
STK4500: Life Insurance and Finance

Exercise list 9: Solutions

Exercise 9.1

Assume that the dynamics of the price St of a stock at time t ∈ [0, T ] is described by the
Black-Scholes model, that is

St = S0 +

∫ t

0

Suµdu+

∫ t

0

SuσdBu,

where B = {Bt, t ∈ [0, T ]} is a Brownian motion, µ ∈ R and σ > 0.

(i) Determine the probability measure Q (i.e. equivalent martingale measure) under which
the discounted stock price

S̃t := e−rtSt, t ∈ [0, T ]

for a risk free rate of interest r becomes a martingale with respect to the "market infor-
mation �ow" G = {Gt}t∈[0,T ].
Solution: An important special case of Itô's formula is when

Yt = Y0 +

∫ t

0

Ksds+

∫ t

0

HsdBs

and f = f(t, x), t > 0, x ∈ R is a function with continuous partial derivatives up to �rst
order in time, and second in space. Then

f(t, Yt) = f(0, Y0) +

∫ t

0

d

ds
f(s, Ys)ds+

∫ t

0

d

dx
f(s, Ys)dYs +

1

2

∫ t

0

d2

dx2
f(s, Ys)H

2
sds.

Taking f(t, x) = e−rtx and Ks = µSs and Hs = σSs we have

S̃t = f(t, St) = x+

∫ t

0

(−r)S̃udu+

∫ t

0

µS̃udu+

∫ t

0

σS̃udBu = x+

∫ t

0

(µ−r)S̃udu+

∫ t

0

σS̃udBu.

Choose in Girsanov's theorem Xt = r−µ
σ
. De�ne

B̃t , Bt −
∫ t

0

Xsds = Bt −
r − µ
σ

t.
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Then B̃ is a Brownian motion under P̃ given by

P̃(A) , E [IAZT ] , ZT , exp(

∫ t

0

XsdBs︸ ︷︷ ︸
r−µ
σ
Bt

−1

2

∫ t

0

X2
sds︸ ︷︷ ︸

( r−µ
σ

)2t

).

Idea: rewrite S̃t in terms of the new Brownian motion B̃ by substituting Bt = B̃t + r−µ
σ
t

(and using that dBt = dB̃t + r−µ
σ
dt. Hence,

S̃t = x+

∫ t

0

σS̃udB̃u.

Since B̃ is a Brownian motion under P̃ and S̃ is adapted to the �ltration generated by B̃

and EP̃

[∫ T
0

(σS̃u)
2du
]
<∞ (check) then S̃ is a P̃-martingale. That is

EP̃

[
S̃t

∣∣∣Gt] = S̃s, t > s.

(ii) Challenge: Pricing theory is classically based on the concept of martingality (i.e. "fair-
ness"), hence we seek equivalent measures (i.e. measures that keep extremely rare events)
that make prices martingales when discounted w.r.t. a reference asset (usually a bank
account, which is one of the safest investments) like in (i). However, an alternative way
of pricing is to �x the physical measure P and rather �nd a di�erent reference asset, say
G = {Gt, t ∈ [0, T ]}, that when used as discount factor, makes prices martingales under
P . Construct a portfolio with value Gt, t ∈ [0, T ] such that

Ŝt :=
St
Gt

, t ∈ [0, T ]

is a martingale under P . Use this fact to provide a pricing formula under the real world
measure P , instead of the one from the lectures which is under Q. This approach to
pricing is sometimes referred to as benchmark pricing approach as opposite to the risk

neutral pricing approach.

Solution: Let θt = (θ0t , θ
1
t ) be the amount invested in the riskless asset ert and St, respec-

tively. The value of such portfolio is then given by

V θ
t = θ0t e

rt + θ1tSt.

We assume that θ is self-�nancing, and hence the variations on V happen due to variations
on the riskless and risky asset only. Hence,

dV θ
t = θ0t re

rtdt+ θ1t dSt = θ0t re
rtdt+ θ1tSt[µdt+ σdBt] = [θ0t re

rt + θ1tSt]dt+ θ1t σStdBt.

Observe that we can retrieve an SDE for Vt if we work with proportions rather than

quantities. De�ne π0
t , θ0t e

rt

Vt
the proportion of wealth invested in the riskless asset and,
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π1
t ,

θ1tSt
Vt

the proportion of wealth invested in St. Obviously, π
0
t +π1

t = 1 a.s. and we can
recast the above expression as

dV θ
t = V θ

t

[
(rπ0

t + µπ1
t )dt+ σπ1

t dBt

]
Now we have an SDE for V θ

t for any arbitraty strategy θ. Let us then apply Itô's formula
to St

Vt
in order to see its dynamics under P (recall that we seek a, or the, strategy, say θ∗

such that V θ∗ when used as discount factor makes prices martingales under P). We will
suppress the dependence on θ since it is now clear that we look at arbitrary strategies.
Hence,

d
St
Vt

= d

[
1

Vt

]
St +

1

Vt
dSt + d

[
1

V ·
, S·

]
t

. (0.1)

For the factor d
[

1
Vt

]
we need to apply Itô's formula again and use the SDE for Vt. Thus

d

[
1

Vt

]
=
−1

V 2
t

dVt +
1

2
2

1

V 3
t

d [V·, V·]t = − 1

Vt

[
(rπ0

t + µπ1
t − σ2(π1

t )
2)dt+ σπ1

t dBt

]
.

Now back to (0.1) we have

d
St
Vt

= −St
Vt

[
(rπ0

t + µπ1
t − σ2(π1

t )
2)dt+ σπ1

t dBt

]
+
St
Vt

[µdt+ σdBt]−
St
Vt
σ2π1

t dt.

Grouping terms of �nite and in�nite variation we have

d
St
Vt

= −St
Vt

[
(rπ0

t + µπ1
t − σ2(π1

t )
2 − µ+ σ2π1

t )dt+ (σπ1
t − σ)dBt

]
. (0.2)

Now, denote a , π0
t and b , π1

t and imposing that the �nite variation part is zero we obtain
the following system of equations

ra+ µb− σ2b2 − µ+ σ2b = 0

a+ b = 1

which has the unique solution in [0, 1]2 given by

b =
µ− r
σ2

, a = 1− b.

Denote the value of the portfolio with strategy θ∗t , (a, b) by Gt , V θ∗
t . Then we have

proven that Ŝt = St
Gt
, t > 0 is a P-martingale.

You can also check that discounting the value or an arbitrary portfolio with a self-�nancing
strategy θ with respect to G gives you a martingale under P, thus providing a pricing formula
under the real world measure P but...
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OBS! Be very careful here, because this is only true if the processes involved in the stochastic
intengrals, for example in the SDE (0.2), are in L2([0, T ]× Ω). That is

E

[∫ T

0

(
St
Vt

(σπ1
t − σ)

)2

dt

]
<∞

This is true in this exercise (Black-Scholes setting) if the trategies are square-integrable. You
can check that. But in general, if S is given by a general and more complicated SDE and θ
is general, then you may �nd a portfolio G such that S

G
has 0 �nite variation part, but this

does not mean that the process is a martingale (we need square integrability as above). In
general, we can only say that S

G
is a P-local-martingale. Nevertheless, this is not enough for

pricing. Recall that S
G

is lower-bounded. All local-martingales that are lower bounded are
supermartingales, which means

E
[
ST
GT

∣∣∣Gt] 6 St
Gt

.

Similarly, the same happens with the discounted values of an arbitrary porto�io, that is Vt
Gt

may fail to be a martingale (only being a local-martingale) and hence, since it is lower-bounded
we have that Vt

Gt
is a supermartingale, i.e.

E
[
VT
GT

∣∣∣Gt] 6 Vt
Gt

.

If VT is the claim to be replicated, then you see that the price is bigger than the actual
market value, leading to a "wrong" price.

The martingale property for pricing correctly is a very subtle thing. If discounted portfolios
are not martingales (while we are assuming they are) this means that we are pricing "wrongly".
There is a whole theory dealing with pricing under strict local-martingales. Such theory explains
the existence of so-called bubbles. When an asset price bubble exists, the market price of the
asset is higher than its fundamental value. From a mathematical point of view, this is the
case when the stock price process is modeled by a positive strict local martingale under the
equivalent local martingale measure.

Exercise 9.2 (Markov property of Black-Scholes stock prices)

Consider the stock price process S = {St, t ∈ [0, T ]}. Use the properties of the Brownian
motion to show that

E[f(St)|Fs] = E[f(Ss,xt )]|x=Ss
for all bounded functions f , where Ss,xt satis�es the "shifted" stochastic di�erential equation

Ss,xt = x+

∫ t

s

Suµdu+

∫ t

s

SuσdBu, 0 6 s 6 t.

The property that S0,x
t = Ss,S

0,x
s

t (a.s.) for all 0 6 s 6 t is known as �ow property. It tells us
that i if we travel at time 0 from x to time t to St, we will arrive at the same point by travelling
at time 0 from x to an intermediate time s to an intermediate point Ss and then, at time s
from Ss to time t will lead to St as well.

4



Exercise 9.3

An insurer o�ers a 10-year unit-linked term insurance (or guaranteed minimum death bene�t)
with a single premium to a life aged x0 = 55. An initial expense deduction of 4% is charged
and the rest of the premium is invested in an equity fund whose dynamics St of its values over
time is described by the Black-Scholes model in Exercise 1, with S0 = 1. Further, management
charges are deducted on a daily basis from the insured's account at a rate of β = 0.6% per year
(i.e. in the sense of a continuous deduction based on the discount factor e−βt). If death occurs
during the contract period a death bene�t of 110% of the fund value is provided.

Suppose

(i) Makeham's law

µ∗†(t) = A+Bct,

with A = 0.0001, B = 0.00035 and c = 1.075. Or if you want, you can use Norwegian
mortality data from https://www.ssb.no/dode (Table 2) and using the data to estimate
A, B and c.

(ii) Risk free rate of interest r = 5% per year, continuously compounded.

(iii) Volatility σ = 25% per year of St.

Calculate the guaranteed minimum death bene�t value at issue, that is compute the prospec-
tive reserve V +

i,F(t, A) of the bene�ts at the initial time of the contract.
Solution: The policy function that de�nes entirely this contract is given by

a∗†(t) =

{
C(t), if 0 6 t < 10,

0, otherwise,

where

C(t) = (1− 0.04) · 1.10 · P · Ste−0.006t.

Here, 1 − 0.04 is the portion of the premium P invested in the equity fund, St is the value of
the fund at time t and e−0.06t is the discount factor for the management charges. We know
from the de�nition of V +

F (t, A) that

V +
F (t, A) =

∫ 10

t

π∗†t (s)p∗∗(x+ t, x+ s)µ∗†(x+ s)ds, if Xt = ∗,

where π∗†t (s) is the fair value at time t of C(s).
Using the pricing formula (9.15) from the lecture notes, we have

π∗†t (s) = ClaimValuet = EP̃

[
e−r(s−t)C(s)

∣∣∣Gt] ,
where P̃ is the probability measure of Exercise 1 above. That is

EP̃

[
S̃s

∣∣∣Gt] = S̃t, s > t.
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Altogether,

π∗†t (T ) = ert(1− 0.04) · 1.10 · P · e−0.006sEP̃

[
S̃s

∣∣∣Gt]
= ert(1− 0.04) · 1.10 · P · e−0.006sS̃t.

If t = 0, then
π∗†0 (s) = (1− 0.04)1.10Pe−0.006s S̃0︸︷︷︸

=1

.

As a result,

V +
F (0, A) = (1− 0.04) · 1.10 · P

∫ 10

0

e−0.006sp∗∗(55, 55 + s)µ∗†(55 + s)ds︸ ︷︷ ︸
≈0.2329

Here, recall that p∗∗(t, s) = exp
(
−
∫ r
t
µ∗†(u)du

)
.

In conclusion, the prospective reserve at time t = 0 of the death bene�t is

V +
F (0, A) = 0.2459P (= 2 459$ if e.g. P = 10 000$)
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