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STK4500/9500: Life Insurance and Finance
Webpage: https://www.uio.no/studier/emner/matnat/math/
STK4500/v23/index.html

It has one compulsory assignment. It has to be handed in via
Canvas (check webpage).
Delivery date: choose now by peaceful election.
Final written exam:
Time: June 6 at 9:00 AM (4 hours).
Place: Silurveien 2 Sal 3C.
Note: only calculator allowed.
Course representatives: choose now by peaceful election or
by (hopefully peaceful) appointment by the lecturer.
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A life insurance is a contract between two parties: the policyholder
and the insurer.

State of the insured⇐⇒ triggers payments

We need to model:
State of the insured
Value of the money
Market (when investing in it)

David R. Banos Life Insurance and Finance STK4500 5 / 32



A life insurance is a contract between two parties: the policyholder
and the insurer.

State of the insured⇐⇒ triggers payments

We need to model:
State of the insured
Value of the money
Market (when investing in it)

David R. Banos Life Insurance and Finance STK4500 5 / 32



A life insurance is a contract between two parties: the policyholder
and the insurer.

State of the insured⇐⇒ triggers payments

We need to model:
State of the insured
Value of the money
Market (when investing in it)

David R. Banos Life Insurance and Finance STK4500 5 / 32



Solvency II
...is a Directive in European Union law that codifies and harmonises the
EU insurance regulation. Primarily this concerns the amount of capital
that EU insurance companies must hold to reduce the risk of insolvency.
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
02009L0138-20210630&from=EN

See e.g. some articles from Section 4, page 87 onwards.
See ANNEX IV, page 239, for solvency capital requirements.
In this course we will mostly be dealing with SCRlife.

Comment: SCRi in Solvency II are given as 99.5% Value-at-Risk quan-
tiles of the loss distribution over one-year period. We will focus on the
modelling and simulation of such loss distribution and its (conditional)
expected value, also known as pure premium.
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Markov modelling
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We use Markov processes to model the state of the insured

Figure: Survival model and disability model

We denote by Xt or X (t) the state of the insured at time t ≥ 0.
S denotes the state space. We assume S is countable, often
finite. Example: S = {∗, †}, S = {∗, �, †}, S = {0,1,2, . . . , n}.
pij(t , s) , P[X (s) = j |X (t) = i], s, t ≥ 0, t ≤ s, i , j ∈ S denotes
the transition probabilities.
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This is a way of illustrating the path t 7→ Xt (ω) but the order in S =
{∗, �, †} is arbitrary. For the given outcome, say ω, in the figure, we
have an individual who passed away at the age of 75, being inactive
from age 60 to 75. In the insurance context, this outcome has a specific
insurance loss determined by the policy of the individual.
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Definition (Markov chain)

Let Xt ∈ S, t ∈ J ⊆ R be a stochastic process on (Ω,A,P). Then Xt ,
t ∈ J is called a Markov chain, if

P(Xtn+1 = in+1|Xt1 = i1, . . . ,Xtn = in) = P(Xtn+1 = in+1|Xtn = in)

for all t1 < t2 < · · · tn+1 ∈ J, i1, . . . , in+1 ∈ S with P(Xt1 = i1, . . . ,Xtn =
in) 6= 0.

Remark

The process Xtn+1 at time tn+1 just remembers its last position Xtn = in.
Popularly, one says that {Xt}t∈J is a process "without memory".
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Definition (Transition probability matrix)
Let P(t , s) be the matrix containing the entries given by pij (t , s), i , j ∈ S for
t , s ≥ 0, t ≤ s. Then P(t , s) is called the transition probability matrix of X .

Conversely:

Definition (Transition probability matrix)
Let P(t , s) be a matrix containing entries pij (t , s), i , j ∈ S for t , s ≥ 0, t ≤ s.
Then P(t , s) is a transition probability matrix if, and only if,

1 pij (t , s) ≥ 0.

2
∑

j∈S pij (t , s) = 1 for all i ∈ S.

3 pij (t , t) = 1{i=j} provided that P[Xt = i] 6= 0.
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Theorem (Chapman-Kolmogorov equation)
Let {Xt}t∈J , be a Markov chain and P(s, t) = {pij (s, t)}i ,j∈S its matrix of tran-
sition probabilities. Then

pij (s, t) =
∑
k∈S

pik (s,u)pk ,j (u, t),

for all s ≤ u ≤ t and i , j ∈ S with P(Xs = i),P(Xt = j) 6= 0. Equivalently, in
matrix notation

P(s, t) = P(s,u)P(u, t), s ≤ u ≤ t.

Exercise
Prove the theorem above. Hint: pick a middle time u between s and t and
use the law of total probability and then the definition of conditional expecta-
tion.
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Theorem (Characterization of Markov chains)
A stochastic process X = {Xt}t∈J , J ⊆ R is a Markov chain if, and only if

P(Xt1 = i1, . . . ,Xtn = in) = P(Xt1 = i1)pi1 ,i2 (t1, t2)pi2 ,i3 (t2, t3) · · · pin−1 ,in (tn−1, tn)

for all t1 < t2 < · · · < tn ∈ J, i1, . . . , in ∈ S, n ≥ 1.

Theorem (Markov property)

Let t1 < t2 < · · · < tn < tn+1 < · · · < tn+m, i ∈ S, A ⊂ Sn−1, B ⊂ Sm. Assume
that

P
(
(Xt1 ,Xt2 , . . . ,Xtn−1 ) ∈ A,Xtn = i)

)
6= 0.

Then the Markov property holds, that is

P
(
(Xtn+1 ,Xtn+2 , . . . ,Xtn+m ) ∈ B | (Xt1 ,Xt2 , . . . ,Xtn−1 ) ∈ A,Xtn = i

)
(1)

= P
(
(Xtn+1 ,Xtn+2 , . . . ,Xtn+m ) ∈ B|Xtn = i

)
(2)
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Definition (Homogeneous Markov chain)
A Markov chain X = {Xt}t∈J is called time homogeneous if

P(Xs+h = j |Xs = i) = P(Xt+h = j |Xt = i)

for all s, t ,h ≥ 0 and i , j ∈ S, provided that P(Xs = i),P(Xt = i) 6= 0.

Remark

(1) In matrix form: P(s, s + h) = P(t , t + h) = P(0,h) and hence the
transition probability matrix depends only on one parameter.

(2) In life insurance modelling, a Markov process is hardly
time-homogeneous. Think of why.
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Example
A 30 year old person. S = {1,2,3}, 1: healthy, 2: ill, 3: deceased. Xn ∈ S,
n ∈ N and

P(n,n + 1) ≡ P =

0.85 0.1 0.05
0.6 0.3 0.1
0 0 1


Algorithm:

1 Obtain the S× S probability transition matrix P.

2 Set t = 0

3 Pick an initial state Xt = i . Here e.g. X0 = 1 or X0 = ∗.

4 For t = 1, . . . ,T :

1 Obtain the row of P corresponding to the current state Xt .
2 Generate Xt+1 from a multinomial distribution with probability

vector equal to the row we obtained above.

David R. Banos Life Insurance and Finance STK4500 16 / 32



Figure: Two realizations of Xn, n = 31, . . . , 80 with transition probability matrix
P for X30 = 1 alive. The red outcome is a person who passed away at age 56
and the second outcome at age 66.
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Transition rates
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We now consider a continuous time Markov process Xt , t ∈ R, t ≥ 0
with finite state space S.

Definition (Transition rates)

Let X = {Xt , t ≥ 0} be a Markov process with finite state space S.
The transition rates μi , μij , i , j ∈ S, j 6= i are the functions defined by

μi(t) , lim
h→0
h>0

1− pii(t , t + h)

h
, t ≥ 0, i ∈ S

and

μij(t) , lim
h→0
h>0

pij(t , t + h)

h
, t ≥ 0, i , j ∈ S, j 6= i ,

whenever they exist and are finite.
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Definition (Regular Markov process)

Let X = {Xt , t ≥ 0} be a Markov process with finite state space S. We
say that X is regular if the transition rates μi , μij , i , j ∈ S, j 6= i exist
and are continuous as functions of t .

We denote by Λ(t) the transition rate matrix

Λ(t) =


μ11(t) μ12(t) · · · μ1n(t)
μ21(t) μ22(t) · · · μ2n(t)

...
...

. . .
...

μn(t) μn2(t) · · · μnn(t)

 ,
where μii(t) , −μi(t) by convention.
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Remark

(i) Observe that μij (t) = limh→0
h>0

pij (t ,t+h)−pij (t ,t)
h = d

ds pij (s, t)
∣∣∣∣
s=t+

.

(iii) Interpretation: μij (t)h ≈ pij (t , t + h), h >0 small, which means μij (t)h
probability for switching from state i to state j on the infinitesimal
interval [t , t + h] and μij (t) is the "speed".

(iv) Let Λ(t) = {μij (t)}i ,j∈S be the transition rate matrix, S = {1, . . . , n}
and assume that X is homogeneous. Then Λ(0) is the
generator of the semigroup P(t), t ∈ J, that is

Λ(0) = lim
h↘0

=
P(h)− Idn

h
,

where Idn denotes the n × n identity matrix.

(v) P(t) = eΛ(0)t (matrix exponential: eA ,
∑∞

n=0
1
n! A

n for a matrix A)
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Theorem (Kolmogorov equations)

Let X = {Xt , t ≥ 0} be regular. Then
1. Backward Kolmogorov equation:

d
ds

pij(s, t) = μi(s)
,−μii (s)

pij(s, t)−
∑
k∈S
k 6=i

μik (s)pkj(s, t)

or in matrix notation

d
ds

P(s, t) = −Λ(s)P(s, t) (matrix multiplication).
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Theorem (Kolmogorov equations)

2. Forward Kolmogorov equation:

d
dt

pij(s, t) = −pij(s, t) μj(t)
,−μjj (t)

+
∑
k∈S
k 6=j

pik (s, t)μkj(t)

or in matrix notation

d
dt

P(s, t) = P(s, t)Λ(t) (matrix multiplication).
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Define

pjj (s, t) , P

 ⋂
ξ∈[s,t]

{Xξ = j}|Xs = j

 = P
(
Xξ = j for all ξ ∈ [s, t ]|Xs = j

)
the probability that X stays in the state j during the time period [s, t ], given that
Xs = j .

Theorem (Calculation of pjj(s, t))
If X = {Xt , t ≥ 0} is regular then

pjj (s, t) = exp

−∑
k 6=j

∫ t

s
μjk (u)du


provided that P(Xs = j) 6= 0.
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Example

A Markov process Xt with two states: ∗ alive and † deceased.

Figure: Survival model

Find the transition probabilities and simulate paths of such a process.
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Some insurance Markov models
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Survival model

Figure: Survival model
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The disability model

Figure: Disability model
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The disability model with recovery

Figure: Disability model with possibility for recovery, where mortality is
affected after recovery.
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The spouse model

Figure: The spouse model with dependent lives.
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The orphan pension model

Figure: The orphan model.
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Exercise (Competing risks model)
Consider an insurance policy that pays out a death benefit according to the
type of death of the insured. We distinguish between deaths of the following
types: natural, illness, accident, homicide and suicide. Draw a Markov dia-
gram for this insurance and give expressions for the transition probabilities.

Exercise (Disability with time dependent recovery rate)
In a disability insurance, it is unrealistic to assume that the probability of
recovery is homogeneous with respect to disability length. It is the case
that the probability of recovery decreases as the insured remains in state
"disable". Consider a disability insurance with states S = {∗, �, †} and split �
into substates �1, . . . , �n for some fixed positive integer n, where state �k is
the state of a person being in its k-th disability year, k = 1, . . . , n. Consider
possibility of recovery in all states �k , k = 1, . . . , n − 1 except for �n where
recovery is no longer possible. Plot the Markov diagram of this insurance
model and write down Kolmogorov equations for the transition probabilities.
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