STK4500: Life Insurance and Finance

Exercise list 8

Exercise 8.1

Consider the process

$$M(t) := E[V|\mathcal{F}_t], \quad t \ge 0,$$

where $\mathcal{F} = {\{\mathcal{F}_t\}_{t \ge 0}}$ is a filtration (as a model for information flow over time) and V is a random variable (e.g. present value of the insurer's liabilities) with $E[|V|] < \infty$. Verify that M is a martingale with respect to \mathcal{F} .

Exercise 8.2 (Generalized Black-Scholes model)

Let $Z = \{Z_t, t \in [0, T]\}$ be "market noise" modelled by a semimartingale with continuous paths. Assume that the price S_t of a stock at time $t \in [0, T]$ is described by the following stochastic differential equation

$$S_t = S_0 + \int_0^t S_u dZ_u, \quad t \in [0, T].$$

- (i) Find an explicit formula for the stock price process S_t , $t \in [0, T]$ by using Itô's formula.
- (ii) Use the formula in (i) to obtain a representation for S_t in the case $Z_t = \int_0^t \mu ds + \int_0^t \sigma dB_s$ (classical Black-Scholes model) where B is a Brownian motion, $\mu \in \mathbb{R}$ the mean return and $\sigma > 0$ the volatility.

Exercise 8.3

Let $N = \{N_t, t \in [0, T]\}$ be a Poisson process with intensity $\lambda > 0$. Compute $\int_0^t N_{s-} dN_s$.