
STK4500: Life Insurance and Finance

Exercise list 7: Solutions

Exercise 7.1

Let f : [0, T ]→ R be a continuous function and B = {Bt, t ∈ [0, T ]} a Brownian motion. Show
that ∫ T

0

f(s)dBs

is normally distributed with mean zero and variance given by∫ T

0

f(s)2ds.

Solution:
We can �nd step functions fn such that

fn(s)
n→∞−−−→ f(s)

for all s with |fn(s)| 6 C for all n, s (C constant). On the other hand, we know from Itô's
isometry that

Var
[∫ T

0

(fn(s)− f(s))dBs

]
= E

[∫ T

0

(fn(s)− f(s))2ds

]
n→∞−−−→ 0,

which implies ∫ T

0

fn(s)dBs
n→∞−−−→

∫ T

0

f(s)dBs

in the sense of variance or, in particular, in probability.
Therefore, we may without loss of generality assume that f is a step function given by

f(s) =
n−1∑
i=1

ai1(ti,ti+1](s),

where 0 = t0 < t1 < · · · < tn = T . By the de�nition of stochastic integrals∫ T

0

f(s)dBs =
n−1∑
i=1

ai(BT∧ti+1
−DT∧ti) =

n−1∑
i=1

ai(Bti+1
−Bti︸ ︷︷ ︸

=:ξi

).
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Now we have that ξi ∼ N(0, ti+1 − ti) and ξi, i = 1, . . . , n − 1 are independent because of
the properties of the Brownian motion. Then∫ T

0

f(s)dBs

is normally distributed with

E
[∫ T

0

f(s)dBs

]
=

n−1∑
i=1

aiE[ξi] = 0

and

Var
[∫ T

0

f(s)dBs

]
indep.

=
n−1∑
i=1

a2
iVar [ξi] =

n−1∑
i=1

a2
i (ti+1 − ti) =

∫ T

0

f(s)2ds.

Exercise 7.2

Let B = {Bt, t ∈ [0, T ]} be a Brownian motion.

(i) Compute [B,B]t using the de�nition of quadratic variation.

(ii) Use (i) to evaluate ∫ T

0

BsdBs.

Solution:

Let 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
mn = T be a sequence of partitions of [0, T ] with mesh

maxi=1,...,n |t(n)
i − t

(n)
i−1| → 0 as n→∞.

De�ne

fn(s) =
mn∑
i=0

B
t
(n)
i
1

(t
(n)
i ,t

(n)
i+1]

(s)

a stochastic step function. Then fn(s)→ Bs for all s ∈ (0, T ]. Itô's isometry implies

Var
[∫ T

0

(fn(s)−Bs)dBs

]
= E

[∫ T

0

(fn(s)−Bs)
2ds

]
= E

[∫ T

0

(fn(s)2 − 2Bsfn(s) +B2
s )ds

]
=

∫ T

0

E[fn(s)2]ds− 2

∫ T

0

E[Bsfn(s)]ds+

∫ T

0

E[B2
s ]︸ ︷︷ ︸

=s

ds

=
mn−1∑
i=0

E[B2

t
(n)
i

]︸ ︷︷ ︸
=t

(n)
i

1
(t

(n)
i ,t

(n)
i−1]

(s)

︸ ︷︷ ︸
→s

−2 E[Bsfn(s)]︸ ︷︷ ︸∑mn
i=0(s∧t(n)i )1

(t
(n)
i

,t
(n)
i+1

]
(s)→s

∫ T

0

sds
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=

∫ T

0

(s− 2s+ s)ds

= 0.

Thus ∫ T

0

fn(s)dBs =
mn−1∑
i=0

B
t
(n)
i

(B
t
(n)
i+1
−B

t
(n)
i

)
n→∞−−−→

∫ T

0

BsdBs

in the sense of variance, or in particular, probability.
On the other hand, using the telescopic sum, we get

mn−1∑
i=0

B
t
(n)
i

(B
t
(n)
i+1
−B

t
(n)
i

) +
1

2

mn−1∑
i=0

(B
t
(n)
i+1
−B

t
(n)
i

)2 =
1

2

mn−1∑
i=0

(B2

t
(n)
i+1

−B2

t
(n)
i

) =
1

2
B2
T .

However,'

E

(mn−1∑
i=0

(B
t
(n)
i+1
−B

t
(n)
i

)2 − T

)2
 = E

[
mn−1∑
i,j=0

(B
t
(n)
i+1
−B

t
(n)
i

)2(B
t
(n)
j+1
−B

t
(n)
j

)2

]

− 2T
mn−1∑
i=0

E
[
(B

t
(n)
i+1
−B

t
(n)
i

)2
]

︸ ︷︷ ︸∑mn−1
i=0 |t(n)i+1−t

(n)
i |=T

+T 2

indep.
=

mn−1∑
i,j=0

E
[
(B

t
(n)
i+1
−B

t
(n)
i

)2
]

︸ ︷︷ ︸
=t

(n)
i+1−t

(n)
i

E
[
(B

t
(n)
j+1
−B

t
(n)
j

)2
]

︸ ︷︷ ︸
=t

(n)
j+1−t

(n)
j

+
mn−1∑
i=0

E

(
︷ ︸︸ ︷
B
t
(n)
i+1
−B

t
(n)
i

N(0,t
(n)
i+1−t

(n)
i )

)4


︸ ︷︷ ︸

3(t
(n)
i+1−t

(n)
i )2

−T 2

=


mn−1∑
i=0

(t
(n)
i+1 − t

(n)
i )︸ ︷︷ ︸

=T


2

− T 2 + 2
mn−1∑
i=0

(t
(n)
i+1 − t

(n)
i )2

︸ ︷︷ ︸
62 maxi=1,...,mn−1 |t

(n)
i+1−t

(n)
i |T

6 2 max
i=1,...,mn−1

|t(n)
i+1 − t

(n)
i |T

n→∞−−−→ 0.

As a result,
mn−1∑
i=0

(B
t
(n)
i+1
−B

t
(n)
i

)2 n to∞−−−→ T

with probability one (at least for a subsequence).
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Note: E[(Xn −X)2]
n→∞−−−→ 0⇒ Xn

n→∞−−−→ X with probability one, for a subsequence of Xn,
n > 1.

We know that
mn−1∑
i=0

(B
t
(n)
i+1
−B

t
(n)
i

)2 n to∞−−−→ [B,B]T

with probability one, at least for a subsequence. Hence, [B,B]T = T .
For the second item we have∫ T

0

BsdBs +
1

2
[B,B]T =

1

2
B2
T

and hence ∫ T

0

BsdBs =
1

2
(B2

T − T ).

Exercise 7.3 (Hull-White interest rate model)

In the Hull-White model the dynamics of the overnight interest rate r = {r(t), t ∈ [0, T ]} are
described by the following stochastic di�erential equation

r(t) = x+

∫ t

0

(a(s)− b(s)r(s))ds+

∫ t

0

σ(s)dBs,

where B = {Bt, t ∈ [0, T ]} is a Brownian motion and a, b and σ are non-random positive
functions of the time variable t.

Find the explicit solution to this equation by using the integration by parts formula from
the lecture applied to the "integrating factor"

V (t) = exp

(∫ t

0

b(s)ds

)
and Z(t) = r(t).

Solution:

Use Itô's formula applied to X
(1)
t = V (t), X

(2)
t = r(t) and f(x1, x2) = x1x2 to get

V (t)r(t) = f(X
(1)
t , X

(2)
t ) = X

(1)
0 X

(2)
0︸ ︷︷ ︸

=x

+

∫ t

0

∂f

∂x1

(X
(1)

s− , X
(2)

s− )dX(1)
s +

∫ t

0

∂f

∂x2

(X
(1)

s− , X
(2)

s− )dX(2)
s

+
1

2

∑
16i,j62

∫ t

0

∂2f

∂x1∂x2

(X
(1)

s− , X
(2)

s− )d[X(i), X(j)]cs

∑
0<s6t

f(X(1)
s , X(2)

s )− f(X
(1)

s− , X
(2)

s− )︸ ︷︷ ︸
=0

− ∑
16i,j62

∂f

∂xi
(X

(1)

s− , X
(2)

s− ) ∆X(i)
s︸ ︷︷ ︸

=0

,

where we used that s 7→ Xs is a.s. continuous.
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Recall that X
(1)
t , X

(2)
t continuous in t ⇒

[X(i), X(j)]ct = [X(i), X(j)]t −X(i)
0 X

(j)
0 = [X(i) −X(i)

0 , X(j)]t (0.1)

' Note: [A,D]t = 0 if A or D are of bounded variation with continuous paths starting in zero
(See List 8). Since d

dt
V (t) = b(t)V (t) a.e. we know that

V (t) = 1 +

∫ t

0

b(s)V (s)ds

then V is of bounded variation (as an integral w.r.t. ds) and with continuous paths. Hence,

[X(i), X(j)]ct = 0⇒ V (t)r(t) = x+

∫ t

0

X(2)
s dX(1)

s +

∫ t

0

X(1)
s dX(2)

s .

Furthermore,

V (t)r(t) = x+

∫ t

0

r(s)b(s)V (s)ds+

∫ t

0

V (s)(a(s)− b(s)r(s))ds+

∫ t

0

V (s)σ(s)dBs

= x+

∫ t

0

V (s)a(s)ds+

∫ t

0

V (s)σ(s)dBs.

As a result

r(t) = e−
∫ t
0 b(s)dsx+ e−

∫ t
0 b(s)ds

∫ t

0

V (s)a(s)r(s)ds+ e−
∫ t
0 b(s)ds

∫ t

0

V (s)σ(s)dBs

which gives us the explicit unique solution. Alternatively, one can also use the integration by
parts formula from De�nition 7.9 to obtain the result.

Exercise 7.4 (Vasicek model with jumps)

Suppose that the short rates r(t) are modelled by the stochastic di�erential equation

r(t) = x+

∫ t

0

a(b− r(s))ds+

∫ t

0

σdLs,

where a, b and σ are non-negative constants and L = {Lt, t ∈ [0, T ]} is a Lévy process, that
is L0 = 0 a.s. and L has (as the Brownian motion) independent and stationary (but not
necessarily normally distributed) increments. In addition, assume that L is a martingale with
E[|Lt|2] <∞ for all t ∈ [0, T ].

Solution:
De�ne V (t) = eat then V (t) = 1 +

∫ t
0
aV (s)ds. Thus V is of bounded variation (as an

integral w.r.t. ds) and continuous. Hence, by similar computations as in the previous exercise
we have

[V, r]t = [V −
=1︷︸︸︷
V (0), r]︸ ︷︷ ︸

=0 (because B.V.)

+V (0)r(0) = V (0)r(0).
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Using the integration by parts formula from De�nition 7.9 applied to V (t) and r(t) we get

[V, r]t︸ ︷︷ ︸
=V (0)r(0)

= V (t)r(t)−
∫ t

0

V (s−)︸ ︷︷ ︸
V (s)

dr(s)−
∫ t

0

r(s−)︸ ︷︷ ︸
r(0−):=0

dV (s).

Hence,

V (t)r(t) = x+

∫ t

0

V (s)dr(s) +

∫ t

0

r(s−)dV (s).

Substituting the di�erentials dr(s) and dV (s) we have

V (t)r(t) = x+

∫ t

0

V (s)a(b−r(s))ds+

∫ t

0

V (s)σdLs+

∫ t

0

r(s−)aV (s)ds.︸ ︷︷ ︸
=
∫ t
0 r(s)aV (s)ds

since r(s) only has countably many jumps

Now
∫ t

0
V (s)abds = b(eat − 1) and as a consequence

r(t) = xe−at + b(1− e−at) +

∫ t

0

e−a(t−s)σdLs.

Exercise 7.5

Let X = {Xt, t > 0} be a regular time-homogeneous Markov chain as a model for stochastic
interest rates and denote by Njk(t) the number of transitions from state j to state k 6= j by
time t.

Calculate the "speed" of changes of the expected number of interest rate transitions from j
to k at time t, given Xt = j, that is

E[Njk(t+ h)−Njk(t)|Xt = j]

h

for h↘ 0 by using the following fact (which can be used for an alternative de�nition of Markov
chains Xt): Consider the jump chain of Xt:

Yn := XJn ,

where Jn is the n-th jump time of Xt. Then Yn, n > 0 is a Markov chain with transition
probabilities

pij =

{
µij/µi, j 6= i and µi 6= 0,

0, j 6= i and µi = 0
pii =

{
0, µi 6= 0,

1, µi = 0

where µij are the transition rates of Xt. Moreover, for all n > 1, i0, . . . , in−1, conditional
on Y0 = i0, . . . , Yn−1 = in−1 the holding times Sj := Jj − Jj−1, j = 1, . . . , n (J0 = 0) are
independent and exponentially distributed with parameters µi0 , . . . , µin−1 .

Solution:
Since Xs, s > 0 is a time-homogeneous process we can set t = 0 in

E [Njk(t+ h)−Njk(t)|Xt = j] /h.
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It follows from the de�nition of Njk(s), s > 0 that

Njk(h) =
∑
n>1

1{XJn−1︸ ︷︷ ︸
=Yn

=j,XJn︸︷︷︸
=Yn−1

=k,Jn<h}.

Hence.

E [Njk(h)|X0 = j] =
∑
n>1

E
[
1{S0+1S1+··· ,Sn<h}1{Yn−1=j}1{Yn=k}1{Y0=j}

] 1

P(Y0 = j)

=
∑
n>1

∑
m1,...,mn−2∈S

E
[
1{S0+1S1+··· ,Sn<h}1{Yn=k,Yn−1=j,Yn−2=mn−2,...,Y1=m1,Y0=j}

] 1

P(Y0 = j)

=
∑
n>1

∑
m1,...,mn−2∈S

E


indep. and

exp. distributed︷ ︸︸ ︷
1{S0+1S1+··· ,Sn<h} |Y0 = j, Y1 = m1, . . . , Yn−2 = mn−2, Yn = j, Yn = k


× 1

P(Y0 = j)
P(Y0 = j, Y1 = m1, . . . , Yn−1 = j, Yn = k).

Generalized Erlang distribution for sums of independent exponentially distributed random
variables (use induction):

E
[
1{S0+1S1+··· ,Sn<h}|Y0 = j, Y1 = m1, . . . , Yn−2 = mn−2, Yn = j, Yn = k

]
= P(S0 + S1 + · · ·+ Sn < h|Y0 = j, Y1 = m1, . . . , Yn−2 = mn−2, Yn = j, Yn = k) = 1− αehΘI,

where

Θn :=


−µ(j) µ(j) 0 0 0 0 0

0 −µ(m1)µ(m1) 0 0 0 0 0
0 0 0 0 0 0 −µ(mn−2)µ(mn−2)
0 0 0 0 0 0 −µ(j)


for α := (1, 0, . . . , 0) and I = (1, . . . , 1)t. Then by the mean value theorem we have

1− αehΘnI =

∫ t

0

−αethΘnΘnIdth.

⇒

E [Njk(h)|Xs = j] /h =∑
n>1

∑
m1,...,mn−2∈S

∫ 1

0

(−αethΘnΘnI)dt h
1

P(Y0 = j)
P(Y0 = j, Y1 = m1, . . . , Yn−1 = j, Yn = k)

=
∑
n>1

∫ 1

0

(−αethΘnΘnI)︸ ︷︷ ︸∑
µ>0 h

µ( t
µ

µ!
(−αΘµ+1

n I))

dt
1

P(Y0 = j)
P(Y0 = j, Y1 = m1, . . . , Yn−1 = j, Yn = k)︸ ︷︷ ︸

=P(Yn=k|Y0=j,Yn−1=j)P(Yn−1=j|Y0=j)=pjkP (Yn−1=j|Y0=j)
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=
∑
µ>0

hµ

µ!

∫ t

0

tµdt
∑
n>1

(−αΘµ+1
n I)pjkP(Yn−1 = j|Y0 = j).

Letting h↘ 0 we have

h↘0−−→
∑
n>0

(−αΘnI)︸ ︷︷ ︸
µj if n=1

0 if n>1

pjk︸︷︷︸
=
µjk
µj

P(Yn−1 = j|Y0 = j) = µjk.
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