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Recall that the (stochastic) prospective value of a policy and the expected prospective

value are different things. The former is a random variable, while the latter is the
conditional expectation, given X; = i, of the former.
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Recall that the (stochastic) prospective value of a policy and the expected prospective
value are different things. The former is a random variable, while the latter is the
conditional expectation, given X; = i, of the former.

In this lecture we will confine ourselves to the discrete time setting
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for every t € N.

We will derive analytic formulas for:

The distribution function P[V,;" <u|X; = ], i.e. the probability that the
prospective value does not exceed some value u, given X; = |.

HE The moments of the random variable V;*, given X; = i, i.e. E[(V;")"|X; = i,
p=>1.
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Consider the distribution of V,", given X; = i
P/(t, U) £ ]P>[VtJr <U|Xz = I]
Then

Pi(t,u) = P[Vi" <u, X; = i[/P[X; = i]

David R. Banos Life Insurance and Finance STK4500 5/21



UiO ¢ Department of Mathematics
University of Oslo

Consider the distribution of V,", given X; = i
P/(t, U) £ ]P>[VtJr <U|Xz = I]
Then

Pi(t,u) = IP[Vf“ <u, Xp = i)/P[X; = ]
P[X; = i, X 1 = K]

=7 D PV <u X =i, Xepr = K]

P[Xt kes

PIX: = 7, Xiz1 = K]

David R. Banos Life Insurance and Finance STK4500 5/21



UiO ¢ Department of Mathematics
University of Oslo

Consider the distribution of V,", given X; = i
P,’(t, U) £ ]P>[VtJr <U|Xz = I]
Then

Pi(t,u) = P[V;" <u, X = i[/P[X; = ]

1 PIX: = i, Xs1 = K]

==Y PV <u,Xi =i X1 = K|

P[Xf = i] kes lED[Xr =i, X1 = k]

David R. Banos Life Insurance and Finance STK4500 5/21



UiO ¢ Department of Mathematics
University of Oslo

Consider the distribution of V,", given X; = i
P,’(t, U) £ ]P>[VtJr <U|Xz = I]
Then

Pi(t,u) = P[V;" <u, X = i[/P[X; = ]

1 PIX: = i, Xs1 = K]

==Y PV <u,Xi =i X1 = K|

PIX; = 1] & PIX: = 1, Xiz1 = K|

=" pi(t t+ DRIV, <ulXi =i, X1 = K.

kes

David R. Banos Life Insurance and Finance STK4500 5/21



UiO ¢ Department of Mathematics
University of Oslo

Consider the distribution of V,", given X; = i
Pi(t,u) £ P[V{" <ul X = i].
Then
Pi(t,u) = P[V;" <u, X = i[/P[X; = ]

L + i P[X: = i, Xer1 = K]
= =V Xi =1, Xi1 =k
BIX = 1] %P[V, <U,Xp =i, X1 ]LP[X, S A—
=" pi(t t+ DRIV, <ulXi =i, X1 = K.
kes

We know from the definition of V" that
Vit =wVt, +le(t arc(t) + thaj’;S‘(t )AN,

where v; = (’(t)”
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We know from the definition of V" that

Vi =w t+1+ZIX(z‘ ar( +V,Zaﬁfs‘ i (1),

(r+1)

where vy = 70
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We know from the definition of V" that

V" =wV, +1+Z/X(zr ar( +tha'7§’St(z‘A (1),

where v; = 44D
Pt u) =S pu(t t+ VPV, <ulX; =i, Xiur = k]
kes
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We know from the definition of V" that

Vt+ — Vt +1 + Z IX(t Pre

where v; = 44D

) + V,Za'jfs‘(t JANK (D),

Pi(tu) =" pu(t, t+ PV, <ulXi =i, Xip1 = K]

kes

:Zp;k(t,t+1)

keS8

= Zp/k(f,f-i— 1)P

kes

kes
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We know from the definition of V" that

Vit = wV, +1+Z/X(t a"( +V,Zafk°3‘(tA

where v; = V(V'(t;). Thus,

Pi(t,u) =" pi(t, t+ PV, <ulXi =i, Xer1 = K]

kes

= Pkt t+ 1P vV + a (1) + vdi® () <ulXe =i, Xip1 = k}
kes .

Vit gIven Xi=iX =k

= S Pt 4 | Vi < (U= (1) - (0L X = k|

kes

= S pultt+ E|ViEy v (u - () - (010 = K]

kes -

=> Pt t+ D)Pe(t+1,v" (u—ar(t) — ag(t)).

kes

David R. Banos Life Insurance and Finance STK4500 6/21



UiO ¢ Department of Mathematics
University of Oslo

Theorem (Thiele’s difference equation for distributions)

Pi(t,u) =" pi(t t+ )Pt +1,(v) " (u — &(t)) — ai™ (1)),

keS8

where P;(t, u) denotes the distribution of V;* given X; = i at level u € R.
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Theorem (Thiele’s difference equation for distributions)

Pi(t,u) =" pi(t, t+ 1)Pe(t+1,(v)) " (u — a*(1)) — ag*(1)),

keS8

where P;(t, u) denotes the distribution of V;* given X; = i at level u € R.

Example of a terminal condition for the recursion: let T € N be the maturity of the

policy,
0, ifu<oO
P- T}U :IPV+ u| = ! - ; |f V+:0.
(T, u) =P[V7 <u] {1,ifu>0
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Higher moments of V;", f ¢ N
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Recall again the following difference equation for V",
V _ Vt [+1 + Z IX(t Pre + Vtza;?st

v(t+1)

where vy = OB
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Recall again the following difference equation for V",

V" =wV, +1+Z/X(zr ar( +tha'7§’St(z‘A (1),

(t+1)

where vy = 70

Since 3=, 1¥(s) = 1 for every s we have,

Vt_v,Z/Xt—H) +1JFZ/X g () + vy ae(HANK(L).

ik

Ap, 20,

So far,
Vi=w > K+ )V + P+ Q.
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erZIX (t+ Vi + P+ Q.
Hence,

(V)P = V,Z/ t+ 1NVl + P+ Qr
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V=) B+ )V + Pt Q.
J
Hence,

J

P
(VihyP = (V,Z/,-X(um)vﬁ+1 + P+ o,) .

Remark (Newton’s binomial formula)

Recall
n n Ky Km
X1+ Xm)" = X xkm
(1+ ar m) Z (k1,...,km) 1 m
kq,...km,=0,...,n
ki+---+km=n
where
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V=) B+ )V + Pt Q.
J
Hence,

J

p
(V;r)p = (V(Z/jx(t-i- 1)Vt:1 + P+ Q{) .

Remark (Newton’s binomial formula)

Recall
n__ n Ky Km
e D I (R EAR )
kq,...km,=0,...,n
ky+---+Kkm=n
where
n n!
ki, ..., km) =~ ki!---kp!

Apply the above formula with m = 3 to the expression (V,")P above.
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(V,")P= V,ZIX1+1 Vi + P+ Qr

ki

- Z <k1,k2,k3) V’ZI t+1 VI+1 (Pf)kz(Qi)ks

Ky ko kg, =O0,..
ki +ko+ks= P

Z <k1,k2 k3) ZIX t+1 tJ-rH)h(Pf) ( )k3

Ky ko, k3, =0,..
ki +kKo+kg= P
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(V,")P= V,ZIX1+1 Vi + P+ Qr

ki

- Z <k1,k2,k3) V’ZI t+1 VI+1 (Pf)kz(Qi)ks

ky,kp,k3,=0,..
ki +ko+ks= P

Z <k1,k2 k3) ZIX t+1 tJ-rH)h(Pf) ( )k3

ky,kp,k3,=0,..
ki +kKo+kg= P

Next step is to apply E[-|X; = i].
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== X (P v PIEUCRISRGRCIERY
0,

Ky.K2,k3,=0,....p
ki +ka+kg=p
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== X (P v PIEUCRISRGRCIERY
P
Ki+ka+kg=p
Observe that
B4+ V) (PO(Q0P1X = 1] = B[t + (VL) (@ ()= (wal™ ()01 % = 1

David R. Banos Life Insurance and Finance STK4500 12/21



UiO ¢ Department of Mathematics
University of Oslo

BOEX=i= (m, . k3> VDB (E+ (Vi) (P Q01X = 1]
p j
ki +ko+ky=p
Observe that
B[R (t+ 1) (VL) (P)'2(Q)'8 | X = 1] = B[ (t 4+ 1)(Vifa)" (&l (1) 2 (vedi™ (1) X = 1]
The reason is that, given X; = i, Pt = 37, X(ae(t) = ar(t). Similarly, ANj(t) =

NX(t+ 1) — NX(t) given X; = i equals ANj(t). Hence, [X(t + 1) AN (t) given X; = i
equals NY(t). Thus, given X; =i

k3
K+ 1)@ = [t (thap"S‘ t)AI\If,f(t) = (t+ N)ve(@(t)e.
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So far,
E[(V{)P|X: = 1] =

= X (R ) ey S+ 00" = 0

Ky ko,k3,=0,...p
ki+ko+kz=p
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So far,
E[(V{)P|X: = 1] =
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So far,
E[(Vf)p\X, ==

= T (k) T OrEE o ST D04 = 1

k1.ko,k3,=0,....p
ky+kp+kz=p
Now,
: 1

B PIE’)[(;:if P[X; ,11 :/-]E [/jx(t+ 1) (Vi) ,ix(t)]
- %E [(Vt:‘),q ()] X :/}

= X1 = j1X = A [ (Vi)™ Xir = ]

David R. Banos Life Insurance and Finance STK4500 13/21



UiO ¢ Department of Mathematics
University of Oslo

So far,
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Theorem (Moments of the stochastic prospective value)

Letp > 1 integer and V;*, t € N be the stochastic prospective value. Let

MP(t) = E[(V")| X = ]

denote the p-th moment of V" given X; = i. Then MP(t) satisfies

M?(1)
= Zp;j(t, t+ 1) Z (/ﬁ I'Z K3> (Vt)k1+k3(a;’re(t))kz(a;ast(t))kslw;ﬁ (t—l— 1).
jes Ky kp,k3,=0,....p e

ki +ko+hkz=p
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Theorem (Moments of the stochastic prospective value)

Letp > 1 integer and V;*, t € N be the stochastic prospective value. Let

MP(t) = E[(V")| X = ]

denote the p-th moment of V" given X; = i. Then MP(t) satisfies

M?(1)
= Zp;j(t, t+ 1) z <k1 I'Z ks) (Vt)k1+k3(a;’re(t))kz(a;ast(t))kslefﬁ (t—l— 1).
jes Ky kp,k3,=0,....p e

ki +ko+hkz=p

Corollary

If ai(t) = 0 for all i, then the equation reduces to:

P
W) = ¢ St t+ )Y (B) (@ 0F M+ ).
Jj

k=0
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Examples
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Let us look at an endowment insurance with benefit E. We wish to compute
P.(t,u) = P[V;" <ulX; = #].

Observe that
P(T,u)=I(u>E) Py(T,u)=1I(u>0).
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Let us look at an endowment insurance with benefit E. We wish to compute
P.(t,u) = P[V;" <ulX; = #].

Observe that
P(T,u)=I(u>E) Py(T,u)=1I(u>0).

The general formula is:

Pt u) =" pu(t t+ 1)P(t+1,(v) ™" (u— a(1)) — ag*(1)).

ke

Thus,

P.(t,u) = pus(t, t + 1)P(t+1, v, U) + pai (t,t + )Pt +1, v '0).
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Let us look at an endowment insurance with benefit E. We wish to compute
P.(t,u) = P[V;" <ulX; = #].

Observe that
P(T,u)=I(u>E) Py(T,u)=1I(u>0).

The general formula is:

Pt u) =" pu(t t+ 1)P(t+1,(v) ™" (u— a(1)) — ag*(1)).

kes
Thus,
P.(t,u) = pus(t, t + 1)P(t+1, v, U) + pai (t,t + )Pt +1, v '0).
Iterating one can show that P;(t,u) = I(u >0) forallt=0,1,..., T and

P.(t.u) = p..(t. T)I (T) g S t NI(u >0
(tu) = por(t, T) <“>W )+n§;p**(.n)pﬁ(n,n+ )I(u>0).
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On the other hand observe that

T-—1 T-—1
Zp**(t, mp«(nn+1) = Zp**(t n (1 = pw(nn+1))

n=t

T-1 T—1
= =Y pultn+1)
n=t n=t
T—1 T—1
- P**(t,n)—zp**(t,n—F'l)
n=t n=t
=1—p..(t, T).
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On the other hand observe that

T T
D Pt Mpei(nn+1) = pa(t.n) (1 = pu(nn+1))
n=t n=t
T-1 T-1
= =Y pultn+1)
n=t n=t
T—1

Par(t,n) = > pan(t,n+1)

n=t
=1—p..(t, T).
Hence,
P.(t,u) = pu(t T)I <u > ‘:/((f)) E> + (1 = pux(t, 7)) I(u >0).
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P.(t, u) is indeed a distribution function that looks like

Figure: Shape of the distribution function of V;".

P.(tu) = pui(t, T)I (u > %E) + (1 = ps(t, T))I(u >0).
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To see that observe that limy_,o P.(t, u) = 0, P.(t,-) is increasing and

lim P.(tu)=1.

u—oo
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To see that observe that limy_,o P.(t, u) = 0, P.(t,-) is increasing and

lim P.(tu)=1.

The distribution at { = 0 is given by
P.(0,u) = p«s(0, NI(u>Vv(T)E) + (1 — p.(0, T)) I(u >0)

which makes sense.

David R. Banos Life Insurance and Finance STK4500
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For the term insurance a™(t) = 0, so we can use:

p
Pty =vP> py(tt+1) Z( ) (@™ (1)) Mf(t+1).
j k=0

from slide 14.
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For the term insurance a™(t) = 0, so we can use:

p
Pty =vP> py(tt+1) Z( ) (@ ()P “ME(t+1).
j k=0

from slide 14.
Using 8 = {1} and &3'(t) = Bfort = 0,...,T — 1 and denoting M’(t) =
E[(V,")P|X; = /], we get

MA(t) = (vi) [p**(t,tJr DMt +1) + pur(t, t + 1)52} ,

where we used that M (t) = 0 for k = 1,2 and &%'(t) = 0.
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For the term insurance a™(t) = 0, so we can use:

p
Pty =vP> py(tt+1) Z( ) (@ ()P “ME(t+1).
j k=0

from slide 14.
Using 8 = {1} and &3'(t) = Bfort = 0,...,T — 1 and denoting M’(t) =
]E[(V+)P|Xt_/] we get

MA(t) = (vi) [p**(t,tJr DMt +1) + pur(t, t + 1)52} ,
where we used that M (t) = 0 for k = 1,2 and &%'(t) = 0.
We compute V[V;"|X; = ] = M2(t) — (V. (t))? with parameters: B = 200000, r = 3%,

age x = 30, T = 40 using both a Monte-Carlo method with N = 10000 iterations and
the theoretical formula above.
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The (conditional) means and standard deviations we obtained are:

Means term insurance

Standard deviations term insurance

35000

— Theosetical
--- Empirical

— Theoretical
- Empirical

30000 60000

15000

0
0

Age of contract

(a) Means

0 10 20 30 40

Age of contract

(b) Standard deviations

Figure: Term insurance with death benefit B = 200000, r = 3%, x = 30, T = 40.
Theoretical vs. Empirical quantities with N = 10 000 simulations.
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