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Recall that we already defined stochastic integrals of the form

(Y · A)t :=

∫ t

0
Y (s, ω) dA(s, ω)︸ ︷︷ ︸

integrator

(1)

where A = {A(t , ω), t ≥ 0, ω ∈ Ω} (cash flow) is a stochastic process
on a given probability space (Ω,A,P) with paths which are
right-continuous with existing left limits and of bounded variation.

Problem: Can we define (1) for more general integrators X (s, ω) as
e.g.

X (s, ω) = A(s, ω) + B(s, ω),
where B(s, ω) is a Brownian motion or more generally, for processes
Xs = X (s, ω) of the form

Xs = X0 + As + Ms,
where M is a martingale or more generally a local martingale?
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In order to define local martingales we need two concepts:

Definition (Usual hypotheses)

A filtration F = {Ft}t≥0 (e.g. market information flow) is said to satisfy
the usual hypotheses if

(i) F0 contains all N ∈ A with P(N) = 0. Meaning that market
traders are aware of the possible occurrence of extremely
rare market events N.

(ii) F is right-continuous, that is

Ft =
⋂
u>t

Fu , t ≥ 0,

meaning that the market information flow does not "jump"
when a market analyst looks back into history.
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Remark

Implication of this: X = {Xt , t ≥ 0} adapted to F (i.e. Xt is Ft -
measurable for all t ≥ 0) and Y = {Yt , t ≥ 0} a stochastic process
such that Xt = Yt with probability one, then Y is also F adapted.

Definition (Stopping time)

A random variable τ with values in [0,∞] is a stopping time if

{τ ≤ t} ∈ Ft

for all t ≥ 0.
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Example (Stopping time)

St , t ≥ 0 (right-continuous) stock price process. Define

τ := inf {t ≥ 0 : St = 100$}

first time that St reaches 100$. Here, inf ∅ =∞ by convention.

Example (Not stopping time)

St , t ≥ 0 (right-continuous) stock price process. Define

τ := argmax{St , t ∈ [0,T ]}

the maximum value of the stock on the time frame [0,T ]. The event
{τ >t} is not in our knowledge in Ft .
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Definition (Local martingale)

An adapted process M = {Mt , t ≥ 0} with right-continuous paths and
existing left limits (i.e. an adapted càdlàg process) is a local martin-
gale if there are increasing stopping times τn, n ≥ 1 with τn → ∞ as
n→∞ with probability one such that

(i) the stopped process (on {τn >0})

Mτn
t , Mt∧τn1{τn>0}

is a martingale for each n, that is

E[Mτn
t |Fs] = Mτn

s , t ≥ s

for each n ≥ 1, and
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Definition (Local martingale)

(ii)
sup
t≥0

E
[
|Mτn

t |I{|Mτn
t |≥m}

]
m→∞−−−−→ 0

for each n ≥ 1 (uniform integrability).

Comment:
Every martingale is a local martingale.
Every local martingale that is bounded from below is a
supermartingale, and every local martingale that is bounded
from above is a submartingale. Hence, every bounded local
martingale is a martingale. However, in general a local
martingale is not a martingale, because its expectation can be
distorted by large values of small probability.
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Example

An example of a local martingale which is not a martingale is: Xt =
log |Wt − 1|, t ≥ 0, where W is a complex-valued Brownian motion.
Also, the solution of the SDE dXt = Xα

t dWt where α > 1 is a local
martingale.
Also, if you consider a geometric Brownian motion, i.e. Xt =

X0e−
1
2σ2t+σWt , then X is a martingale for t ≥ 0, now define Yt = Xf (t)

where f (t) = tan((π/2)t), then Y is a local martingale on [0,1] but not
a martingale. Any stochastic integral

∫ t
0 f (s)dWs where f = f (s, ω)

is such that
∫ T

0 |f (s)|2dt <∞ P − a.s. is a local martingale, not nec-
essarily a martingale. If, in addition,

∫ T
0 E[|f (s)|2]dt <∞ then it is a

martingale.
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Definition (Semimartingale)

An F-adapted càdlàg process X is a semimartingale if

Xt = X0 + At + Mt , t ≥ 0, (2)

where A and M are càdlàg adapted processes such that A is of
bounded variation (with probability one) and M is a local martingale.

Remark

If A0 = M0 = 0 and A is continuous in t then the decomposition of X
in (2) is unique, i.e.

Xt = 0, t ≥ 0 ⇐⇒ At = 0,Mt = 0, t ≥ 0.
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Local martingales in...
... stochastic analysis: The Itô integral is classically only constructed
for processes ξs that are in L2

a([0,T ]) and the Itô integral is a
martingale. If we want to extend the construction more generally to ξ
which are not square-integrable, we can, but then the integral is a
local-martingale.

... finance: When pricing contracts, we use a pricing formula based on
martingality:

Ṽt = EQ[ṼT |Ft ],
where Vt is the value of a hedging portfolio at time t and Q is a
so-called pricing measure. We want to hedge some r.v. VT = H. Even
if the (discounted) underlying tradable assets are martingales under Q,
the associated portfolio V need not be a martingale, but merely a local
martingale. Then the price may be wrong. Local martingales are
hence used for explaining financial bubbles.
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Motivation
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Motivation of how to define a stochastic integral:∫ t

0
YsdXs. (3)

Recall the Riemann integral:∫ T

0
f (s)ds = lim

|π|→0

n−1∑
i=1

f (ξi)(ti+1 − ti), (4)

for partitions π = {ti}ni=0 of [0,T ] with mesh
|π| = maxi=1,...,n−1 |ti+1 − ti | → 0, 0 = t0 < t1 < · · · < tn = T ,
ξi ∈ [ti , ti+1].
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If f is a step function, i.e.

f (s) =
n−1∑
i=0

ai
∈R

I(ti ,ti+1](s), s ∈ (0,T ]

for 0 = t0 < t1 < · · · < tn = T then∫ T

0
f (s)ds =

n−1∑
i=0

ai(ti+1 − ti) =
n−1∑
i=0

ai∆ti , (5)

where ∆ti = ti+1 − ti , i = 0, . . . , n − 1.
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Although it is tedious, one can compute integrals via its definition:

Example

Let f (x) = x2 and π = {ti}ni=0, ti = i
n , i = 0, . . . , n then

∫ 1

0
f (x)dx = lim

n

n−1∑
i=1

f (ti)(ti+1 − ti) = lim
n

n−1∑
i=1

t2
i

1
n

= lim
n

1
n

n−1∑
i=1

(
i
n

)2

= lim
n

1
n3

n−1∑
i=1

i2

= lim
n

1
n3

(n − 1)n(2n − 1)

6
=

1
3
.
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Construction via simple predictable
processes
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It is reasonable to define the stochastic integral (3) of stochastic step
functions Yt , t ≥ 0 similarly to (5), that is if

Ys = H01{0}(s) +
n∑

i=1

HiI(Ti ,Ti+1](s), (6)

where H0,H1, . . . ,Hn and T1, . . . ,Tn+1 are random variables instead
of real numbers ti and ai as before. Then...

∫ t

0
YsdXs := H0X0 +

n∑
i=1

Hi (Xt∧Ti+1 − Xt∧Ti )︸ ︷︷ ︸
XTi+1 − XTi︸ ︷︷ ︸

∆XTi

if t≥Ti+1

(7)

for 0 = T1 ≤ T2 ≤ · · · ≤ Tn+1 <∞.

David R. Banos Life Insurance and Finance STK4500 17 / 43



It is reasonable to define the stochastic integral (3) of stochastic step
functions Yt , t ≥ 0 similarly to (5), that is if

Ys = H01{0}(s) +
n∑

i=1

HiI(Ti ,Ti+1](s), (6)

where H0,H1, . . . ,Hn and T1, . . . ,Tn+1 are random variables instead
of real numbers ti and ai as before. Then...∫ t

0
YsdXs := H0X0 +

n∑
i=1

Hi (Xt∧Ti+1 − Xt∧Ti )︸ ︷︷ ︸
XTi+1 − XTi︸ ︷︷ ︸

∆XTi

if t≥Ti+1

(7)

for 0 = T1 ≤ T2 ≤ · · · ≤ Tn+1 <∞.

David R. Banos Life Insurance and Finance STK4500 17 / 43



In applications to finance and insurance, however, Y is typically given
by a hedging strategy with respect to a financial instrument X or a
discount factor based on stochastic interest rates integrated against a
stochastic cash flow X . In order to rule out portfolio strategies Y of
an insider, it is assumed that Y is based on market information up to
time t (i.e. Ft ), that is Y is adapted to F .

Y in (6) becomes F adapted

if 0 = T0 ≤ T1 ≤ · · · ≤ Tn+1 <∞ are stopping times and Hi is based
on market information up to the random time Ti , that is a random
variable with respect to FTi defined hereunder.

Definition (Stopping time σ-algebra Fτ)

For a stopping time τ we define the stopping σ-algebra as

Fτ := {A ∈ A : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.
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Definition (Stochastic integral of stochastic step functions)

Let Y = {Yt , t ≥ 0} be given by (6) with 0 = T0 ≤ T1 ≤ · · · ≤ Tn+1 <

∞ and Hi are random variables on (Ω,FTi ,P) such that |Hi | <∞ with
probability one, i = 0, . . . , n. Then the stochastic integral of Y with
respect to X is defined as in (7) ,∫ t

0
YsdXs := H0X0 +

n∑
i=1

Hi(Xt∧Ti+1 − Xt∧Ti ) (8)

and denoted by ∫ t

0
YsdXs or (Y · X )t . (9)
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Remark

(i) Processes of the form (6) are also called simple predictable
and the collection of those processes is usually denoted by S
or S.

(ii) The definition of (9) is independent of the specific
representation in (6).

In view of applications we find that the class S of integrand processes
is rather small.
The natural approach is to define∫ t

0
YsdXs

for more general integrand processes Y by approximation of Y
through stochastic step functions Y (n) ∈ S.
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In general, this approximation can not be as in (4) in the sense of
convergence in R, since e.g. the Brownian motion Xs = Bs is not of
bounded variation.
However, this approximation can be in the sense of convergence in
probability (or L2) or more precisely, in the following sense:

Let Y and Z be processes. We define the distance between Y and Z
as

d(Y ,Z ) :=
∑
n≥1

1
2nE

[
1 ∧ sup

0≤s≤n
|Ys − Zs|

]
,

where x ∧ y := min{x , y}. Then

Y (n) n→∞−−−→ Y

with respect to d , if, and only if

d(Y (n),Y )
n→∞−−−→ 0. (10)
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Remark

The convergence in (10) is equivalent to: for all sequences there ex-
ists a subsequence {nk}k≥0 ⊂ N of the latter such that

Y (nk )
t

k→∞−−−→ Yt (11)

with probability one uniformly in t (on compact intervals).

In the following denote by D the collection of adapted processes with
right-continuous paths and existing left-limits (càdlag) and by L the
class of adapted processes with left-continuous paths and existing
right-limits (làdcàg). Obviously, L ⊃ S.
The following lemma is the starting point for the construction of
stochastic integrals of Y ∈ L.
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Lemma

Each Y ∈ L can be approximated by {Y (m)}m≥1 ⊂ S in the sense of
(10), or equivalently of (11).
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Definition (Stochastic integral for {Yt}t≥0 ∈ L)

Let {Y (m)
t }t≥0 ⊂ S be q sequence of simple predictable stochastic

processes as defined in (6) and {Yt}t≥0 ∈ L such that {Y (m)
t }m≥1

approximates Y in the sense of (10), or equivalently of (11). The then
unique process Z ∈ D with

d
(∫ ·

0
Y (m)

s dXs , Z
)

m→∞−−−−→ 0

is called stochastic integral of Y with respect to X and denoted by

Zt =

∫ t

0
YsdXs, or Zt = (Y · X )t , t ≥ 0.
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Some properties of the stochastic
integral
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(i) ∫ t

0
Ysd(αXs + βVs) = α

∫ t

0
YsdXs + β

∫ t

0
YsdVs.

(ii) Vt :=
∫ t

0 YsdXs, {Rt}t≥0 ∈ L then V is a semimartingale and∫ t

0
RsdVs =

∫ t

0
RsYsdXs.

(iii) X a local martingale. Then

Mt :=

∫ t

0
YsdXs, t ≥ 0

is a local martingale, too.

David R. Banos Life Insurance and Finance STK4500 26 / 43



(iv) τ stopping time, then∫ t∧τ

0
YsdXs =

∫ t

0
Ys1[0,τ](s)dXs.

(v) ∆f (t) := f (t)− f (t−) and Vt :=
∫ t

0 YsdXs, then

∆Vt = Yt ∆Xt .
(vi) Itô isometry: Xt = Bt , t ≥ 0, Brownian motion. Then

E
[∫ t

0 YsdBs

]
= 0 and

Var
[∫ t

0
YsdBs

]
= E

[(∫ t

0
YsdBs

)2]
= E

[∫ t

0
Y 2

s ds
]
.

The above fact comes from[∫ ·
0

YsdBs,
∫ ·

0
YsdBs

]
t

=

∫ t

0
Y 2

s ds.
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Quadratic covariation
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Definition (Quadratic covariation)

Then the covariation of two processes X = {Xt , t ∈ [0,T ]} and Y =
{Yt , t ∈ [0,T ]} is defined as

[X ,Y ]t = lim
|π|→0

n∑
i=1

(Xti − Xti−1)(Yti − Yti−1)

whenever the limit exists, understood in the probability sense.

Definition (Quadratic variation)

The quadratic variation of a process X = {Xt , t ∈ [0,T ]} is defined as

[X ]t = [X ,X ]t ,

whenever the limit exists, in probability.
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Definition (Quadratic variation process)

The process [X ] is the unique continuous increasing adapted process
vanishing at zero such that Mt , X 2

t − [X ]t is a martingale.

Definition (Quadratic covariation process)

Let V = {Vt}t≥0 and Z = {Zt}t≥0 be semimartingales. Then the
quadratic covariation process of V and Z is defined as the process

[V ,Z ]t := VtZt −
∫ t

0
Vs−dZs −

∫ t

0
Zs−dVs, t ≥ 0. (12)
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Some properties of the quadratic
variation
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(i) [X ,X ]· ∈ D and increasing.
(ii) [X ,X ]0 = X 2

0 and ∆[X ,X ]t = (∆Xt )
2.

(iii) 0 = τn
0 ≤ τn

1 ≤ · · · ≤ τn
kn

, n ≥ 1 stopping times with

sup
k
τn

k
n→∞−−−→∞ and sup

k
|τn

k+1 − τn
k |

n→∞−−−→ 0,

i.e. a random partition with vanishing mesh. Then

X 2
0 +

∑
i≥1

(
Xt∧τn

i+1
− Xt∧τn

i

)2 n→∞−−−→ [X ,X ]t

in the sense of (10), or equivalently of (11).
(iv) {Xt}t≥0 ∈ D, X of bounded variation. Then

[X ,X ]t = X 2
0 +

∑
0<s≤t

(∆Xs)2.
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Alternative way to construct stochastic
integrals via an isometry
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The following theorem provides an alternative way of defining the
stochastic integral Zt = (Y · X )t of Y w.r.t. a semimartingale X .

Theorem (Stochastic integral)

Let X and Y be two adapted square-integrable martingales, then (Y ·
X ) is the unique element such that [(Y · X ),N] = Y · [X ,N], for all N.
Then the map Y 7→ (Y · X ) is an isometry on right spaces.

Remark (Isometry property)

[K · X ,H · Y ]t =

∫ t

0
KsHsd [X ,Y ]s.

In particular,

[K · X ,K · X ]t =

∫ t

0
|Ks|2d [X ,X ]s.
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Itô formula (chain rule)
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In view of applications, the definition of stochastic integrals (via limit of
integrals of simple predictable processes) gives rise to the following
problem: How can we compute?∫ t

0
YsdXs ?

In general, this problem is difficult or even impossible to solve.
However, in many practical relevant cases we may apply one of the
following two methods to evaluate stochastic integrals:

1 Method: Direct use of the definition of stochastic integral. But
this is, as mentioned, in general rather tedious.

2 Method: Itô’s formula: it can be considered a chain rule for
semimartingales.
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Theorem (Itô’s formula for semimartingales)

Let X be a semimartingale. Denote by [X ,X ]ct the continuous part of
[X ,X ]t , that is

[X ,X ]ct︸ ︷︷ ︸
of B.V.

= [X ,X ]t − X 2
0−

∑
0<s≤t︸ ︷︷ ︸

abs. convergent
countable sum

(∆Xs)2.
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Theorem (Itô’s formula for semimartingales)

Let f be a function in C2(R) (i.e. twice continuously differentiable).
Then the process Zt := f (Xt ) is a semimartingale again and

f (Xt ) = f (X0) +

∫ t

0
f ′(Xs−)dXs +

1
2

∫ t

0
f ′′(Xs−)d [X ,X ]cs

+
∑

0<s≤t

[
f (Xs)− f (Xs−)− f ′(Xs−)∆Xs

]
= f (X0) +

∫ t

0
f ′(Xs−)dXs +

1
2

∫ t

0
f ′′(Xs−)d [X ,X ]s

+
∑

0<s≤t

[
f (Xs)− f (Xs−)− f ′(Xs−)∆Xs −

1
2

f ′′(Xs−)(∆Xs)2
]
.

(13)
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Proof.

The proof is based on Taylor’s formula. �

Remark

Convention in (13):

f ′(X0−) = 0 and f ′′(X0−) = 0. (14)

Remark

In the lecture notes you can find a multidimensional version of the Itô
formula.
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Example

B = {Bt}t∈[0,T ], T >0 fixed, a Brownian motion. What is
∫ t

0 BsdBs?

Choose Xt = Bt and f (x) = x2 in the theorem for Itô’s formula. B
continuous ⇒ ∆Xs = ∆Bs = 0 and f (Xs) − f (Xs−) = 0, hence the
countable sum in (13) is zero. Thus,

f (Xt )︸ ︷︷ ︸
=B2

t

= f (X0)︸ ︷︷ ︸
=0

+

∫ t

0
f ′(Xs−)︸ ︷︷ ︸
2B−

s =2Bs

d Xs︸︷︷︸
Bs

+
1
2

∫ t

0
f ′′(Xs−)︸ ︷︷ ︸

=2

d [X ,X ]cs︸ ︷︷ ︸
=s

.

As a result, ∫ t

0
BsdBs =

1
2

B2
t −

1
2

t.
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Itô processes and stochastic
differential equations (SDEs)
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Although we have (very quickly) seen a theory for integration w.r.t. very
general semimartingale processes (even discontinuous), we will focus
mostly on the case Xs = Bs and the integral is the classical Itô integral.
Hence, we know how to construct integrals with ds (Lebesgue) and
with dBs (Itô). So, given two adapted processes u and v such that∫ t

0 E[|us|]ds <∞ and
∫ t

0 E[|vs|2]ds <∞ we can look at processes of the
form

Xt = X0 +

∫ t

0
usds +

∫ t

0
vsdBs.

Such processes are known as Itô processes.
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If we choose u and v in the previous slide as two deterministic
functions on b, σ : [0,T ]× R→ R and define us = b(s,Xs) and
vs = σ(s,Xs) then we are looking at processes like

Xt = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dBs. (15)

Written in differential form would be:

dXt = b(t ,Xt )dt + σ(t ,Xt )dBt , t ∈ [0,T ].

The above mathematical expression is known as a stochastic
differential equation. It describes the dynamics of X (in differential
form) and it has no other meaning than (15)
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