$$
\mathbb{E}\left[\int_{0}^{T} f(s) d B_{s}\right]=\sum_{i=1}^{n-1} a_{i} E\left[\xi_{i}\right]=0
$$

and

$$
\mathbb{V} a r\left[\int_{0}^{T} f(s) d B_{s}\right] \stackrel{\text { indep. }}{=} \sum_{i=1}^{n-1} a_{i}^{2} \mathbb{V} \operatorname{ar}\left[\xi_{i}\right]=\sum_{i=1}^{n-1} a_{i}^{2}\left(t_{i+1}-t_{i}\right)=\int_{0}^{T} f(s)^{2} d s
$$

Exercise 7.2

Let $B=\left\{B_{t}, t \in[0, T]\right\}$ be a Brownian motion.
(i) Compute $[B, B]_{t}$ using the definition of quadratic variation.
(ii) Use (i) to evaluate

$$
\int_{0}^{T} B_{s} d B_{s}
$$

Solution:
Let $0=t_{0}^{(n)}<t_{1}^{(n)}<\cdots<t_{m_{n}}^{(n)}=T$ be a sequence of partitions of $[0, T]$ with mesh $\max _{i=1, \ldots, n}\left|t_{i}^{(n)}-t_{i-1}^{(n)}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Define

$$
f_{n}(s)=\sum_{i=0}^{m_{n}} B_{t_{i}^{(n)}} \mathbf{1}_{\left(t_{i}^{(n)}, t_{i+1}^{(n)}\right]}(s)
$$

a stochastic step function. Then $f_{n}(s) \rightarrow B_{s}$ for all $s \in(0, T]$. Itô's isometry implies

$$
\begin{aligned}
\mathbb{V} a r\left[\int_{0}^{T}\left(f_{n}(s)-B_{s}\right) d B_{s}\right] & =\mathbb{E}\left[\int_{0}^{T}\left(f_{n}(s)-B_{s}\right)^{2} d s\right] \\
& =\mathbb{E}\left[\int_{0}^{T}\left(f_{n}(s)^{2}-2 B_{s} f_{n}(s)+B_{s}^{2}\right) d s\right] \\
& =\int_{0}^{T} \mathbb{E}\left[f_{n}(s)^{2}\right] d s-2 \int_{0}^{T} \mathbb{E}\left[B_{s} f_{n}(s)\right] d s+\int_{0}^{T} \underbrace{\mathbb{E}\left[B_{s}^{2}\right]}_{=s} d s \\
& =\underbrace{\sum_{i=0}^{m_{n}-1} \underbrace{\mathbb{E}\left[B_{t_{i}^{(n)}}^{2}\right]}_{=t_{i}^{(n)}} \mathbf{1}_{\left(t_{i}^{(n)}, t_{i-1}^{(n)}\right]}(s)-2 \underbrace{\mathbb{E}\left[B_{s} f_{n}(s)\right]}_{\sum_{i=0}^{m_{n}\left(s \wedge t_{i}^{(n)}\right) \mathbf{1} \mathbf{1}_{\left(t_{i}^{(n)}, t_{i+1}^{(n)}\right]}(s) \rightarrow s}} \int_{0}^{T} s d s}\}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{T}(s-2 s+s) d s \\
& =0
\end{aligned}
$$

Thus

$$
\int_{0}^{T} f_{n}(s) d B_{s}=\sum_{i=0}^{m_{n}-1} B_{t_{i}^{(n)}}\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right) \xrightarrow{n \rightarrow \infty} \int_{0}^{T} B_{s} d B_{s}
$$

in the sense of variance, or in particular, probability.
On the other hand, using the telescopic sum, we get

$$
\sum_{i=0}^{m_{n}-1} B_{t_{i}^{(n)}}\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)+\frac{1}{2} \sum_{i=0}^{m_{n}-1}\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)^{2}=\frac{1}{2} \sum_{i=0}^{m_{n}-1}\left(B_{t_{i+1}^{(n)}}^{2}-B_{t_{i}^{(n)}}^{2}\right)=\frac{1}{2} B_{T}^{2}
$$

However,'
$\mathbb{E}\left[\left(\sum_{i=0}^{m_{n}-1}\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)^{2}-T\right)^{2}\right]=\mathbb{E}\left[\sum_{i, j=0}^{m_{n}-1}\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)^{2}\left(B_{t_{j+1}^{(n)}}-B_{t_{j}^{(n)}}\right)^{2}\right]$

$$
-2 T \sum_{i=0}^{m_{n}-1} \underbrace{\mathbb{E}\left[\left(B_{t_{i+1}^{(n)}}-B_{\left.\left.t_{i}^{(n)}\right)^{2}\right]}\right.\right.}_{\sum_{i=0}^{m_{n}-1}\left|t_{i+1}^{(n)}-t_{i}^{(n)}\right|=T}+T^{2}
$$

$$
\stackrel{\text { indep. }}{=} \sum_{i, j=0}^{m_{n}-1} \underbrace{\mathbb{E}\left[\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)^{2}\right]}_{=t_{i+1}^{(n)}-t_{i}^{(n)}} \underbrace{\mathbb{E}\left[\left(B_{t_{j+1}^{(n)}}-B_{t_{j}^{(n)}}\right)^{2}\right]}_{=t_{j+1}^{(n)}-t_{j}^{(n)}}
$$

$$
+\sum_{i=0}^{m_{n}-1} \underbrace{E[\overbrace{\left.B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)^{4}}^{N\left(0, t_{i+1}^{(n)}-t_{i}^{(n)}\right)}}_{3\left(t_{i+1}^{(n)}-t_{i}^{(n)}\right)^{2}}]^{[}-T^{2}
$$

$$
=(\underbrace{\sum_{i=0}^{m_{n}-1}\left(t_{i+1}^{(n)}-t_{i}^{(n)}\right)}_{=T})^{2}-T^{2}+2 \underbrace{\max ^{2}}_{\leqslant 2 \max _{i=1, \ldots, m_{n}-1\left|t_{i+1}^{(n)}-t_{i}^{(n)}\right| T}^{\sum_{i=0}^{m_{n}-1}\left(t_{i+1}^{(n)}-t_{i}^{(n)}\right)^{2}}}
$$

$$
\leqslant 2 \max _{i=1, \ldots, m_{n}-1}\left|t_{i+1}^{(n)}-t_{i}^{(n)}\right| T \xrightarrow{n \rightarrow \infty} 0 .
$$

As a result,

$$
\sum_{i=0}^{m_{n}-1}\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)^{2} \xrightarrow{n t o \infty} T
$$

with probability one (at least for a subsequence).

Note: $\mathbb{E}\left[\left(X_{n}-X\right)^{2}\right] \xrightarrow{n \rightarrow \infty} 0 \Rightarrow X_{n} \xrightarrow{n \rightarrow \infty} X$ with probability one, for a subsequence of X_{n}, $n \geqslant 1$.

We know that

$$
\sum_{i=0}^{m_{n}-1}\left(B_{t_{i+1}^{(n)}}-B_{t_{i}^{(n)}}\right)^{2} \xrightarrow{n t o \infty}[B, B]_{T}
$$

with probability one, at least for a subsequence. Hence, $[B, B]_{T}=T$.
For the second item we have

$$
\int_{0}^{T} B_{s} d B_{s}+\frac{1}{2}[B, B]_{T}=\frac{1}{2} B_{T}^{2}
$$

and hence

$$
\int_{0}^{T} B_{s} d B_{s}=\frac{1}{2}\left(B_{T}^{2}-T\right) .
$$

Exercise 7.3 (Hull-White interest rate model)

In the Hull-White model the dynamics of the overnight interest rate $r=\{r(t), t \in[0, T]\}$ are described by the following stochastic differential equation

$$
r(t)=x+\int_{0}^{t}(a(s)-b(s) r(s)) d s+\int_{0}^{t} \sigma(s) d B_{s}
$$

where $B=\left\{B_{t}, t \in[0, T]\right\}$ is a Brownian motion and a, b and σ are non-random positive functions of the time variable t.

Find the explicit solution to this equation by using the integration by parts formula from the lecture applied to the "integrating factor"

$$
V(t)=\exp \left(\int_{0}^{t} b(s) d s\right)
$$

and $Z(t)=r(t)$.
Solution:
Use Itô's formula applied to $X_{t}^{(1)}=V(t), X_{t}^{(2)}=r(t)$ and $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ to get

$$
\begin{aligned}
V(t) r(t)= & f\left(X_{t}^{(1)}, X_{t}^{(2)}\right)=\underbrace{X_{0}^{(1)} X_{0}^{(2)}}_{=x} \\
& +\int_{0}^{t} \frac{\partial f}{\partial x_{1}}\left(X_{s^{-}}^{(1)}, X_{s^{-}}^{(2)}\right) d X_{s}^{(1)}+\int_{0}^{t} \frac{\partial f}{\partial x_{2}}\left(X_{s^{-}}^{(1)}, X_{s^{-}}^{(2)}\right) d X_{s}^{(2)} \\
& +\frac{1}{2} \sum_{1 \leqslant i, j \leqslant 2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(X_{s^{-}}^{(1)}, X_{s^{-}}^{(2)}\right) d\left[X^{(i)}, X^{(j)}\right]_{s}^{c} \\
& \sum_{0<s \leqslant t}[\underbrace{f\left(X_{s}^{(1)}, X_{s}^{(2)}\right)-f\left(X_{s^{-}}^{(1)}, X_{s^{-}}^{(2)}\right)}_{=0}]-\sum_{1 \leqslant i, j \leqslant 2} \frac{\partial f}{\partial x_{i}}\left(X_{s^{-}}^{(1)}, X_{s^{-}}^{(2)}\right) \underbrace{\Delta X_{s}^{(i)}}_{=0},
\end{aligned}
$$

where we used that $s \mapsto X_{s}$ is a.s. continuous.

Recall that $X_{t}^{(1)}, X_{t}^{(2)}$ continuous in $\mathrm{t} \Rightarrow$

$$
\begin{equation*}
\left[X^{(i)}, X^{(j)}\right]_{t}^{c}=\left[X^{(i)}, X^{(j)}\right]_{t}-X_{0}^{(i)} X_{0}^{(j)}=\left[X^{(i)}-X_{0}^{(i)}, X^{(j)}\right]_{t} \tag{0.1}
\end{equation*}
$$

' Note: $[A, D]_{t}=0$ if A or D are of bounded variation with continuous paths starting in zero (See List 8). Since $\frac{d}{d t} V(t)=b(t) V(t)$ a.e. we know that

$$
V(t)=1+\int_{0}^{t} b(s) V(s) d s
$$

then V is of bounded variation (as an integral w.r.t. $d s$) and with continuous paths. Hence,

$$
\left[X^{(i)}, X^{(j)}\right]_{t}^{c}=0 \Rightarrow V(t) r(t)=x+\int_{0}^{t} X_{s}^{(2)} d X_{s}^{(1)}+\int_{0}^{t} X_{s}^{(1)} d X_{s}^{(2)} .
$$

Furthermore,

$$
\begin{aligned}
V(t) r(t) & =x+\int_{0}^{t} r(s) b(s) V(s) d s+\int_{0}^{t} V(s)(a(s)-b(s) r(s)) d s+\int_{0}^{t} V(s) \sigma(s) d B_{s} \\
& =x+\int_{0}^{t} V(s) a(s) d s+\int_{0}^{t} V(s) \sigma(s) d B_{s} .
\end{aligned}
$$

As a result

$$
r(t)=e^{-\int_{0}^{t} b(s) d s} x+e^{-\int_{0}^{t} b(s) d s} \int_{0}^{t} V(s) a(s) r(s) d s+e^{-\int_{0}^{t} b(s) d s} \int_{0}^{t} V(s) \sigma(s) d B_{s}
$$

which gives us the explicit unique solution. Alternatively, one can also use the integration by parts formula from Definition 7.9 to obtain the result.

Exercise 7.4 (Vasicek model with jumps)

Suppose that the short rates $r(t)$ are modelled by the stochastic differential equation

$$
r(t)=x+\int_{0}^{t} a(b-r(s)) d s+\int_{0}^{t} \sigma d L_{s}
$$

where a, b and σ are non-negative constants and $L=\left\{L_{t}, t \in[0, T]\right\}$ is a Lévy process, that is $L_{0}=0$ a.s. and L has (as the Brownian motion) independent and stationary (but not necessarily normally distributed) increments. In addition, assume that L is a martingale with $E\left[\left|L_{t}\right|^{2}\right]<\infty$ for all $t \in[0, T]$.

Solution:
Define $V(t)=e^{a t}$ then $V(t)=1+\int_{0}^{t} a V(s) d s$. Thus V is of bounded variation (as an integral w.r.t. $d s$) and continuous. Hence, by similar computations as in the previous exercise we have

$$
[V, r]_{t}=\underbrace{[V-\overbrace{V(0)}^{=1}, r]}_{=0}+V(0) r(0)=V(0) r(0) .
$$

Using the integration by parts formula from Definition 7.9 applied to $V(t)$ and $r(t)$ we get

$$
\underbrace{[V, r]_{t}}_{=V(0) r(0)}=V(t) r(t)-\int_{0}^{t} \underbrace{V\left(s^{-}\right)}_{V(s)} d r(s)-\int_{0}^{t} \underbrace{r\left(s^{-}\right)}_{r\left(0^{-}\right):=0} d V(s) .
$$

Hence,

$$
V(t) r(t)=x+\int_{0}^{t} V(s) d r(s)+\int_{0}^{t} r\left(s^{-}\right) d V(s)
$$

Substituting the differentials $d r(s)$ and $d V(s)$ we have

$$
V(t) r(t)=x+\int_{0}^{t} V(s) a(b-r(s)) d s+\int_{0}^{t} V(s) \sigma d L_{s}+\quad \underbrace{\int_{0}^{t} r\left(s^{-}\right) a V(s) d s}_{=\int_{0}^{t} r(s) a V(s) d s} .
$$

since $r(s)$ only has countably many jumps
Now $\int_{0}^{t} V(s) a b d s=b\left(e^{a t}-1\right)$ and as a consequence

$$
r(t)=x e^{-a t}+b\left(1-e^{-a t}\right)+\int_{0}^{t} e^{-a(t-s)} \sigma d L_{s}
$$

Exercise 7.5

Let $X=\left\{X_{t}, t \geqslant 0\right\}$ be a regular time-homogeneous Markov chain as a model for stochastic interest rates and denote by $N_{j k}(t)$ the number of transitions from state j to state $k \neq j$ by time t.

Calculate the "speed" of changes of the expected number of interest rate transitions from j to k at time t, given $X_{t}=j$, that is

$$
\frac{E\left[N_{j k}(t+h)-N_{j k}(t) \mid X_{t}=j\right]}{h}
$$

for $h \searrow 0$ by using the following fact (which can be used for an alternative definition of Markov chains X_{t}): Consider the jump chain of X_{t} :

$$
Y_{n}:=X_{J_{n}},
$$

where J_{n} is the n-th jump time of X_{t}. Then $Y_{n}, n \geqslant 0$ is a Markov chain with transition probabilities

$$
p_{i j}=\left\{\begin{array}{l}
\mu_{i j} / \mu_{i}, j \neq i \text { and } \mu_{i} \neq 0, \\
0, j \neq i \text { and } \mu_{i}=0
\end{array} \quad p_{i i}=\left\{\begin{array}{l}
0, \mu_{i} \neq 0 \\
1, \mu_{i}=0
\end{array}\right.\right.
$$

where $\mu_{i j}$ are the transition rates of X_{t}. Moreover, for all $n \geqslant 1, i_{0}, \ldots, i_{n-1}$, conditional on $Y_{0}=i_{0}, \ldots, Y_{n-1}=i_{n-1}$ the holding times $S_{j}:=J_{j}-J_{j-1}, j=1, \ldots, n\left(J_{0}=0\right)$ are independent and exponentially distributed with parameters $\mu_{i_{0}}, \ldots, \mu_{i_{n-1}}$.

Solution:
Since $X_{s}, s \geqslant 0$ is a time-homogeneous process we can set $t=0$ in

$$
\mathbb{E}\left[N_{j k}(t+h)-N_{j k}(t) \mid X_{t}=j\right] / h .
$$

It follows from the definition of $N_{j k}(s), s \geqslant 0$ that

$$
N_{j k}(h)=\sum_{n \geqslant 1} \mathbf{1}_{\{\underbrace{}_{=Y_{n}} \underbrace{}_{J_{n-1}}=j, \underbrace{}_{n-1}, X_{J_{n}}=k, J_{n}<h\} .} .
$$

Hence.

$$
\begin{aligned}
& \mathbb{E}\left[N_{j k}(h) \mid X_{0}=j\right]= \sum_{n \geqslant 1} \mathbb{E}\left[\mathbf{1}_{\left\{S_{0}+1 S_{1}+\cdots, S_{n}<h\right\}} \mathbf{1}_{\left\{Y_{n-1}=j\right\}} \mathbf{1}_{\left\{Y_{n}=k\right\}} \mathbf{1}_{\left\{Y_{0}=j\right\}}\right] \frac{1}{\mathbb{P}\left(Y_{0}=j\right)} \\
&=\sum_{n \geqslant 1} \sum_{m_{1}, \ldots, m_{n-2} \in S} \mathbb{E}\left[\mathbf{1}_{\left\{S_{0}+1 S_{1}+\cdots, S_{n}<h\right\}} \mathbf{1}_{\left\{Y_{n}=k, Y_{n-1}=j, Y_{n-2}=m_{n-2}, \ldots, Y_{1}=m_{1}, Y_{0}=j\right\}}\right] \frac{1}{\mathbb{P}\left(Y_{0}=j\right)} \\
&=\sum_{n \geqslant 1} \sum_{m_{1}, \ldots, m_{n-2} \in S} \mathbb{E}[\overbrace{\mathbb{1}_{\left\{S_{0}+1 S_{1}+\cdots, S_{n}<h\right\}}} \mid Y_{0}=j, Y_{1}=m_{1}, \ldots, Y_{n-2}=m_{n-2}, Y_{n}=j, Y_{n}=k] \\
& \quad \times \frac{1}{\text { exp. distributed and }} \mathbb{P}\left(Y_{0}=j\right) \\
& \mathbb{P}\left(Y_{0}=j, Y_{1}=m_{1}, \ldots, Y_{n-1}=j, Y_{n}=k\right) .
\end{aligned}
$$

Generalized Erlang distribution for sums of independent exponentially distributed random variables (use induction):

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}_{\left\{S_{0}+1 S_{1}+\cdots, S_{n}<h\right\}} \mid Y_{0}=j, Y_{1}=m_{1}, \ldots, Y_{n-2}=m_{n-2}, Y_{n}=j, Y_{n}=k\right] \\
& =\mathbb{P}\left(S_{0}+S_{1}+\cdots+S_{n}<h \mid Y_{0}=j, Y_{1}=m_{1}, \ldots, Y_{n-2}=m_{n-2}, Y_{n}=j, Y_{n}=k\right)=1-\alpha e^{h \Theta} \mathbb{I},
\end{aligned}
$$

where

$$
\Theta_{n}:=\left(\begin{array}{ccccccc}
-\mu(j) & \mu(j) & 0 & 0 & 0 & 0 & 0 \\
0 & -\mu\left(m_{1}\right) \mu\left(m_{1}\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\mu\left(m_{n-2}\right) \mu\left(m_{n-2}\right) \\
0 & 0 & 0 & 0 & 0 & 0 & -\mu(j)
\end{array}\right)
$$

for $\alpha:=(1,0, \ldots, 0)$ and $\mathbb{I}=(1, \ldots, 1)^{t}$. Then by the mean value theorem we have

$$
1-\alpha e^{h \Theta_{n}} \mathbb{I}=\int_{0}^{t}-\alpha e^{t h \Theta_{n}} \Theta_{n} \mathbb{I} d t h
$$

\Rightarrow

$$
\begin{aligned}
& \mathbb{E}\left[N_{j k}(h) \mid X_{s}=j\right] / h= \\
& \sum_{n \geqslant 1} \sum_{m_{1}, \ldots, m_{n-2} \in S} \int_{0}^{1}\left(-\alpha e^{t h \Theta_{n}} \Theta_{n} \mathbb{I}\right) d t h \frac{1}{\mathbb{P}\left(Y_{0}=j\right)} \mathbb{P}\left(Y_{0}=j, Y_{1}=m_{1}, \ldots, Y_{n-1}=j, Y_{n}=k\right) \\
& =\sum_{n \geqslant 1} \int_{0}^{1} \underbrace{\left(-\alpha e^{t h \Theta_{n}} \Theta_{n} \mathbb{I}\right)}_{\sum_{\mu \geqslant 0} h^{\mu}\left(\frac{t \mu}{\mu!}\left(-\alpha \Theta_{n}^{\mu+1} \mathbb{I}\right)\right)} d t \underbrace{\frac{1}{\mathbb{P}\left(Y_{0}=j\right)} \mathbb{P}\left(Y_{0}=j, Y_{1}=m_{1}, \ldots, Y_{n-1}=j, Y_{n}=k\right)}_{=\mathbb{P}\left(Y_{n}=k \mid Y_{0}=j, Y_{n-1}=j\right) \mathbb{P}\left(Y_{n-1}=j \mid Y_{0}=j\right)=p_{j k} P\left(Y_{n-1}=j \mid Y_{0}=j\right)}
\end{aligned}
$$

$$
=\sum_{\mu \geqslant 0} \frac{h^{\mu}}{\mu!} \int_{0}^{t} t^{\mu} d t \sum_{n \geqslant 1}\left(-\alpha \Theta_{n}^{\mu+1} \mathbb{I}\right) p_{j k} \mathbb{P}\left(Y_{n-1}=j \mid Y_{0}=j\right)
$$

Letting $h \searrow 0$ we have

$$
\xrightarrow{h \searrow 0} \sum_{n \geqslant 0} \underbrace{\left(-\alpha \Theta_{n} \mathbb{I}\right)}_{\substack{\mu_{j} \text { if } n=1 \\ 0 \text { if } n \geqslant 1}} \underbrace{\mu_{j}}_{\mu_{j k}}, ~ \mathbb{P}\left(Y_{n-1}=j \mid Y_{0}=j\right)=\mu_{j k} .
$$

